第十六章分式复习
- 格式:doc
- 大小:169.00 KB
- 文档页数:4
第16章《分式》 提要:分式的4则运算是整式4则运算的进1步发展,是有理式恒等变形的重要内容之1,所以,分式的4则运算是本章的重点.分式的4则混合运算,是整式运算.因式分解和分式运算的综合运用,由于运用了较多的基础知识,运算步骤增多,解题方法多样灵活,又容易产生符号和运算方面的错误,所以是分式的难点.同时列分式方程解应用题和列整式方程解应用题相比较,虽然涉及到的基本数量关系有时是相同的,但由于含有未知数的式子不受整式的限制,所以更为多样而灵活.习题:1.填空题1.使分式的值等于零的款件是_________.2.在分式中,当x_____________时有意义,当x_________时分式值为零.3.在括号内填入适当的代数式,使下列等式成立:=。
=.4.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.5.函数y=中,自变量x的取值范围是___________.6.计算的结果是_________.7.已知u= (u≠0),则t=___________.8.当m=______时,方程会产生增根.9.用科学记数法表示:12.5毫克=________吨.10.用换圆法解方程,若设x2+3x=y,,则原方程可化为关于y的整式方程为____________.11.计算(x+y)· =____________.12.若a≠b,则方程+=-的解是x= ____________。
13.当x_____________时,与互为倒数.14.约分:=____________。
=_____________.15.当x__________________时,分式-有意义.16.若分式的值为正,则x的取值范围是_______________.17.如果方程有增根,则增根是_______________.18.已知=。
则=__________.19.m≠±1时,方程m(mx-m+1)=x的解是x=_____________.20.1个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x个,由题意可列方程为____________.2.选择题21.下列运算正确的是()A.x10÷x5=x2。
第十六章分式16.1 分式16.1.1 从分数到分式☆课前记录——概念回顾整式——单项式与多项式统称为整式。
单项式——数字与字母的积叫做单项式。
多项式——多个单项式相加叫做多项式。
16.1.1-1 分式概念形如的式子,a,b是整式且b含有字母的整式。
16.1.1-2 注意1.分数与分式的区别:分式是分数的特殊形式。
2.分式有意义的条件:b≠0 分子、分母为整式。
3.分式为0的条件:a=0,b≠0。
16.1.2 分式的基本性质☆类比展开——分数的性质分子、分母同乘或除以一个不为0的数,分数的值不变。
分子、分母同乘或除以一个不为0的整式,分式的值不变。
例:(c≠0)(c≠0)☆类比展开:(16.1.2-2——16.1.2-3)——约分与最简分数约分:把分子、分母的公因数约去的变形。
最简分数:分子、分母没有除“1”外的公因数的数。
16.1.2-2 分式的约分约去分子、分母公因式的变形。
16.1.2-3 最简分式分子、分母无“1”外的公因式。
☆类比展开(16.1.2-4——16.1.2-5)——通分与最简公分母通分:把分母化成相同数的变形。
最简公分母:分母的最小公倍数。
16.1.2-4 分式的通分把分母化为相同整式的变形。
16.1.2-5 分式的最简公分母分母的每一字母的最高次幂的积。
16.2.1 分式乘除☆类比展开(16.2.1-1)——分数乘法分子乘以分子作为积的分子,分母乘以分母作为积的分母,如:=前提:先约分。
16.2.1-1 分式的乘法分子乘以分子作为积的分子,分母乘以分母作为积的分母,如:=前提:先约分。
☆类比展开(16.2.1-2)——分数除法处以一个数等于乘这个数的倒数。
如:=前提:先约分。
16.2.1-2 分式的除法除以一个式子等于乘它的倒数:如:=前提:先约分。
16.2.1-3 分式的乘方分式乘方要把分子、分母分别乘方。
即:16.2.2 分式的加减☆类比展开(16.2.2-1)——分数的加减如果分母相同,直接运算;如果分母不同,先通分,再运算。
第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
第十六章 分式小结与复习知识点一 分式的值为0的条件例1 若分式221-2b-3b b -的值为0,则b 的值为( ) A. 1 B. -1 C. ±1 D. 2 【解析】:分式221-2b-3b b -的值为0,必须同时满足两个条件2210230b b b ⎧-=⎪⎨--≠⎪⎩ 由①得b=±1,由②得b ≠3且b ≠-1;所以b=1.故选A.【方法归纳】:分式的值为0的条件是:分子为0,而分母不为0.【拓展运用】1. 若分式20(2)(1)x x x -=--,则x 3=__________.知识点二 分式的乘除例2 计算22164____________.81628a a a a a --÷=+++ 【解析】本题是分式的除法,应先对能分解因式的分子或分母进行分解因式,再利用分式的乘除法则计算,即:原式=2(4)(4)4(4)2(4)a a a a a +--÷++=2(4)(4)2(4)2(4)4a a a a a +-+⨯=-+-. 故答案为:-2.【方法归纳】在分式的乘除运算中,当分式的分子或分母是多项式时,应先进行因式的分解,然后再计算.【拓展运用】2. 阅读下列解答的过程,然后回答问题: 计算:2212(4)442x x x x x +÷⋅--+- 解:原式=212(2)(2)(2)2x x x x x +÷⋅-+-- ① =212(2)(2)(2)2x x x x x -⋅⋅-+-+ ② =1 ③(1)其中①使用的公式:_________________________.(2)其中②使用法则:___________________________.① ②(3)在过程①②③中,第_____步是错误的,该题正确的计算结果是_________.知识点三 分式的加减例3 化简:22142a a a +--. 【解析】两个分式相加(或减)时,分母为多项式时,应先将分母按同一个字母降幂或升幂排列,然后将能进行分解因式的分母或分子分解因式,最后把异分母转化成同分母,再进行分式的加(或减),即:原式 = 22142a a a -=--()()21222a a a a -+--()()()()222222a a a a a a +=-+-+- ()()()2222a a a a -+=+-()()222a a a -=+-12a =+. 【方法归纳】异分母分式相加减时,先通分,化成同分母分式后,在进行加减.【拓展运用】3. 计算:6()333x x x x x x-÷-+-. 知识点四 分式的混合运算例4 先化简,再求值:(x – 1x )÷ x +1x ,其中x = 2+1.【解析】本题含有分式的减法与除法运算,并且有括号,因此应先算括号里面的,然后将除法转化成乘法来计算,最后把x 的值代入最简式并求出最后的结果,即:原式= x 2–1x · x x +1= (x +1)(x –1)x · x x +1 = x –1.当x = 2+1时,原式= 2+1–1= 2.【方法归纳】分式的运算顺序与分数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号先算括号里面的.要特别注意分式混合运算的关键是运算顺序和运算技巧,再有最后的计算结果要化到最简.【拓展运用】4.请你给下列分式:221244211x x x x x x x +--+-÷-+-先化简,再对x 取一个你喜欢的数,并代入求值,知识点五 分式方程例5 解方程:xx x -=+--23123. 解析:先找出各分母的最简公分母,然后同乘最简公分母,从而将分式方程化成整式方程.方程两边同乘以()2-x ,得()323-=-+-x x ,即2x -5=-3,解得x =1. 经检验,x =1是原方程的解.所以原方程的解为x =1.【方法归纳】在去分母时,要注意方程左右两边不含分母的项不能漏乘最简公分母.另外,还要注意解分式方程的必要步骤:检验.【拓展运用】5. 若方程322x m x x -=--无解,则m=________.误区点拨一、忽视分母不能为0,而出错例1 已知11m m --的值为0,求m 的值.错解:由11m m --=0,得10m -=,即1m =,所以m=±1.错解分析:在解题时,只注意到了分子为0,而忽视了分母不能为0这一条件,即m-1≠0,所以m≠1.正解:由11m m --=0,得1010m m ⎧-=⎪⎨-≠⎪⎩,所以11m m =±⎧⎨≠⎩,所以m=1. 方法归纳:当一个分式的值为0时,首先求出使分子等于0的字母的值,在检验这个字母的值是否使的分母的值为0,当它使分母的值不为0时,就是我们所要球的字母的值.活学活用:是否存在x 的值使2122x x --的值为0? 二、分式乘除时弄错或忽略符号,而出错.例2 计算2a a b b a a b+÷--的结果是( ) A. 2a a b + B. 3a b a b +- C. 3a b b a +- D. 2a a b -+ 错解:选A.错解分析:在解题时忽视了b-a 与a-b 互为相反数,因此在进行分式的乘法运算约分时,都不要丢掉“-”.正解:选D.方法归纳:在进行分式的乘除运算时,均转化为乘法来完成,但要注意运算中的互为相反数的情况.活学活用:计算2()__________.ab ab a a b-⋅=- 三、在整数指数幂的运算中对负整数指数幂的意义理解错误,而出错例3 计算:22()3--=_________.错解:22()3--=22()3=49错解分析:对负整数指数幂的意义理解不够透彻,错把分数本身的负号和指数的负号进行了“负负得正”运算.正解:22()3--=2119244()39==- 方法归纳:运用负整数指数幂的意义,将负整数指数幂转化成正整数指数幂,然后计算,即:1n n a a-=(a ≠0). 活学活用:③ 计算101322()()()__________.233--+-= 四、解分式方程时忘记检验,而出错例4 解分式方程81877x x x--=--,则方程的解为( ) A. x=7 B. x=8 C. x=5 D. 无解错解:选A.错解分析:在解题的过程中忽略了验根,事实上当x=7时,分母x-7=0,所以原方程无解.正解:选D.方法归纳:解方程的一般步骤:把方程的两边都乘最简公分母,约去分母,化成整式方程;再解该整式方程,最后一定要把解代入最简公分母,看结果是不是0,把使最简公分母为0的解舍去.活学活用:解方程214111x x x +-=--.基础盘点1. (1)5x x +; (2) πx (3)224x x y -+; (4)3546a b +; (5)212x +; (6)3811ab cd 以上各式,其中是整式的有________________,是分式的有_________________.2.(1)当x_______时,分式5x x +有意义; (2)当x_______时,分式5x x +有无意义; (3)当x_______时,分式5x x +的值为0. 3. 分式b ax ,3c ax -,25a x 的最简公分母是___________. 4. (1)分式与分式相乘,用__________作为积的分子,___________作为积的分母,用式子表达为:a c b d⋅=__________.(2)计算222324ab a b c cd ÷时,先将除式的分子、分母颠倒位置得:222423ab cd c a b ⋅,再根据分式的乘法法则得_________,约分后的结果__________.(3)计算45m m-+时,分母__________,分子___________,即:45m m-+=______=_______. (4)计算11a b-时,应先__________,把异分母变为同分母,再相减, 即:11a b -=________=_______. 5. (1)整数指数幂的性质有:(m,n都是整数)a m ×a n =______;(a m )n =______;(ab)n =_______;a m ÷a n =_______(a ≠0);()n ab =_________.(2)(x-5)0=1成立的条件是________.(3)5-2011=_______,由此可得:任何一个不为0的数的-n(n 为正整数)次幂,等于这个数n 次幂的________.6. 解分式方程214111x x x +-=--时,先找出所有分母的最简公分母是____________,再两边同乘____________约去分母,得:_________________________,解得:x=_______,检验:当x=_____时,(x+1)(x-1)________,所以x=_____是增根,所以_______________.7. 张宁计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前1天读完,试求他原计划平均每天读几页?为了使同学们更好的掌握解题思路,请认真完成以下问题:设张宁原计划平均每天读x 页,(1)张宁原计划读完这本书需用_________天;(2)改变计划前,已读了______页,还剩______页;(3)读了5天后改变了计划,每天多读5页,读完剩下的部分还需________天;(4)根据问题中的相等关系,列出相应的方程_____________________;(5)张宁原计划平均每天读_______页.课堂检测1. 化简222x y x xy-+的结果为( ) A. y x- B. x y x - C. x y x + D. -y 2. 下列分式运算,结果正确的是( ) A.3342m n m n m n⋅= B.33322()33x x y y =C.2222()a a x y x y =++D.111b c b c⋅÷⋅= 3. 若分式22969x x x --+的值为0,则x 的值为( ) A. 3B. -3C.±3D. 04. 计算:4222x x x +---=_____________. 5.若分式x-12010与1互为相反数,则x 的值是__________. 6. 已知a 2-8a+16与2b -互为相反数,则分式()()b a a b a b -÷+的值为_________. 7. 请从下列三个不为0的分式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.x 2-4x+4, x 2-2x, x 2-4然后请你自选一个合理的数代入求值.8.去年入秋以来,云南省发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务. 问原计划每天修水渠多少米?跟踪训练1. 若x(a-3)2011÷(3-a)2011=2011,则( )A.x=-2011,a ≠0B. x=2011, a ≠3C. x=2011,a ≥3D. x=-2011,a ≠32. 化简24()22a a a a a a--⋅-+的结果是( ) A. -2a B. 4 C. -4 D. 2a3. 若分式10(2)(1)xx x -=+-,则x 2011=__________.4. 已知x,y 为实数,且xy=1,设M=11x y x y +++,Q=1111x y +++,则M_____Q.(填“>”“<”或“=”)5.观察下列计算:111122=-⨯;1112323=-⨯;1113434=-⨯; 1114545=-⨯; … …从计算结果中找规律,利用规律性计算111111223344520102011++++⨯⨯⨯⨯⨯ =__________. 6.先化简再求值:.15621312+-+-÷+-a a a a a 请你选一个你喜欢的而且使原分式有意义的 数带入并求值.7.已知关于x 的方程233x m x x -=--有一个正数解,试求m 的取值范围.8.已知.1,12,112+=-=-=x x G x N x M 将它们组合成(M-N )÷G 或M-B ÷G 的形式,请你从中任选一种进行计算,先化简,再求值其中x=4.【参考答案】考点呈现(拓展运用部分的答案)1. -82.答案:(1)完全平方公式与平方差公式;(2)除法法则;(3)③.3.解:6()333x x x x x x-÷-+-=22333()(3)(3)6x x x x x x x x +-+-⋅-+=13x -+ 4. 解:原式=212(1)(1)21(2)x x x x x x x +-+--⋅-+-=1122x x x x +----=112x x x +-+-=22x -. 当x=6时,原式=21622=-(注意:x 的取值不唯一,除2,±1以外,其他的值均可以). 5. 【点拨】原方程去分母整理得:x-3=-m ,因为原方程无解,当原方程存在曾根满足题意,即当x=2时,该分式方程无解,所以m=1.误区点拨(活学活用部分答案) ①解:若2122x x --=0,则必须同时满足x-1=0且2x 2-2≠0,即:x=1且x ≠±1,因此不存在这样的x 的值满足题意.② -a 2b ;③16; ④解:214111x x x +-=-- 两边同乘以x 2-1得:(x+1)2-4=x 2-1解得:x=1检验:将x=1代入最简公分母,得x 2-1=0,所以x=1不是原方程的解.∴原方程无解.基础盘点(答案)1. (2)(4)(5); (1)(3)(6);2. (1)≠-5; (2) =-5; (3) =0;3. 15ax 24. (1) 分子与分子相乘;分母与分母相乘;ac bd; (2) 222423ab cd c a b ;23d a ;(3)不变;相加减;45m -+;1m ; (4)通分;b a ab ab -;b a ab-; 5. (1)a m+n ; a mn; a n b n ; a m-n ; n n a b ; (2) x ≠5; (3) 201115;倒数; 6. (x+1)(x-1);(x+1)(x-1);(x+1)(x+1)-4=(x+1)(x-1);1;1;=0;1;原分式方程无解. 7. (1) 200x ; (2) 5x;200-5x; (3) 20055x x -+; (4) 200x -1=20055x x -++5 (5) 20; 课堂检测(答案) 1. B 2. A 3. B 4. -1; 5. 2011; 6. 14-7.解:答案不唯一例:x 2-4x+4作分母,x 2-2x 作分子,则:22244x x x x --+=2(2)(2)x x x --=(2)x x -.当x=1(x 的值不为一只要使原分式有意义就可以)时,原式=-1.8.解:设原计划每天修水渠 x 米.根据题意得:36003600201.8x x-=. 解得:x = 80.经检验:x = 80是原分式方程的解.答:原计划每天修水渠80米.跟踪训练(答案)1. D2.C3. -1;4. =;5. 20102011; 6.解:原式=.15)3(2)1)(1(31+-+-+÷+-a a a a a a =.15)1)(1()3(231+--++⋅+-a a a a a a =1512+-+a a =13+-a . 当a=2时,(a 的取值不唯一,只要a ≠±1、-3就可以),原式=1123-=+-. 7.解:233x m x x -=-- x-2(x-3)=mx=6-m∵原方程有解,∴6-m ≠3,即:m ≠3∵方程的解为正数∴6-m >0,即:m <6∴当m <6且m ≠3时,原方程有一个正数解.8.选一:(M -N )÷G=1)1211(2+÷---x x x x =x 1 当x=3时,原式=41 选二:A -B ÷C=112112+÷---x x x x =)1(2--x x x 当x=3时,原式=61. 选做题 1.(π-3.14)0+11()42---的值是______________.答案:-12.(2010年连云港)14.化简:(a -2)·a 2-4a 2-4a +4=___________. 答案: 2a +3. 若x=2010,y=2011,则221()________x y x y +⋅=-. 答案:-14.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得105.112001200=-xx 解得:x=40经检验:x=40是原方程的根,所以1.5x=60答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。
第十六章分式知识点和典型例习题
第一讲 分式的运算
【主要公式】1.同分母加减法则:()
0b c b c a a a a ±±=≠
2.异分母加减法则:()
0,0b d bc da bc da
a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:
b d bd a
c ac ∙=,
b c b d bd
a d a c ac ÷=∙= 4.同底数幂的加减运算法则:实际是合并同类项
5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n
6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn
7.负指数幂: a -p =1p
a a 0=1
8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2- b 2 ;(a ±b)2= a 2±2ab+b 2
(一)、分式定义及有关题型
题型一:考查分式的定义
【例1】下列代数式中:y x y
x y x y x b
a b a y x x -++-+--1,
,,21,2
2
π,是分式的有: .
题型二:考查分式有意义的条件
【例2】当x 有何值时,下列分式有意义
(1)
44+-x x (2)2
32+x x
(3)
1
22-x (4)
3||6--x x
(5)x
x 1-
题型三:考查分式的值为0的条件
【例3】当x 取何值时,下列分式的值为0.
(1)3
1
+-x x
(2)
4
2
||2--x x (3)653
222----x x x x
题型四:考查分式的值为正、负的条件
【例4】(1)当x 为何值时,分式
x
-84
为正; (2)当x 为何值时,分式)1(35-+-x x 为负;
(3)当x 为何值时,分式
3
2
+-x x 为非负数.
(二)分式的基本性质及有关题型
1.分式的基本性质:M B M
A M
B M A B A ÷÷=
⨯⨯= 2.分式的变号法则:
b
a
b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数
【例1】不改变分式的值,把分子、分母的系数化为整数.
(1)y x y
x 4
1313221+- (2)
b
a b
a +-04.003.02.0
题型二:分数的系数变号
【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.
(1)y x y
x --+- (2)b a a --- (3)b a ---
题型三:化简求值题
【例3】已知:511=+y x ,求y
xy x y
xy x +++-2232的值.
提示:整体代入,①xy y x 3=+,②转化出y
x 1
1+. 【例4】已知:21=-
x x ,求221
x
x +的值. 【例5】若0)32(|1|2=-++-x y x ,求
y
x 241
-的值.
(三)分式的运算
1.确定最简公分母的方法: ①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂. 2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;
②取分子、分母相同的字母因式的最低次幂. 题型一:通分
【例1】将下列各式分别通分. (1)c
b a
c a b ab c 225,
3,2--; (2)a b b b a a 22,--;
(3)2
2
,
21,
1
222--+--x x x x x
x x ; (4)a
a -+21
,
2
题型二:约分
【例2】约分: (1)
3
22016xy y x -; (2)n m m n --2
2; (3)6
222---+x x x x .
题型三:分式的混合运算
【例3】计算:
(1)4
2232)()()(a
bc ab c c b a ÷-⋅-;
(2)2
2233)()()3(
x
y x y y x y x a +-÷-⋅+;
(3)11
2
---a a a
(4)
m
n m
n m n m n n m --
-+-+22;
(5) 212
1111x x x ++
++- (6))12()2
1444(222+-⋅--+--x x x x x x x
(四)、整数指数幂与科学记数法
题型一:运用整数指数幂计算
【例1】计算:(1)3132)()(---⋅bc a
(2)2322123)5()3(z xy z y x ---⋅
(3)2
4
253])
()()()([b a b a b a b a +--+--
(4)6223)(])()[(--+⋅-⋅+y x y x y x
题型二:科学记数法的计算
【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯.
第二讲 分式方程
(一)分式方程题型分析
题型一:用常规方法解分式方程
【例1】解下列分式方程 (1)
x x 311=-;(2)0132=--x x ;(3)11
4
112=---+x x x ;
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.
题型二:求待定字母的值
【例4】若关于x 的分式方程3
132--
=-x m
x 有增根,求m 的值.
【例5】若分式方程12
2-=-+x a
x 的解是正数,求a 的取值范围. 提示:03
2>-=a
x 且2≠x ,2<∴a 且4-≠a .
(三)分式方程求待定字母值的方法
例1.若分式方程x
m
x x -=--221无解,求m 的值。
例2.若关于x 分式方程4
3
2212
-=++-x x k x 有增根,求k 的值。
例3.若关于x 的方程
1
1512
2
1
--=
+-+
-x k x
x k x
x 有增根1=x ,求k 的值。