煤矿设备选型 PPT
- 格式:ppt
- 大小:1.67 MB
- 文档页数:45
煤矿主井提升设备选型设计选型设计的目标是选择适合煤矿主井的提升设备,以确保提升过程安全、高效、稳定。
在选型设计过程中,需要考虑以下几个关键因素:1.输送能力:根据煤矿的生产能力和日产量确定提升设备的输送能力。
一般来说,提升设备的输送能力应与煤矿的日产量相匹配,既不能过大以致浪费资源,也不能过小以致生产受限。
2.提升高度:提升设备需要能够满足煤矿主井的提升高度要求。
根据主井的深度确定提升设备的最大提升高度,同时考虑到煤炭或矿石的重量及途中的摩擦等因素,避免提升过程中出现问题。
3.运行速度:提升设备的运行速度应该适中,既要保证生产效率,又要考虑到设备的安全稳定性。
运行速度过快可能导致设备失控、安全隐患增加,运行速度过慢可能限制煤矿的生产能力。
4.可靠性与安全性:提升设备的选型应考虑到设备的可靠性和安全性。
选择具有稳定性高、故障率低、维修方便的提升设备,确保设备的安全运行。
5.经济性:选型设计过程还需要考虑到提升设备的经济性。
选择设备时要综合考虑设备的价格、维修成本、运行成本等因素,对于满足要求的设备进行经济性比较,并确定最优方案。
在实际选型设计过程中,可以采用以下步骤:1.明确需求:根据煤矿的特点、生产能力等确定提升设备的需求,包括输送能力、提升高度、运行速度等。
2.调研市场:调查市场上主要的提升设备种类和品牌,了解其性能参数、技术特点、应用范围等。
3.技术比较:对各种提升设备进行技术比较,包括设备的输送能力、提升高度、运行速度、可靠性等方面。
4.经济比较:对符合需求的提升设备进行经济性比较,包括设备的价格、维修成本、运行成本等。
5.选型决策:根据需求、技术比较和经济比较的结果,确定最适合煤矿主井的提升设备种类和参数。
6.设计安装:根据选型结果,进行设备的具体设计和安装工作,确保提升设备能够安全、高效、稳定地运行。
总之,煤矿主井提升设备的选型设计对于煤矿的正常运行和生产具有重要的影响。
通过合理选择和设计,可以提高煤矿的生产效率,确保提升过程的安全稳定,进而推动煤矿的可持续发展。
第三节 排水设备(一)设计依据井口标高: + 井底标高: + 排水高度 196m 井筒斜长 490m 井筒倾角 正常涌水量: q=d 最大涌水量: q max =d水质: PH=6,密度为1000kg/m 3。
矿井现有MD280-43×6型排水泵3台,配用电机功率315kW ,排水管用选用D245×的无缝钢管,沿副斜井敷设,下面对矿井排水设备进行校验。
(二)排水设备的校验1、矿井排水设备的排水能力,应保证在20h 内排出矿井一昼夜的正常和最大涌水量。
(1)水泵排矿井正常涌水时的能力 (2)水泵排矿井最大涌水时的能力矿井现有水泵额定流量为Q e =280m 3/h> m 3/h ,流量满足要求。
2、排水管路的选择 (1)排水管直径 (2)管壁厚度[])(()115.04.63.2c +'++-⨯⨯⨯=+'=δϕσδδpD p w=矿井排水管路利用D245×7的无缝钢管。
(3)排水管路实际流速 (4)吸水管直径吸水管利用直径为D273×7的无缝钢管。
(5)吸水管实际流速水泵房水泵排水管路沿副斜井设置两趟,排至地面水沟。
管路直径利用D245×7无缝钢管,一趟使用,一趟备用,总长2×550m 。
3、管路扬程总损失(1)排水管中扬程损失 1)排水管路淤积前扬程损失 2)排水管路淤积后扬程损失 H 排后=×H 排前=×= (2)吸水管中吸程损失 (3)管路扬程总损失 1)管路淤积前扬程总损失 H 管总前= H 排前+H 吸=+= 2)管路淤积后扬程总损失 H 管总后= H 排后+H 吸=+= (4)水泵总扬程 1)水泵吸水高度式中:H smax ——水泵允许最大吸水高度,m ;p a ′——水泵安装地点大气压,×104Pa ;p v ′——水泵安装地点实际水温的饱和蒸汽压力,×104Pa ;——矿井水重度,10000N/m 3;〔Δh 〕——水泵样本必需汽蚀余量,; Δh s ——吸水管阻力损失,。
6 采煤工作面主要设备配套选型高产高效采煤工作面的落煤、装煤、运煤、支护等生产过程是一个系统工程,整个系统的先进和可靠,不仅取决于单机设备的先进性和可靠性,设备的合理选型和配套也是至关重要的。
“设备、选型、配套”三者缺一便不能收到综采工作面高产高效的成果。
因此,研制适用于高产高效矿井的综采设备,并按照建设高产高效矿井的条件和要求,合理地进行设备配套选型是高产高效矿井达标的关键。
我国煤层赋存条件类型多样,一部分煤层埋藏比较平稳、倾角不大(<20°)、厚度适中(1.5m~7m),煤层和顶底板稳定性较好(非极软、极硬),地质构造破坏较小,具有发展综采的有利条件;另一部分煤田则属难采煤层,其中包括倾角大于25°,煤层厚度小于1.5m,煤层和围岩极软或极硬,煤层构造复杂,被断层切割为小块等。
对于如此复杂的煤层条件,我国采煤工艺和装备呈多层次发展,高产高效矿井采煤工作面成套设备分为下列五种组合方式,均取得了显著的经济效果。
第一种是全套国产设备装备的高产高效综采工作面,其产量可以稳定在7000t /d左右,年产200万t以上。
如铁法晓南煤矿,2000年综采工作面年产223万t,工作面效率127.59t/工,全矿年产242万t。
第二种是引进部分关键综采设备,如电牵引采煤机、重型刮板输送机、液压泵站、3.3kV变电站及供配电设备等,配以国产装有大流量阀组的液压支架和大运量带式输送机装备的高产高效综采工作面,达到日产7000t~10000t水平,年产200万t~300万t。
如兖州南屯煤矿、晋城古书院煤矿、潞安常村煤矿、大同燕子山煤矿和马脊梁煤矿、神华补连塔煤矿等。
1997年,兖州南屯煤矿综采队年产346.87万t,工作面效率达185 t/工;大同燕子山煤矿高产高效综采队年产221.69万t,工作面效率81.2 t/工;大同马脊梁煤矿综采队年产187.29万t,工作面效率为83.08 t/工。
1 煤矿综采工作面“三机”的选型综采工作面上进行的开采、装运、支撑等诸多工序均能实现机械化。
立足于井田煤层显著,在选择设备类型时需要分析到如下几种因素:(1)技术是否达到国际上尖端水平,生产过程是否安全可靠,同时保证高效率与高产量。
不同设备间在运行能力、外观尺寸上能配套,确保运送活动畅通推进,进而构建采、运两者的平衡状态,在过程上不形成瓶颈。
(2)将前期开采过的煤层设定为主要参照凭据,也要考虑到其他煤层的状态。
(3)将首采区煤层条件设定为重点对象,也要考虑到其他采区的生产问题。
(4)此次以巴愣矿井8号煤煤层为例介绍(8号煤层属比较稳定至稳定可采煤层,煤层倾角平缓,约为3°~7°,厚度分别为:2.37~4.7 m,平均3.32 m,煤层瓦斯低,有自燃危险。
各个煤层直接顶板构成以粉砂质泥岩、粉砂岩以及泥岩较为常见,粉砂岩、泥质粉砂岩、细粒长石砂岩等是底板的构成,岩性均比较松软,煤层埋深大,采掘支护难度较大)。
1.1 液压支架(1)支架高度。
首采区8号煤层为全采区可采煤层,厚度为2.37~4.7 m,只有一个钻孔揭露厚度为4.7 m,大部区域为2.37~3.69 m平均厚度为3.32 m,煤层赋存稳定。
根据顶底板条件和煤厚变化幅度,并参照矿区内其它矿井使用液压支架的实际经验,8煤选用ZY9000/22/40D型掩护式液压支架。
(2)支架支护强度。
根据液压支架使用寿命及煤层开采条件确定液压支架型号。
确定液压支架支护强度有“经验估算法”、“老顶平衡拱计算法”、“实测法”等几种方法。
用经验估算法进行验算。
依照既往生产经验公式,测算出支架支护的强度值。
1.2 采煤机采煤机持有的割煤能力直接影响着综采工作面生产效能,而采煤机设备持有的最大割煤牵引速度、连续割煤时间、截深以及开采高度等指标决定者其割煤能力是高是低。
连续割煤时间越长,预示着设备运行可靠性越高,实践中通常会参照该项指标设定煤层赋存条件、回采工艺流程及施工形式等。
运输设备选型和能力计算书神木县店塔镇石岩沟煤矿第一节提升设备一、主斜井带式输送机(一)设计基础资料1、设计条件该矿设计生产能力为1.20Mt/a,主井采用斜井开拓方式,带式输送机运输,倾角为16o 向上运输。
本矿初期井筒掘至5-1煤层,本矿初期开采3-1煤层,原煤经3-1煤盘区主运大巷带式输送机转运至3-1煤主运输暗上山带式输送机,经4-3煤仓缓冲后,给入5-1煤主运输大巷带式输送机,再搭接至主斜井带式输送机,运输至地面。
后期开采5-1煤层,采用长壁综采采煤法,工作面原煤经5-1煤主运输大巷带式输送机运至主斜井带式输送机上,运输至地面。
矿井年工作日为330天,日净提升时间16小时。
2、带式输送机设计原始数据带式输送机设计原始数据见表7-1-1。
表7-1-1 带式输送机设计原始数据表项目单位数量项目单位数量矿井井型Mt/a 1.20 堆积密度kg/m3900 工作制度班/d 3 粒度㎜0~300输送机运距m 568 最大块度比例% —总提升高度m 75.8 水分% 9.37 最大倾角°16 静堆积角°45 环境温度℃20 含矸率% 5(二)主斜井原煤输送能力的选择矿井设计生产能力1.20Mt/a,5-1煤大巷与主斜井皮带机直接搭接,无缓冲煤仓,主斜井带式输送机的运输能力按照井下采掘工作面设备生产能力的峰值叠加来确定。
根据矿井的开拓部署和工作面装备情况,设计确定主斜井带式输送机运量为Q=1000t/h。
(三)带式输送机的配置选型和计算1、输送机的运输能力与输送机的带宽和带速成正比,运输能力一定时,带宽与带速成反比。
带式输送机越宽需要巷道断面越大,巷道工程量则越大,投资相应增高。
提高带速相对有利,因带速越高,物料线密度越小,所需胶带强度越低,减速系统传动比减小,整机费用降低。
但提高带速必须有以下条件保证:①高质量托辊;②输送机安全保障,因速度越高,越易发生机械人身事故;③ 输送机安装质量,安装质量差时物料在胶带上跳动,使机架、托辊产生动应力,输送机带易跑偏;④ 通风要求:带速太高,容易在井巷内扬起煤尘,增加煤尘爆炸的危险,成为矿井的安全隐患。
青春塔煤矿设备选型
设备选型原则:
对不同厂家不同品牌不同规格性能的同类设备:从安全环保、技术先进、性价比高、兼容互换性高、技术支持优良、等五个方面对矿井设备进行选型。
设备选型思路:
1、安全、核心及重点主要类设备:依照高可靠性、高技术、高质量、高稳定性适应高效率生产的的设备,选用知名厂家的一流设备。
2、辅助设备:按照性价比高,质量优良,可靠性、稳定性满足生产需要的设备应选则国内中上等设备。
3、一般设备:不属于安全、核心及重点主要类及辅助设备,可选用国内中等水平设备。
主要设备选型表。
液压支架的选型煤矿煤层最大厚度 2.9m,煤层倾角6°,煤层截割阻抗A=375N/mm,顶板岩性:老顶为Ⅲ级,直接顶为2类,工作面设计长度为110m,设计年产量为75万t/a。
本矿煤层赋存条件较好,煤层为进水平煤层,煤层厚度适中,为 2.9m,井型为中型矿井,设计能力为75万t/a,直接顶为2类中等稳定顶板,老顶为Ⅲ类顶板,周期来压强烈,要求工作面支护强度较大。
根据本矿工作面条件及我国目前采煤方法的类型及设备配套情况,设计确定工作面的方法为综采一次采全高。
一、影响液压支架选型的因素影响液压支架选型的因素,主要考虑煤层顶底板稳定性,煤层厚度、倾角赋存状况及瓦斯含量等情况,其中以煤层及顶、底板稳定性影响较大。
本矿煤层厚度 2.9m,倾角6°,煤层赋存条件较好。
本矿工作面煤层直接顶为2类顶板,属中等稳定顶板,强度较高,强度指数在31~70kg/cm2之间,发育大量节理裂隙,随采随落。
本矿工作面老顶为Ⅲ级顶板,周期来压强烈,对支架支护强度的要求较高。
二、液压支架的选型1、架型的选择液压支架根据对顶板的支护方式和结构特点不同,可分为支撑式、掩护式、支撑掩护式三种基本型式。
支撑式支架顶梁长,立柱多,且垂直支撑,工作阻力大,切顶能力强,通风断面大,后部有简单的挡矸装置,架间不撑紧,对顶板不密封,它适应于稳定或坚硬以上直接顶和周期来压明显和强烈的老顶条件。
掩护式支架有宽大的掩护梁可挡住采空区冒落的矸石,它的顶梁较短,支柱少且倾斜支撑,架间密封,支架工作阻力较小,切顶能力差,但由于顶梁较短,控顶面积小,支护强度不一定小,它使用于不稳定和中等稳定直接顶条件。
支撑掩护式支架兼有上述两种支架的结构特点,顶梁较长,立柱较多,呈垂直或倾角较小倾斜支撑,故工作阻力大,切顶能力强,具有掩护梁架间密封,挡矸掩护性能好,它使用于稳定以下各类顶板,有取代支撑式支架的趋势,但结构复杂,重量较大,价钱相对较高。
由于本工作面的直接顶类别及老顶级别均以确定,所以可直接根据“适应不同类级顶板的架型及支护强度表”直接选择。
煤矿安全检测设备的选型与使用随着社会经济的发展和工业化进程的加快,矿山行业作为重要的能源产业,对于国家经济发展和人民生活水平的提高都起到了重要的支撑作用。
然而,煤矿作为一项高风险和高危险性行业,安全问题一直是亟待解决的难题。
因此,煤矿安全检测设备的选型和使用就显得尤为重要。
一、煤矿安全检测设备的分类煤矿安全检测设备根据其功能和使用场景可以分为多种类型,其中包括可燃性气体检测仪、甲烷传感器、风速风向仪、温度湿度监测仪等。
这些设备的共同目标是通过监测和检测来预防和控制煤矿事故的发生,保障工人的生命安全。
二、煤矿安全检测设备的选型原则在选用煤矿安全检测设备时,应遵循以下原则:1.性能稳定可靠:煤矿环境复杂且危险,因此设备的性能稳定可靠是首要考虑因素。
2.适应性强:不同煤矿存在的问题和要求各异,设备需要根据具体场景进行调整和适应,以确保其有效性。
3.操作简便:设备的使用应简单便捷,工人可以轻松掌握并进行操作,提高工作效率。
4.数据准确:设备采集到的数据需要准确可靠,并能及时传输和处理,以便监测人员及时做出相应决策。
三、煤矿安全检测设备的使用方法1.合理布置:根据煤矿的具体情况,合理布置安全检测设备的位置和数量,以确保对煤矿全面监测。
2.定期维护:定期对安全检测设备进行检修维护,确保其正常运行。
而对于发现的问题应及时修复或更换设备。
3.培训使用:对煤矿工作人员进行相关设备使用培训,确保他们能正确操作设备,并了解设备的功能和使用方法。
4.配备维修人员:煤矿应配备专业的维修人员,对设备的日常维护和故障处理进行及时响应和修复。
四、煤矿安全检测设备的优势和挑战煤矿安全检测设备的使用有诸多优势,如能够提前发现潜在安全隐患、及时进行预警和救援,提高矿山的安全生产水平等。
然而,也面临着一些挑战,如设备成本高昂、使用寿命短、对环境要求高等。
因此,在选用和使用煤矿安全检测设备时,需要全面考虑其优势和挑战,并做好相应的应对措施。
煤矿机电设备选型与购置指南煤矿是我国重要的能源工业部门,机电设备在煤矿生产中扮演着重要的角色。
合理选型和购置煤矿机电设备对提高生产效率、降低生产成本至关重要。
本文将为您提供一份煤矿机电设备选型与购置的指南,以帮助您更好地进行设备选型和采购决策。
一、需求分析在选型和购置机电设备之前,首先需要进行需求分析。
需要考虑的因素包括:煤矿的生产情况、产能要求、工作环境、安全要求等。
了解这些因素将有助于为设备选型提供依据,并确保所购买的设备能够适应实际的生产环境和需求。
二、品牌与质量机电设备的品牌和质量直接关系到设备的性能和可靠性。
在购买机电设备时,建议选择具有良好信誉和高质量的品牌。
可以通过参考用户的评价和口碑来评估设备的质量,并从多家供应商进行比较。
同时,还应注意设备是否符合相关的国家安全标准和认证要求。
三、性能指标与参数在选型阶段,需要关注设备的性能指标和参数。
这包括功率、效率、工作速度、工作周期、耗能等。
根据煤矿生产的实际需求和生产能力,选择合适的设备规格和型号。
此外,还需要考虑设备的可扩展性,以适应未来的生产需求。
四、安全与环保要求煤矿生产环境的特殊性要求设备具备高度的安全性能和环保性能。
确保所选设备符合国家的安全和环保标准,并能够满足煤矿生产的相关要求。
特别是在矿井通风、防爆、灭火等方面,设备应具备相应的安全保护功能。
五、售后服务与维修保养购置设备后,售后服务和维修保养是非常重要的考虑因素。
选择供应商时,应关注其售后服务的质量和响应速度,以确保设备在运营过程中的稳定性和可用性。
此外,供应商应提供完善的设备维护保养指南和培训,以帮助用户正确操作和维护设备。
六、价格与性价比在购置机电设备时,价格是一个重要的考虑因素。
然而,只追求低价格可能会牺牲设备的质量和性能。
在选择供应商时,需要综合考虑价格、品质和性能之间的平衡,追求性价比最优的设备。
此外,还可以考虑与供应商进行谈判以获取更有利的价格。
七、合同签订与交付在选型确定后,供应商和用户应签订合同明确双方的权益和责任。
第五章瓦斯抽采系统和设备选型及布置第一节矿井瓦斯抽采系统选择一、瓦斯抽采系统选择的原则1、开采高瓦斯矿井,应建立地面固定瓦斯抽采系统;2、地面固定瓦斯抽采系统设计抽采瓦斯量应不小于2m3/min。
3、分期建设、分期投产的矿井,抽采瓦斯工程可一次设计,分期建设、分期投抽。
抽采瓦斯站的建设方式,应经技术经济比较确定。
一般情况下,宜采用集中建站方式。
当有下列情况之一时,可采用分散建站方式:1)分区开拓或分期建设的大型矿井,集中建站技术经济不合理;2)矿井抽采瓦斯量较大且瓦斯利用点分散。
3)一套抽采瓦斯系统难以满足要求。
4、地面固定瓦斯抽采系统宜根据下列具体情况分别布置高负压或低负压瓦斯抽采系统:1)采用采空区抽采等抽采方法的矿井宜采用低负压抽采系统。
2)采用本煤层抽采、边掘边抽等抽采方法的矿井,宜采用高负压抽采系统。
3)采用上述抽采方法的矿井,且矿井设计抽采量不小于10m3/min时,宜分别建立高、低负压抽采瓦斯系统。
二、瓦斯抽采系统选择本矿井为高瓦斯矿井,根据GB 50471-2008《煤矿瓦斯抽采工程设计规范》及AQ 1055-2008《煤矿建设项目安全设施设计审查和竣工验收规范》、《煤矿安全规程》,该矿必须建立地面永久抽采瓦斯系统。
抽采系统服务年限内开采C8煤层时采用工作面采前预抽、工作面边采边抽、掘进工作面先抽后掘和半封闭采空区瓦斯抽采、全封闭采空区瓦斯抽采的抽采方法。
按照《煤矿瓦斯抽采达标暂行规定》(安监总煤装〔2011〕163号)文要求,设计采用高、低负压两套抽采瓦斯系统。
矿井开采C8煤层预抽C9煤层时设计抽采量为3.21m3/min,开采C9煤层预抽C8煤层时设计抽采量为4.61m3/min。
低负压系统瓦斯最大抽采量为抽采C8煤层全封闭采空区及半封闭采空区时的瓦斯抽采量,合计为0.89m3/min。
其中半封闭采空区瓦斯抽采量为0.54m3/min,全封闭采空区瓦斯抽采量为0.35m3/min。
煤矿机电设备选型设计任务书根据所给的参数,分别进行以下部份的选型设计,并按要求绘图:1.综采工作面配套设备选型设计,并绘出综采面配套设备关系图;2.井下煤流运输系统各运输点的设备选型设计,并绘出井下运输系统图;3.矿井提升设备选型设计,并绘出提升机房布置示意图;4.矿井排水、通风、压气等系统的选型设计,并绘出排水系统图;5.采区供电设计,并绘出采区供电系统图;6.按要求写出以上1~5部份的设计说明书。
目录第一部份支护设备与采煤机选型设计 (3)第一节支护设备选型 (3)第二节采煤机选型设计 (10)第二部份矿山运输部份设计 (17)第一节刮板输送机的选型 (17)第二节转载机的选型 (31)第三节带式输送机的选型 (31)第四节大巷运输设备选型 (40)第三部份矿井提升设备选型设计 (46)第一节箕斗的选择 (46)第二节提升钢丝绳的选择 (49)第三节滚筒直径的选择 (50)第四节提升机与井口的相对位置计算 (52)第五节运动学力学计算 (53)第六节校核提升机电机功率及提升量 (55)第四部份煤矿压、通、排设备选型设计 (56)第一节煤矿通风设备选型设计 (59)第二节煤矿压气设备选型设计 (62)第三节煤矿排水设备选型设计 (65)第五部份井下采区供电设备选型设计 (73)第一节变压器的选择 (73)第二节高低压电缆的选择 (76)第三节高低压开关的选择 (77)第四节短路电流计算 (81)第一部份支护设备与采煤机的选型原始资料:根据某矿井采煤工作区面地质概况:煤层厚度3.2(M);煤层倾角160;顶板条件1:老顶Ⅱ级、2:直接顶2类;工作面长度100(M);设计产量100万吨。
按照一年工作300天计算;每天分为四六制工作及,三个班生产;一个班检修。
第一节支护设备的选型设计1.1综采支架选型1.1.1 支架受地质变化影响煤层厚度3.2(M)选用的综采支架,为了适应受地质变化情况下如以下的影响:(1)、煤层出现断层。