流式细胞术 FCM 介绍及简易操作步骤
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
流式细胞分析(FCM)技术概述一、概述流式细胞分析(FCM)技术是诊断病理学的一项重要辅助诊断技术,一般用于组织病理学初步诊断后的进一步分析,应用日益广泛。
1.流式细胞分析技术主要用于肿瘤细胞的①免疫表型分析;②DNA含量分析;③非二倍体细胞定量分析;④细胞增殖活性分析等。
2.制备合格的检测样本是流式细胞分析技术的关键。
3.对样本进行荧光染色或免疫荧光染色流式细胞分析技术检测时,必须同时设立同型抗体对照、阳性对照和自发荧光对照。
4.流式细胞分析技术在淋巴造血组织肿瘤等的病理学诊断中正在成为评估预后和指导治疗的指标,有时可作为独立的病理学诊断报告项目。
5.流式细胞分析报告的内容为由流式细胞仪打印的原始检测结果。
作为病理学诊断报告书组成部分的流式细胞分析报告须经有关病理医师审核后签发,必要时可由病理医师对检测结果作出评论。
二、单细胞悬液的制备(一)新鲜实体瘤单细胞悬液的制备1.酶消化法(1)选取的组织立即放入预冷的组织培养液或生理盐水中,清洗血迹及其他污染物。
(2)解剖显微镜下弃除组织块中的坏死成分、纤维、脂肪以及血管等。
(3)用弯剪将组织块剪成约1.0mm3左右的小块,放在冷组织培养液或生理盐水中。
(4)用冷培养液或生理盐水漂洗剪碎的组织块,洗去被剪碎的细胞碎片。
(5)取约1.0g组织加入适宜的酶消化液。
(6)在37℃的恒温水浴中消化20~30min,消化期间要间断振荡或吹打。
(7)用冷培养液或生理盐水终止消化,收集单细胞悬液。
(8)先后用200目的筛网和350目的尼龙网过滤除去凝聚的细胞团块,收集细胞并计数,总量不少于106个。
根据检测目的作进一步测试。
如做DNA含量分析,须将细胞悬液用70%冰冷乙醇固定,置4℃冰箱保存;如做免疫荧光分析,则不必用乙醇固定。
2.机械法(1)剪碎法①将组织块放入平皿中,加入少量生理盐水或0.01mol/L(pH7.4)的PBS液;②用剪刀将组织剪至匀浆状;③加入0.01mol/LPBS10ml;④用吸管吸取组织匀浆,先以200目的筛网过滤至试管内;⑤离心沉淀(1500r/min,3~5min),再用PBS洗3次,每次离心(500~800r/min)5~8min,除去细胞碎片;⑥以350目的尼龙网过滤,除去凝聚的细胞团块。
流式细胞术简介一、流式细胞术发展简史流式细胞术(Flow Cytometry, FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。
其特点是:①测量速度快,最快可在1秒钟内计测数万个细胞;②可进行多参数测量,可以对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等从多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术。
概要说来,流式细胞术主要包括了样品的液流技术、细胞的分选和计数技术,以及数据的采集和分析技术等。
FCM目前发展的水平凝聚了半个世纪以来人们在这方面的心血和成果。
1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。
1953年Crosland -Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有较强的流体动力聚集作用。
于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。
这就奠定了现代流式细胞术中的液流技术基础。
1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter 计数器。
其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲的强度和个数则可获得有关细胞大小和数目方面的信息。
1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。
1973年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。
流式细胞仪原理及操作步骤流式细胞仪(FCM)是八十年代集单克隆抗体、荧光化学、激光、计算机等高技术发展起来的一种先进仪器,已广泛应用于免疫学、生物化学、生物学、肿瘤学以及血液学等方面的研究和临床常规工作。
其中检测人白细胞表面标志可对白血病、淋巴瘤作用迅速正确的诊断,对淋巴细胞群和亚群进行精确分类,还能分离纯化某一群或亚群细胞。
活细胞免疫荧光技术是用于FCM检测的标本准备,染色后也能在荧光显微镜下进行观察,在某些实验条件下,活细胞免疫荧光染色后的特异性和敏感性要优于滴片固定的常规间接免疫荧光的结果。
(一)原理活细胞表面保留有较完整的抗原或受体,先用特异性鼠源性单克隆抗体与细胞表面相应抗原结合,再用荧光标记的第二抗体结合,根据所测定的荧光强度和阳性百分率即可知相应抗原的密度和分布。
(二)操作步骤制备活性高的细胞悬液(培养细胞系、外周血单个核细胞、胸腺细胞、脾细胞等均可用于本法)↓用10%FCS RPMI1640调整细胞浓度为5×106~1×107/ml↓取40μl细胞悬液加入预先有特异性McAb(5~50μl)的小玻璃管或塑料离心管,再加50μl 1 ∶20(用DPBS稀释)灭活正常兔血清(或兔抗鼠)荧光标记物,充分振摇↓ 4 ℃30min 用洗涤液洗涤2 次,每次加液2ml 左右1000rpm×5min↓加适量固定液(如为FCM制备标本,一般加入1ml 固定液,如制片后在荧光显微镜下观察,视细胞浓度加入100~500μl 固定液)↓ FCM检测或制片后荧光显微镜下观察(标本在试管中可保存5~7 天)(三)试剂和器材1. 各种特异性单克隆抗体。
2. 荧光标记的羊抗鼠或兔抗鼠第二抗体,灭活正常兔血清。
3. 10%FCS RPMI1640, DPBS 、洗涤液、固定液(见附录)。
4. 玻璃管、塑料管、离心机、荧光显微镜等。
(四)注意事项1. 整个操作在4℃下进行,洗涤液中加有比常规防腐剂量高10 倍的NaN3,上述实验条件是防止一抗结合细胞膜抗原后发生交联、脱落。
一、实验目的本实验旨在通过流式细胞术技术,对细胞群体进行快速、精确的分析和定量测定,研究细胞的物理与化学性质,并对细胞进行分类和分选。
通过本次实验,掌握流式细胞仪的工作原理,了解其在细胞生物学研究中的应用。
二、实验原理流式细胞术(Flow Cytometry,FCM)是一种对液流中排成单列的细胞或其它生物微粒逐个进行快速定量分析和分选的技术。
其基本原理是将经过荧光标记的细胞或微粒,在流动系统中以高速通过,同时利用激光束照射细胞,通过光散射和荧光信号来获取细胞的大小、形态、表面标记物等信息。
最后,通过数据分析和可视化展示,对细胞进行计数、分类和分析。
三、实验材料与仪器1. 实验材料:- 细胞样本:小鼠脾细胞、Jurkat细胞- 荧光标记抗体:CD45-FITC、CD3-PE、CD4-APC- 溶液:磷酸盐缓冲盐溶液(PBS)、荧光染料(如PI)2. 实验仪器:- 流式细胞仪(如BD FACS Calibur)- 离心机- 恒温培养箱- 移液器四、实验步骤1. 细胞制备:- 收集小鼠脾细胞或Jurkat细胞,用PBS洗涤后,调整细胞浓度为1×10^6个/mL。
- 加入荧光标记抗体,室温下孵育30分钟。
- 用PBS洗涤细胞两次,去除未结合的抗体。
2. 流式细胞术分析:- 将处理好的细胞加入流式细胞仪,设置合适的参数进行检测。
- 收集数据,进行细胞分类和分析。
3. 数据分析:- 利用流式细胞术分析软件(如CellQuest、FlowJo)对数据进行分析,包括细胞计数、分类、DNA含量分析等。
五、实验结果与分析1. 细胞分类:- 通过流式细胞术,成功将小鼠脾细胞和Jurkat细胞分为不同的亚群,如T细胞、B细胞等。
2. DNA含量分析:- 通过PI染色,检测细胞的DNA含量,发现小鼠脾细胞和Jurkat细胞均处于G0/G1期。
3. 表面标记物分析:- 通过CD45-FITC、CD3-PE、CD4-APC抗体检测,发现Jurkat细胞为T细胞,小鼠脾细胞中含有B细胞和T细胞。
FCM测定法1. 引言FCM(Flow Cytometry)测定法是一种基于流式细胞仪的技术,用于对细胞进行多参数分析和定量测量。
该方法通过检测细胞在流式细胞仪中通过时的光散射和荧光信号来获得关于细胞特性的信息。
在生物医学研究、临床诊断和药物研发等领域,FCM测定法被广泛应用。
本文将介绍FCM测定法的原理、仪器设备、操作步骤以及应用领域。
2. 原理FCM测定法基于细胞在流式细胞仪中通过时的光散射和荧光信号。
当细胞通过流式细胞仪时,细胞会被单个聚焦的激光束照射,并同时测量细胞的散射光和荧光信号。
根据散射光的特性,可以将细胞分为前向散射光(FSC)和侧向散射光(SSC)。
FSC与细胞的大小成正比,SSC与细胞的复杂度和颗粒物的数量成正比。
通过测量FSC和SSC,可以初步分析细胞的大小和复杂度。
荧光信号的测量则依赖于细胞的特定标记物。
通过给细胞标记荧光染料,可以测量特定标记物的荧光强度,从而获得关于细胞表面分子、内部结构和功能的信息。
3. 仪器设备3.1 流式细胞仪流式细胞仪是进行FCM测定的关键设备。
它由激光器、光学系统、流体系统和数据分析系统组成。
激光器产生单色或多色激光束,通常使用氩离子激光器、固态激光器或半导体激光器。
光学系统包括透镜、滤光片和光电二极管。
透镜用于聚焦激光束,滤光片用于选择特定波长的荧光信号,光电二极管用于转换光信号为电信号。
流体系统用于将细胞悬浮液输送到流式细胞仪中,并控制细胞通过的速度和流量。
数据分析系统用于采集和分析细胞的光散射和荧光信号。
通常使用计算机软件进行数据处理和结果展示。
3.2 标记物在FCM测定中,常用的标记物包括荧光染料和荧光标记的抗体。
荧光染料可以直接与细胞结构或分子结合,荧光标记的抗体则可以特异性地识别细胞表面的分子。
常用的荧光染料有荧光素(Fluorescein)、罗丹明(Rhodamine)、FITC (Fluorescein Isothiocyanate)等。
流式细胞检测实验方法篇流式细胞技术(Flow cytometry, FCM)是利用流式细胞仪进行的一种单细胞定量分析和分选技术。
流式细胞术是单克隆抗体及免疫细胞化学技术、激光和电子计算机科学等高度发展及综合利用的高技术产物,它能有效地从单细胞水平区分异质性细胞群体,检测对象包括但不限于悬浮细胞、贴壁细胞或从实体组织分离的单细胞悬液和其他生物颗粒。
一、细胞表面染色步骤1. 样本准备①采集全血或组织(脾,淋巴结,胸腺和骨髓)用细胞染色buffer(或含0.1%BSA的PBS)制成单细胞悬液。
对于体外刺激的细胞,直接将刺激后的细胞悬浮在细胞染色buffer(或含0.1%BSA的PBS)中,然后进行第2步。
②加满细胞染色buffer(或含0.1%BSA的PBS), 300g离心细胞悬液5分钟,弃掉上清。
2. 红细胞裂解①需裂解红细胞(如脾脏),将10x红细胞裂解液(ACK buffer)用去离子水稀释到1x,放置到室温。
将细胞重悬于3mL的1x ACK buffer中,室温孵育3-5分钟;如不需要裂解红细胞,直接进入第3步。
②加入10mL细胞染色buffer(或含0.1%BSA的PBS)终止红细胞裂解,300g离心细胞悬液5分钟,弃掉上清。
③重复洗涤一次,加满细胞染色buffer(或含0.1%BSA的PBS)至15mL, 300g离心细胞悬液5分钟,弃掉上清。
④细胞计数,用细胞染色buffer(或含0.1%BSA的PBS)将细胞制成1x107/mL悬液。
将100μL细胞悬液加入流式管中备用。
3. 封闭Fc受体封闭Fc受体能减少染色过程中的非特异性染色。
①小鼠中,纯化的CD16/CD32单抗能和FcγRⅢ/Ⅱ结合,封闭非特异性染色,使阴性细胞的背景荧光降至未标记细胞的水平。
加入0.5-1μg纯的抗小鼠CD16/32单克隆抗体,室温孵育10分钟。
②对于人和大鼠,可直接使用过量的与荧光抗体相同来源和亚型的纯化Ig或者相同来源血清进行阻断,或者用商业化的Fc受体阻断剂。
流式细胞仪行标
流式细胞仪(Flow Cytometry, FCM)是一种用于分析和分离活细胞的实验室技术。
它可以用来测定细胞的大小、复杂性(颗粒度)、内部荧光强度以及细胞表面或内部的特定分子标记。
流式细胞仪的工作流程大致包括以下步骤:
1. 样本制备:首先需要将细胞样本制备成单细胞悬液,并加入荧光染料或抗体以标记目标分子。
2. 染色:细胞悬液与荧光标记的抗体或染料混合后,孵育一段时间以使标记物结合到目标细胞上。
3. 样本加载:经过染色的细胞样本通过流式细胞仪的样本输入系统,通常是一个细管,称为流道。
4. 液流形成:细胞样本被雾化成单个细胞的液滴,这些液滴通过流道以一定速度流动。
5. 激光照射:流动中的细胞逐个经过激光束的照射。
激光激发细胞内或表面的荧光标记,使其发出光信号。
6. 信号检测:流式细胞仪配备有光电探测器,用来检测细胞发出的光信号。
每个细胞产生的信号被转换为电信号,并记录下来。
7. 数据分析:收集到的信号被计算机系统分析,根据细胞的荧光强度和散射光特性,可以得到细胞的各种参
数,如细胞大小、颗粒度、细胞膜和胞内分子的表达水平等。
8. 数据呈现:分析结果通常以二维图表(如前向散射与侧向散射图、荧光强度直方图)或三维/四维图表的形式展现,便于研究者进行进一步的数据解读和实验设计。
流式细胞仪广泛应用于免疫学、肿瘤学、细胞生物学等领域,对于疾病诊断、细胞分选、功能性研究等方面有着重要作用。
通过精确地测量和分析细胞的物理和化学特性,流式细胞仪能够提供关于细胞状态和功能的丰富信息。
流式细胞术 FCM 介绍及简易操作步骤
分享
首次分享者:☆秋秋☆已被分享29次评论(0)复制链接分享转载举报一. 流式细胞术概述
流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术,•它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体,同时具有分析和分选细胞功能。
它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析,在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。
在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。
国内使用的流式细胞仪主要由美国的两个厂家生产: Becton-Dickinson公司(简称B-D公司)和BECKMAN- COULTER公司。
流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。
B-D•公司最新产品为FACS Vantage和FACS Calibur。
BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL。
EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA
和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能,•多用于科学研究。
二.流式细胞仪主要技术指标
1.流式细胞仪的分析速度:
一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。
2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。
3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。
4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。
5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。
三.流式细胞仪主要构造和工作原理流动室及液流驱动系统
流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信号检测与存储、显示、分析系统⑤细胞分选系统。
流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。
流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力,鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息
准确无误。
见图12.1流动室示意图。
流动室孔径有60μm、100μm、150μm 、250μm等多种,供研究者选择。
小型仪器一般固定装置了一定孔径的流动室。
图12.1流动室示意图(采自Coulter Training Guide)
四. 流式细胞仪主要构造和工作原理激光光源及光束形成系统
流式细胞仪可配备一根或多根激光管,常用的激光管是氩离子气体激光管,它的发射光波长488ηm,此外可配备氦氖离子气体激光管(波长633ηm)和/或紫外激光管。
流式细胞仪的主要测定信号荧光是由激发光激发的,荧光信号的强弱与激发光的强度和照射时间相关,激光是一种相干光源,它能提供单波长、高强度、高稳定性的光照,正是能达到这一要求的理想的激发光光源。
在激光光源和流动室之间有两个圆柱形透镜,将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束(22μm×66μm),在这种椭圆形激光光斑内激光能量成正态分布,使通过激光检测区的细胞受照强度一致。