初中数学《二次函数》的教学案例分
- 格式:doc
- 大小:16.00 KB
- 文档页数:2
2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。
通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。
教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。
但学生在学习二次函数时,可能会觉得比较抽象,难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。
三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。
六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。
七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。
让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。
2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。
同时,引导学生总结二次函数的一般形式。
3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。
二次函数大单元教学设计优秀案例二次函数大单元教学设计优秀案例一、引言在数学教学中,二次函数是一个非常重要的概念和内容。
它不仅涉及到数学知识本身,还涉及到数学应用和解决实际问题的能力。
近年来,针对二次函数的教学设计越来越受到重视,如何设计出一篇优秀的二次函数大单元教学案例成为数学教师们需要思考的问题。
在本文中,我们将根据深度和广度的要求,分享一个优秀的二次函数大单元教学设计案例,并探讨其中的教学价值和启示。
二、教学设计案例分析1. 教学内容安排本次教学设计案例的主要内容安排如下:(1)二次函数的定义与性质;(2)二次函数的图像与性质;(3)二次函数的应用:抛物线运动问题;(4)解二次方程与图象的关系。
2. 教学方法在本次教学中,我们采用了多种教学方法,包括课堂讲授、示范演示、小组合作、实践探究等。
通过多种形式的教学,可以激发学生的学习兴趣,增强他们的学习动力,提高他们的学习效果。
3. 教学环节本次教学设计案例中,我们特别设计了以下几个教学环节:引入知识、概念讲解、案例探究、综合应用等。
在案例探究环节中,我们精心设计了一些生动有趣的案例,让学生在实际问题解决中感受二次函数的魅力,培养他们的数学思维和解决问题的能力。
4. 教学资源在这次教学中,我们充分利用了多媒体教学资源,包括幻灯片、视频教学、电子课件等。
通过多媒体教学资源的运用,可以提高教学效果,激发学生的学习兴趣,加深他们对知识的理解和记忆。
5. 教学评价本次教学设计案例中,我们采用了多种教学评价方法,包括课堂练习、作业布置、小组讨论等。
通过多种形式的教学评价,可以全面了解学生的学习情况,及时发现问题,调整教学策略,提高教学效果。
三、个人观点和理解在我看来,这个优秀的二次函数大单元教学设计案例,不仅内容深度丰富,而且教学方法灵活多样,教学环节设计合理,教学资源充分利用,教学评价全面多元,对于学生的数学学习能力和解决实际问题的能力有着很好的培养作用。
数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。
2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。
3、通过学生共同观看和争论,培育大家的合作沟通意识。
(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。
2、具有初步的创新精神和实践力量。
教学重点1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1、探究方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法争论探究法。
教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。
创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步进展估算力量。
(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
二次函数教学教案参考一、教学目标:1. 让学生理解二次函数的概念,掌握二次函数的定义和标准形式。
2. 能够运用二次函数解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 二次函数的概念和定义。
2. 二次函数的标准形式及其性质。
3. 二次函数的图像及其特点。
4. 二次函数的顶点公式及其应用。
5. 二次函数与实际问题的结合。
三、教学方法:1. 采用问题驱动法,引导学生主动探究二次函数的性质和特点。
2. 利用多媒体辅助教学,展示二次函数的图像和实际应用案例。
3. 组织小组讨论,培养学生的团队合作能力和表达能力。
4. 进行课堂练习和课后作业,巩固学生的学习成果。
四、教学准备:1. 多媒体教学设备。
2. 二次函数教学课件。
3. 练习题和课后作业。
4. 教学参考书籍和资料。
五、教学过程:1. 导入新课:通过一个实际问题,引入二次函数的概念。
2. 讲解概念:讲解二次函数的定义和标准形式。
3. 探究性质:引导学生探究二次函数的性质和特点。
4. 展示图像:利用多媒体展示二次函数的图像。
5. 应用案例:讲解二次函数在实际问题中的应用。
6. 课堂练习:进行课堂练习,巩固学生的学习成果。
7. 小组讨论:组织学生进行小组讨论,分享学习心得。
8. 课后作业:布置课后作业,让学生进一步巩固知识。
9. 总结课堂:对本节课的内容进行总结,强调重点和难点。
10. 布置课后任务:让学生预习下一节课的内容,准备课堂讨论。
六、教学评估:1. 课堂练习和课后作业的完成情况,评估学生对二次函数知识的掌握程度。
2. 小组讨论的参与度和表达能力,评估学生的团队合作和交流能力。
3. 课后任务的完成情况,评估学生的自主学习能力。
七、教学拓展:1. 引导学生在课后深入研究二次函数的图像,探索其在不同参数下的变化规律。
2. 鼓励学生尝试解决更复杂的实际问题,提高学生的数学应用能力。
3. 向学生推荐相关的数学竞赛或研究项目,激发学生的学习兴趣和挑战精神。
初中数学《二次函数》的教学案例分析初中数学《二次函数》的教学案例分析一、教材研读与剖析本节课内容是在学生研究了一次函数、反比例函数等基础上的研究。
本章我们研究的是二次函数,要求学生通过探究实际问题与二次函数的关系,掌握利用顶点坐标解决最大值(或最小值)问题的方法。
学生要经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何描述变量之间的数量关系,感悟新旧知识的关系,深刻的体会数学中的类比思想方法。
教学目标:1.理解和掌握二次函数的概念、性质,会做二次函数的图像,掌握二次函数的形式。
2.会建立二次函数模型,并能确定实际问题的自变量的取值范围。
3.会用待定系数法求二次函数的解析式。
4.从实际情景和实例中让学生探索分析,建立两个变量之间的二次函数,使学生能够理解如何将实际问题转化为数学问题,学会用数学符号和数学方法解决最值问题,让学生体会到研究数学的价值,从而提高学生研究数学的兴趣。
教学重点和难点:1.经历探究和表示二次函数的过程,获得二次函数的定义。
2.能够表示简单变量之间的二次函数关系。
3.探究利用二次函数解决实际生活中的最值问题。
本节难点在于如何将实际问题转化为二次函数的问题,其中“合作性研究”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。
二、教学过程与设计1.温故而知新,回顾有关函数的知识,激发兴趣。
教师在课堂的开始,可以帮助学生回忆有关函数的定义,做进一步巩固。
对“正比例函数、一次函数、反比例函数”的知识点进行总结,并在PPT上给出一次函数、正比例函数、反比例函数的形式。
2.创设问题情境,激发兴趣。
教师在PPT上给出实际问题一,例如:现有60米的篱笆要围成一个矩形场地,若矩形的长为10米,它的面积是多少?若矩形的长分别为15米、20米、30米时,它的面积分别是多少?从上两问同学们发现了什么?教师提问后,学生可独立回答。
在活动中,教师应重点关注:学生是否能准确的建立函数关系;学生是否能利用已学的函数知识求出最大面积;学生是否能准确的讨论出自变量的取值范围。
教学·现场案例教学法在初中数学教学中的应用———以“二次函数”为例文|丁琳琳根据《义务教育数学课程标准(2022年版)》,初中数学课程内容可划分为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个领域,其中二次函数的教学目标在于引导学生探索和理解数与代数的概念、性质和应用,认识到数学在现实生活和社会科学中的重要作用,学习如何运用数与代数的知识解决生活中的实际问题,培养学生运用数学思想分析问题、解决问题的能力。
一、教材分析北师大版九年级下册“二次函数”单元在导入阶段通过音乐喷泉、篮球入筐等现实案例引导学生发现并分析变量间存在的函数关系,进而引出本单元研究变量关系的二次函数模型,以此来引导学生初步了解二次函数的概念和作用。
随后,教材借助绘制二次函数的图象,分析图象的形状、开口方向、对称轴、顶点坐标等特征,让学生理解二次函数的性质。
此外,教材通过例题和练习,让学生巩固所学知识,并培养解决问题的能力。
最后,通过二次函数的概念、性质、应用以及与一元二次方程关系的梳理,帮助学生形成完整的知识体系,加深对二次函数的理解和掌握。
二、教学思维导图(见文末图1)三、教学目标1.探索二次函数与一元二次方程的关系,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根。
3.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神,进一步培养学生的数形结合思想。
4.通过共同观察和讨论,培养学生的合作交流意识。
5.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
四、教学重难点(一)教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实根和没有实根。
3.理解一元二次方程的根就是二次函数与y=h (h是实数)交点的横坐标。
北师大版九年级数学下册:2.4《二次函数的应用》教案一. 教材分析北师大版九年级数学下册第2.4节《二次函数的应用》主要介绍了二次函数在实际生活中的应用,包括二次函数图像的识别和利用二次函数解决实际问题。
这部分内容是学生在学习了二次函数的性质和图像后,对二次函数知识的进一步拓展,使学生能够将所学知识应用到实际生活中,提高解决实际问题的能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识和图像,对二次函数有一定的理解。
但学生在解决实际问题时,可能会对将理论知识和实际问题相结合感到困难。
因此,在教学过程中,教师需要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会利用二次函数解决实际问题;3.提高学生的数学应用能力。
四. 教学重难点1.二次函数在实际生活中的应用;2.利用二次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考;通过案例分析,使学生理解二次函数在实际生活中的应用;通过小组合作,让学生在讨论中解决问题,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的案例和问题;2.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)通过一个实际问题引出二次函数的应用,例如:一个农场计划种植两种作物,种植面积为固定的10亩。
如果种植苹果树,每亩收益为2000元;如果种植梨树,每亩收益为3000元。
请问如何分配种植苹果树和梨树的面积,才能使总收益最大?2.呈现(10分钟)呈现教材中的案例,让学生了解二次函数在实际生活中的应用。
例如,教材中有一个关于抛物线形跳板的问题,通过二次函数来求解跳板的长度。
3.操练(10分钟)让学生根据教材中的案例,尝试解决实际问题。
例如,教材中有一个关于二次函数图像的问题,让学生根据图像信息,求解相关参数。
4.巩固(10分钟)通过小组合作,让学生解决一些实际问题。
九年级数学《二次函数》教学案例分析和思考一、教学案例分析九年级数学《二次函数》是数学课程中的一个重要内容,涉及到函数的概念、图象和性质等知识。
在教学中,老师需要设计合适的案例来引导学生深入理解和掌握这一内容。
下面我们以一个实际教学案例为例进行分析。
案例:已知二次函数y=x^2-4x+3,求解以下问题:1. 函数的自变量和因变量的取值范围是什么?2. 函数的图象是什么样的?3. 函数的最值是多少?4. 函数的零点是多少?教学方法:1. 引入案例:老师可以通过一个具体的例子来引出二次函数的定义和基本形式,让学生了解二次函数的一般形式,并明确自变量和因变量的概念。
可以通过实例让学生自己尝试列出函数的自变量和因变量的取值范围。
2. 图象的绘制:通过将二次函数的标准形式y=ax^2+bx+c与函数的图像联系起来,让学生掌握函数图像的一般特点。
可以通过实例来引导学生描绘函数的图像,让他们理解二次函数图像的丰富性和多样性。
3. 最值和零点的求解:通过对二次函数的一般形式进行分析,引导学生理解函数最值和零点的概念,让他们通过函数的形式来求解最值和零点,并通过具体实例进行练习,从而掌握解题方法。
案例分析反思:通过以上案例的教学分析,我们可以看出,在教学《二次函数》的过程中,需要引导学生从具体问题出发,理解函数的定义、图象、性质等内容,通过实例来加深学生对二次函数的理解和掌握。
教师应该根据学生的不同理解程度和能力,设计合适的案例和教学方法,让学生在实际问题中学会应用函数的知识。
在教学过程中,教师应该注重激发学生的学习兴趣,引导他们积极参与到教学案例的分析和解答中,从而提高他们的学习兴趣和学习主动性。
二、教学思考在九年级数学《二次函数》的教学过程中,我们需要重点思考以下几个问题:1. 如何引导学生理解函数的定义和性质?在教学《二次函数》的过程中,我们需要通过具体的案例和图像来引导学生理解函数的定义和性质,让他们能够通过具体问题来理解和应用函数的知识,从而提高他们的学习兴趣。
22.1.1二次函数教学案例一、教学目标1、知识与技能:能结合具体情境体会二次函数的意义,能够表示简单变量之间的二次函数关系,理解二次函数的有关概念.2、过程与方法:通过具体问题情景中的二次函数关系了解二次函数的一般表述式,感受二次函数中二次项系数a≠0的重要特征.3、情感态度:在探究二次函数的学习活动中,体会通过探究发现的乐趣.二、教学重点、难点1、结合具体情境体会二次函数的意义,掌握二次函数的有关概念.2、能通过生活中的实际问题情境,构建二次函数关系;三、教学用具PPT课件四、教学过程(一)情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为y=6x2 ,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他(n-1)个球队各比赛一场,整个比赛场次数应为1/2n(n-1),这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?(二)思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=1/2n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t,第三年产量为20(1+x)(1+x)t,得到y=20(1+x)2.【设计意图】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x2,m=n2-n,y=20x2+40x+20有哪些共同点?【注意事项】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项.【注意事项】针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.(三)运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2); (2)y=3x(2-x)+3x2; (3)y=-2x+1;(4)y=1-3x2.2.若y=(m+1)xm2+1-2x+3是y关于x的二次函数,试确定m的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x(元)满足一次函数关系m=162-2x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【出示答案】1.解:(1)y=(x+2)(x-2)=x2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵是y关于x的二次函数.∴m+1≠0且m2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.(四)师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【设计意图】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.(五)作业布置教材习题22.1第1、2、7题;四、教学反思本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.。
二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
二次函数大单元教学设计优秀案例一、概述在数学教学中,二次函数是一个重要的内容,涉及到数学中的很多重要概念和方法,如函数的图像、半径、焦点等等。
如何设计一个优秀的二次函数大单元教学案例,对于学生的数学学习至关重要。
本文将针对二次函数大单元的教学设计,为您提供一些优秀的案例。
二、案例一:二次函数的图像与性质在这个案例中,教师可以设计一些有趣的活动来帮助学生深入理解二次函数的图像与性质。
可以设计一个小组活动,让学生利用纸和笔,画出不同参数下的二次函数图像,并讨论它们的特点和性质。
教师可以引导学生发现二次函数的开口方向、顶点位置以及与坐标轴的交点等重要性质,并帮助学生建立对二次函数的直观认识。
三、案例二:二次函数的应用在这个案例中,教师可以设计一些实际生活中的问题,让学生利用二次函数来解决。
可以设计一个关于抛物线轨迹的问题,让学生分析并求解。
通过这样的案例,学生不仅可以学习到二次函数的具体应用,还能培养他们的问题解决能力和数学建模能力。
四、案例三:二次函数的推广与拓展在这个案例中,教师可以设计一些拓展性的问题,让学生通过对二次函数的推广来深化对数学知识的理解。
可以设计一个关于二次函数的相关不等式问题,让学生通过对二次函数的研究来解决。
通过这样的案例,学生不仅可以理解二次函数的概念,还能够将二次函数的相关知识运用到实际问题中。
五、总结通过以上三个案例的介绍,我们可以看出,一个优秀的二次函数大单元教学案例应该具备以下几个特点:能够引导学生利用实际的问题来理解数学知识;能够帮助学生将数学知识与实际问题相结合,培养学生的数学思维和解决问题的能力;能够通过案例的设计,让学生在实践中深化对数学知识的理解,拓展数学的应用领域。
六、个人观点作为一名数学教师,我认为一个优秀的二次函数大单元教学案例应该能够真正地引导学生去思考、去实践,并在实践中去深化对数学知识的理解。
只有这样,学生才能在学习中获得更多的收获,并能够将数学知识运用到实际生活中。
九年级数学《二次函数》教学案例分析和思考作者:周林来源:《课程教育研究》2019年第16期【摘要】本文主要以九年级数学《二次函数》教学案例分析和思考为重点进行阐述,结合当下九年级数学《二次函数》教学实际情况为依据,首先分析九年级数学《二次函数》教学要点,其次从新知导入、创设学习情境、教学评价与总结三个方面深入说明并探讨九年级数学《二次函数》教学案例分析与反思,旨意在为相关研究提供参考资料。
【关键词】初中数学 ;二次函数 ;教学案例 ;思考【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2019)16-0156-01初中为学生接受教育的关键阶段,是培养学生思维转变的重要时期,一般而言,数学比较抽象,学生在学习过程中容易出现一些问题,尤其是二次函数。
然而在诸多初中数学课堂中,课堂气氛过于沉闷,教学内容过于单一,在很大程度上影响学生的学习效率,所以,初中数学应全面分析《二次函数》教学内容编写的意义与价值,引导学生对案例进行深入研究,加强学生对《二次函数》的理解与掌握,提高学生学习效率。
1.九年级数学《二次函数》教学要点1.1教学目标结合具体情境掌握二次函数的表达式,理解函数存在的意义;学会利用描点法绘制二次函数的图像,观察函数的基本性质;学会利用配方的方法找到二次函数的顶点、对称轴及其图像的开口方向,解决实际问题[1]。
1.2教学难点。
探究二次函数定义与二次函数的表达式;巧妙的利用二次函数反映出变量的关系,对生活中存在的实际问题进行列式解决;掌握二次函数的最值问题,寻求解决办法;合理的将生活问题转变为二次函数问题,明确变量之间的关系,提高学生自主发现问题、分析问题、解决问题的能力。
2.九年级数学《二次函数》教学案例分析与反思2.1新知导入通常在学习新知识时,教师都会带领学生对学过的知识加以复习,不仅是要回忆知识点,而且要为新知识的学习打下基础。
教师在导入二次函数过程中,应引导学生自主回忆函数的基本概念,强化学生对函数的了解与掌握,然后教师引导学生函数固有的特殊形式,鼓励学生积极发言,调动学生复习的积极性,营造良好的学习环境,激发学生对新课的求知欲和探索欲。
初中数学《二次函数》的教学案例分析及反思
一、教材研读与剖析
1.教材分析:本节课内容是在学生学习了一次函数、反比例函数等基础上的学习. 本章我们研究的是二次函数,要求学生通过探究实际问题与二次函数的关系,掌握利用顶点坐标解决最大值(或最小值)问题的方法. 学生要经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何描述变量之间的数量关系,感悟新旧知识的关系,深刻的体会数学中的类比思想方法.
2.教学目标:第一,理解和掌握二次函数的概念、性质,会做二次函数的图像,掌握二次函数的形式;第二,会建立二次函数模型,并能确定实际问题的自变量的取值范围;第三,会用待定系数法求二次函数的解析式;第四,从实际情景和实例中让学生探索分析,建立两个变量之间的二次函数,使学生能够理解如何将实际问题转化为数学问题,学会用数学符号和数学方法解决最值问题,让学生体会到学习数学的价值,从而提高学生学习数学的兴趣.
3.教学重点和难点:第一,经历探究和表示二次函数的过程,获得二次函数的定义;第二,能够表示简单变量之间的二次函数关系;第三,探究利用二次函数解决实际生活中的最值问题. 本节难点在于如何将实际问题转化为二次函数的问题,其中“合作性学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.
二、教学过程与设计
(1)温故而知新,回顾有关函数的知识,激发兴趣. 教师在课堂的开始,可以帮助学生回忆有关函数的定义——在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量——做进一步巩固. 对“正比例函数、一次函数、反比例函数”的知识点进行总结,并在ppt上给出一次函数y=kx+b(其中k,b是常数,且k≠ 0)正比例函数y=kx(k是不为0的常数)反比例函数y=■ (x是不为0的常数)的形式.
(2)创设问题情境,激发兴趣. 教师在ppt上给出实际问题一,例如:现有60米的篱笆要围成一个矩形场地,若矩形的长为10米,它的面积是多少?若矩形的长分别为15米、20米、30米时,它的面积分别是多少?从上两问同学们发现了什么?教师提问后,学生可独立回答. 在活动中,教师应重点关注:学生是否能准确的建立函数关系;学生是否能利用已学的函数知识求出最大面积;学生是否能准确的讨论出自变量的取值范围.
问题的设计,旨在运用函数模型让学生体会数学的实际价值,学会用函数的观点认识问题,解决问题,让学生在合作学习中共同解决问题,培养合作精神. 最后,提出问题:由矩形问题你有什么收获?让学生经过短时间的讨论与思考后,师生共同归纳总结出函数解析式y=ax2+bx+c(a,b,c是常数,a≠ 0)的形式. 在ppt上给出概念:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠ 0)的函数叫做二次函数. 称a为二次项系数,b为一次项系数,c为常数项. 通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值,激发其学习的热情.
(3)利用图像激发兴趣. 学习性质最好的方法就是根据图像来探索. 例如,教师可以给出以下的问题,让学生进行自由探索:填空:根据下边已画好抛物线y=-2x2的顶点坐标是_____,对称轴是_____,在_____侧,即x_____0时,y随着x的增大而增大;在_____侧,即x_____0时,y随着x的增大而减小.当x=_____时,函数y的最大值是____. 当x____0时,y<0. 教师让学生根据问题进行探究,并归纳出:二次函数y=ax2+bx+c(a≠ 0)的图像和性质,顶点坐标与对称轴,位置与开口方向,增减性与最值.
(4)小组合作探索二次函数与一元二次方程. 教师向学生展示二次函数y=x2+2x,y=
x2-2x+1,y=x2-2x+2的图像如图所示.
教师引导学生以小组为单位,对以下问题进行合作探究:每个图像与x轴有几个交点?一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?二次函数y=ax2+bx+c的图像和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?并引导学生对二次函数y=ax2+bx+c的图像和x轴交点的三种情况进行归纳.
三、教学反思与小结
教学活动是建立在学生对已学函数理解的基础上,通过类比和探索的方式进行的. 课堂开始时,对已学过的知识进行复习和总结,然后,给出简单的实际问题. 接着笔者进一步将问题引申,加大难度,引出本节课所学习的内容,这一方法旨在激发学生的学习兴趣. 通过几个简单的问题,让学生体会两个变量的关系. 特别是在创设问题中,教师应重点关注学生是否发现变量,是否注意到取值范围,这个环节中简单问题的设计旨在激发学生的学习欲望. 利用图像进行教学,是几何教学的一个重点内容. 这个环节教师引导学生小组进行合作探究,在兴趣下去探求真知. 本节课学生对二次函数的基本概念、图像有了比较扎实的认识,但是众观整个教学过程,笔者发现还存在不合理的地方,如还缺乏一些生动的教学方式激发学生学习的兴趣,在进行图像的教授过程中,教师可以利用多媒体进行动态的教学,课堂的结尾处教师还缺乏引导学生对二次函数知识的实际运用等. 这些还需要教师不断地进行反思与发现,对教学方法进行不断改进与更新.。