第二章 模拟电路
- 格式:pdf
- 大小:1.60 MB
- 文档页数:79
模拟电路工作原理模拟电路是电子电路领域的核心部分,它模拟了各种现实世界中的连续变化的信号。
本文将详细介绍模拟电路的工作原理,从基本概念到具体应用,帮助读者更好地理解和运用模拟电路。
一、模拟电路的基本概念模拟电路是指能够处理连续变化信号的电路,其中包括模拟信号的产生、放大、滤波、测量和处理等功能。
与之相对应的是数字电路,数字电路处理离散的信号,常用于逻辑计算和数字信号处理等领域。
二、模拟电路的基本元件模拟电路中常用的基本元件包括电阻、电容和电感。
其中,电阻用于限制电流流动,电容用于存储电荷,电感用于存储磁场能量。
这些元件在模拟电路中相互结合,在不同应用场景下发挥不同作用。
三、模拟电路的工作原理1. 放大器放大器是模拟电路中最常见的元件之一。
它通过放大电压或电流的幅度,提高信号的强度。
常见的放大器类型包括运算放大器、功放和差分放大器等。
放大器的工作原理是通过外部电源提供能量,使得输入信号被放大,并输出增强后的信号。
2. 滤波器滤波器用于选择特定频率范围内的信号。
它根据输入信号的频率,通过选择性地通过或阻断信号的不同频段来实现滤波的功能。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器的工作原理是通过元件阻抗的变化来实现信号的选择性通过或阻断。
3. 振荡器振荡器用于产生稳定的周期性信号,常见的应用场景包括正弦波发生器和时钟发生器等。
振荡器的工作原理是通过正反馈回路,在特定的条件下产生持续的振荡信号。
振荡器的输出频率由电路参数决定,可以通过外部元件调节。
四、模拟电路的应用1. 通信系统模拟电路在通信系统中扮演着重要的角色。
它们被用于信号调制和解调、放大和滤波等功能,实现信号的传递和处理。
在手机、电视和无线电等设备中,模拟电路的应用十分广泛。
2. 传感器传感器是将现实世界的物理量转换成电信号的装置,模拟电路常用于传感器的信号处理和放大。
例如,光敏传感器可以将光强度转换成电信号,在模拟电路的帮助下测量光线的强弱。
《模拟电子技术》教案第一章:绪论1.1 课程介绍了解模拟电子技术的基本概念、特点和应用领域。
理解模拟电子技术与其他相关技术(如数字电子技术、通信技术等)的关系。
1.2 模拟电子技术的基本概念学习模拟信号、模拟电路、模拟电子系统的定义和特点。
理解模拟电子技术中的重要参数和概念,如电压、电流、电阻、电容等。
1.3 模拟电子技术的应用领域了解模拟电子技术在各个领域的应用,如音频处理、信号处理、功率放大等。
学习模拟电子技术在现代科技发展中的重要性。
第二章:模拟电路基础2.1 电路元件学习常见电路元件的性质和功能,如电阻、电容、电感等。
掌握电路元件的符号表示和单位。
2.2 基本电路分析方法学习基尔霍夫定律、欧姆定律等基本电路分析方法。
掌握节点电压法、回路电流法等电路分析技巧。
2.3 电路仿真实验利用电路仿真软件进行基本电路分析和设计。
培养学生的实际操作能力和实验技能。
第三章:放大电路3.1 放大电路的基本原理学习放大电路的作用和分类,如电压放大器、电流放大器等。
理解放大电路的基本组成和原理。
3.2 晶体管放大电路学习晶体管的特性和工作原理。
掌握晶体管放大电路的分析和设计方法。
3.3 反馈放大电路学习反馈放大电路的作用和分类,如正反馈、负反馈等。
掌握反馈放大电路的分析和设计方法。
第四章:模拟信号处理4.1 滤波器学习滤波器的作用和分类,如低通滤波器、高通滤波器等。
掌握滤波器的分析和设计方法。
4.2 振荡器学习振荡器的作用和分类,如正弦振荡器、方波振荡器等。
掌握振荡器的分析和设计方法。
4.3 调制与解调学习调制与解调的基本概念和方法,如幅度调制、频率调制等。
掌握调制与解调电路的分析和设计方法。
第五章:模拟电子技术在现代科技中的应用5.1 音频处理学习音频处理的基本原理和方法,如放大、滤波、调制等。
掌握音频处理电路的分析和设计方法。
5.2 信号处理学习信号处理的基本原理和方法,如采样、量化、数字信号处理等。
掌握信号处理电路的分析和设计方法。
模拟电路(康光华)第二章课后习题答案2.4.1电路如图题2.4.1所示。
(1)利用硅二极管恒压降模型求电路的I D 和 V o 的值;(2)在室温(300K )的情况下,利用二极管的小信号模型求v o 的变化范围。
解(1)求二极管的电流和电压mA A V R v V I D DD D 6.8106.8101)7.0210(233=⨯=Ω⨯⨯-=-=- V V V V D O 4.17.022=⨯==(2)求v o 的变化范围图题2.4.1的小信号模型等效电路如图解2.4.l 所示,温度 T =300 K 。
Ω≈==02.36.826mAmV I V r D T d 当r d1=r d2=r d 时,则mV V r R r V v d d DDO 6)02.321000(02.32122±=Ω⨯+Ω⨯⨯±=+∆=∆O v 的变化范围为)(~)(O O O O v V v V ∆-∆+,即1.406V ~1.394V 。
2.4.3二极管电路如图2.4.3所示,试判断图中的二极管是导通还是截止,并求出AO 两端电压V AO 。
设二极管是理想的。
解 图a :将D 断开,以O 点为电位参考点,D 的阳极电位为-6 V ,阴极电位为-12 V ,故 D 处于正向偏置而导通,V AO =–6 V 。
图b :D 的阳极电位为-15V ,阴极电位为-12V ,D 对被反向偏置而截止,V AO =-12V 。
图c :对D 1有阳极电位为 0V ,阴极电位为-12 V ,故D 1导通,此后使D 2的阴极电位为 0V ,而其阳极为-15 V ,故D 2反偏截止,V AO =0 V 。
图d :对D 1有阳极电位为12 V ,阴极电位为0 V ,对D 2有阳极电位为12 V ,阴极电位为 -6V .故D 2更易导通,此后使V A =-6V ;D 1反偏而截止,故V AO =-6V 。
2.4.4 试判断图题 2.4.4中二极管是导通还是截止,为什么? 解 图a :将D 断开,以“地”为电位参考点,这时有V V k k V A 115)10140(10=⨯Ω+Ω=V V k k V k k V B 5.315)525(510)218(2=⨯Ω+Ω+⨯Ω+Ω=D 被反偏而截止。
模拟电子技术教案第一章:模拟电子技术概述1.1 教学目标了解模拟电子技术的基本概念和特点理解模拟电子技术在工程中的应用掌握常用的模拟电子元件及其符号1.2 教学内容模拟电子技术的定义和特点模拟电子技术在工程中的应用领域常用的模拟电子元件:电阻、电容、电感、电压源和电流源1.3 教学方法讲授和示例相结合的方式,通过实际案例介绍模拟电子技术的基本概念和特点图形和符号的介绍,帮助学生理解和掌握常用的模拟电子元件1.4 教学评估课堂提问和讨论,了解学生对模拟电子技术的基本概念和特点的理解程度作业和练习,巩固学生对模拟电子元件的符号和应用的掌握第二章:模拟电路的基本分析方法2.1 教学目标掌握模拟电路的基本分析方法理解电路的节点电压和支路电流分析法掌握电路的等效变换和叠加原理2.2 教学内容模拟电路的基本分析方法:节点电压分析法、支路电流分析法电路的等效变换:电压源与电流源的等效变换、串联和并联等效变换电路的叠加原理:线性电路的叠加原理和叠加定理2.3 教学方法讲授和示例相结合的方式,通过实际案例介绍模拟电路的基本分析方法图形和符号的介绍,帮助学生理解和掌握电路的等效变换和叠加原理2.4 教学评估课堂提问和讨论,了解学生对模拟电路的基本分析方法的掌握程度作业和练习,巩固学生对电路的等效变换和叠加原理的应用第三章:放大电路3.1 教学目标理解放大电路的基本原理和特点掌握放大电路的类型和应用学会分析放大电路的性能指标3.2 教学内容放大电路的基本原理和特点:电压放大、功率放大放大电路的类型:放大器、驱动器、滤波器放大电路的性能指标:增益、带宽、线性范围3.3 教学方法讲授和示例相结合的方式,通过实际案例介绍放大电路的基本原理和特点图形和符号的介绍,帮助学生理解和掌握放大电路的类型和应用3.4 教学评估课堂提问和讨论,了解学生对放大电路的基本原理和特点的理解程度作业和练习,巩固学生对放大电路的性能指标的掌握第四章:滤波器4.1 教学目标理解滤波器的基本原理和特点掌握滤波器的类型和应用学会分析滤波器的性能指标4.2 教学内容滤波器的基本原理和特点:低通滤波器、高通滤波器、带通滤波器、带阻滤波器滤波器的类型:被动滤波器、主动滤波器、数字滤波器滤波器的性能指标:截止频率、阻带宽度、通带宽度4.3 教学方法讲授和示例相结合的方式,通过实际案例介绍滤波器的基本原理和特点图形和符号的介绍,帮助学生理解和掌握滤波器的类型和应用4.4 教学评估课堂提问和讨论,了解学生对滤波器的基本原理和特点的理解程度作业和练习,巩固学生对滤波器的性能指标的掌握第五章:振荡器5.1 教学目标理解振荡器的基本原理和特点掌握振荡器的类型和应用学会分析振荡器的性能指标5.2 教学内容振荡器的基本原理和特点:LC振荡器、RC振荡器、晶体振荡器振荡器的类型:正弦振荡器、方波振荡器、锯齿波振荡器振荡器的性能指标:频率、稳定性、相位噪声5.3 教学方法讲授和示例相结合的方式,通过实际案例介绍振荡器的基本原理和特点图形和符号的介绍,帮助学生理解和掌握振荡器的类型和应用5.4 教学评估课堂提问和讨论,了解学生对振荡器的基本原理和特点的理解程度第六章:模拟集成电路6.1 教学目标理解模拟集成电路的基本原理和特点掌握模拟集成电路的类型和应用学会分析模拟集成电路的性能指标6.2 教学内容模拟集成电路的基本原理和特点:放大器、滤波器、振荡器、转换器模拟集成电路的类型:线性集成电路、非线性集成电路模拟集成电路的性能指标:增益、带宽、线性范围、功耗6.3 教学方法讲授和示例相结合的方式,通过实际案例介绍模拟集成电路的基本原理和特点图形和符号的介绍,帮助学生理解和掌握模拟集成电路的类型和应用6.4 教学评估课堂提问和讨论,了解学生对模拟集成电路的基本原理和特点的理解程度作业和练习,巩固学生对模拟集成电路的性能指标的掌握第七章:模拟信号处理7.1 教学目标理解模拟信号处理的基本原理和特点掌握模拟信号处理的方法和应用学会分析模拟信号处理的性能指标7.2 教学内容模拟信号处理的基本原理和特点:滤波、放大、调制、解调模拟信号处理的方法:模拟滤波器、模拟放大器、模拟调制器、模拟解调器模拟信号处理的性能指标:信噪比、失真度、带宽、频率响应7.3 教学方法讲授和示例相结合的方式,通过实际案例介绍模拟信号处理的基本原理和方法图形和符号的介绍,帮助学生理解和掌握模拟信号处理的应用和性能指标7.4 教学评估课堂提问和讨论,了解学生对模拟信号处理的基本原理和方法的理解程度作业和练习,巩固学生对模拟信号处理的性能指标的掌握第八章:模拟电路设计实例8.1 教学目标理解模拟电路设计的基本原则和方法掌握模拟电路设计的步骤和技巧学会分析模拟电路的性能和应用8.2 教学内容模拟电路设计的基本原则和方法:设计流程、设计准则、设计工具模拟电路设计的步骤和技巧:确定设计要求、选择元器件、电路图绘制、电路仿真模拟电路设计的性能和应用:放大器、滤波器、振荡器、模拟集成电路8.3 教学方法讲授和示例相结合的方式,通过实际案例介绍模拟电路设计的基本原则和方法图形和符号的介绍,帮助学生理解和掌握模拟电路设计的步骤和技巧8.4 教学评估课堂提问和讨论,了解学生对模拟电路设计的基本原则和方法的理解程度作业和练习,巩固学生对模拟电路设计的步骤和技巧的掌握第九章:数字电子技术基础9.1 教学目标理解数字电子技术的基本概念和特点掌握数字电子技术的常用元件和符号学会分析数字电子电路的基本结构和工作原理9.2 教学内容数字电子技术的基本概念和特点:数字信号、数字电路、数字系统数字电子技术的常用元件:逻辑门、逻辑电路、触发器、计数器数字电子电路的基本结构和工作原理:组合电路、时序电路、数字信号处理器9.3 教学方法讲授和示例相结合的方式,通过实际案例介绍数字电子技术的基本概念和特点图形和符号的介绍,帮助学生理解和掌握数字电子技术的常用元件和符号9.4 教学评估课堂提问和讨论,了解学生对数字电子技术的基本概念和特点的理解程度作业和练习,巩固学生对数字电子技术的常用元件和符号的掌握第十章:数字电路设计实例10.1 教学目标理解数字电路设计的基本原则和方法掌握数字电路设计的步骤和技巧学会分析数字电路的性能和应用10.2 教学内容数字电路设计的基本原则和方法:设计流程、设计准则、设计工具数字电路设计的步骤和技巧:确定设计要求、选择逻辑元件、电路图绘制、电路仿真数字电路设计的性能和应用:组合电路、时序电路、数字集成电路10.3 教学方法讲授和示例相结合的方式,通过实际案例介绍数字电路设计的基本原则和方法图形和符号的介绍,帮助学生理解和掌握数字电路设计的步骤和技巧10.4 教学评估课堂重点和难点解析1. 模拟电子技术概述补充和说明:模拟电子技术涉及模拟信号的处理和分析,其特点包括连续信号、模拟电路、无明显起点和终点的信号处理。
模拟电路介绍模拟电路是电子工程学中的一个重要分支,用来描述和分析电子设备中的电压和电流。
它们是由被称为电子元件的器件构成的,例如电阻、电容和电感等。
模拟电路主要用于信号处理、信号放大、滤波、振荡器等应用。
模拟电路基础知识在开始讨论模拟电路之前,我们需要了解一些基本概念和术语。
电压电压是指电荷在电路中的电势差,通常用字母V表示,单位为伏特(V)。
在模拟电路中,电压常用来表示信号的大小或电子元件之间的电势差。
电流电流是指电子在电路中的流动,通常用字母I表示,单位为安培(A)。
电流的大小取决于电荷的数量和速度。
电阻电阻是指阻碍电流流动的物理量,通常用字母R表示,单位为欧姆(Ω)。
在模拟电路中,电阻常用来控制电流的流动。
电容电容是指存储电荷的能力,通常用字母C表示,单位为法拉(F)。
电容可以储存电荷,并在电路中释放或吸收能量。
电感电感是指电流的磁场效应产生的电势差,通常用字母L表示,单位为亨利(H)。
电感用于储存磁场能量和控制电流的变化。
常见的模拟电路放大器电路放大器电路是模拟电路中最常见的类型之一,用于放大电压或电流信号。
放大器电路可以增加信号的大小,以便在电子设备中进行后续处理或驱动负载。
滤波器电路滤波器电路用于过滤特定频率范围内的信号。
根据需要,滤波器可以将低频、高频或特定频率范围的信号传递或抑制。
振荡器电路振荡器电路能够产生稳定的周期性信号。
这些信号可以用于时钟信号、音频信号、无线通信等应用中。
比较器电路比较器电路用于比较两个信号的大小。
它们常用于模拟信号和数字信号之间的转换。
模拟电路设计的基本步骤要设计一个满足特定需求的模拟电路,通常需要遵循以下基本步骤:1.确定电路的规格和需求:首先需要明确电路所需的输入和输出信号特性,例如频率范围、增益要求等。
根据这些要求,确定电路的基本拓扑。
2.选择元件和器件:根据电路的规格要求和设计目标,选择合适的电子元件和器件。
例如,根据增益要求选择合适的放大器,根据滤波需求选择合适的电容和电感等。
第2章放大电路基础2.1 教学要求1、掌握放大电路的组成原理,熟练掌握放大电路直流通路、交流通路及交流等效电路的画法并能熟练判断放大电路的组成是否合理。
2、熟悉理想情况下放大器的四种模型,并掌握增益、输入电阻、输出电阻等各项性能指标的基本概念。
3、掌握放大电路的分析方法,特别是微变等效电路分析法。
4、掌握放大电路三种基本组态(CE、CC、CB 及CS、CD、CG)的性能特点。
5、了解放大电路的级间耦合方式,熟悉多级放大电路的分析方法。
2.2 基本概念和内容要点2.2.1 放大电路的基本概念1、放大电路的组成原理无论何种类型的放大电路,均由三大部分组成,如图2.1所示。
第一部分是具有放大作用的半导体器件,如三极管、场效应管,它是整个电路的核心。
第二部分是直流偏置电路,其作用是保证半导体器件工作在放大状态。
第三部分是耦合电路,其作用是将输入信号源和输出负载分别连接到放大管的输入端和输出端。
下面简述偏置电路和耦合电路的特点。
(1)偏置电路①在分立元件电路中,常用的偏置方式有分压偏置电路、自偏置电路等。
其中,分压偏置电路适用于任何类型的放大器件;而自偏置电路只适合于耗尽型场效应管(如JFET及DMOS管)。
② 在集成电路中,广泛采用电流源偏置方式。
偏置电路除了为放大管提供合适的静态点(Q )之外,还应具有稳定Q 点的作用。
(2)耦合方式为了保证信号不失真地放大,放大器与信号源、放大器与负载、以及放大器的级与级之间的耦合方式必须保证交流信号正常传输,且尽量减小有用信号在传输过程中的损失。
实际电路有两种耦合方式。
① 电容耦合,变压器耦合这种耦合方式具有隔直流的作用,故各级Q 点相互独立,互不影响,但不易集成,因此常用于分立元件放大器中。
② 直接耦合这是集成电路中广泛采用的一种耦合方式。
这种耦合方式存在的两个主要问题是电平配置问题和零点漂移问题。
解决电平配置问题的主要方法是加电平位移电路;解决零点漂移问题的主要措施是采用低温漂的差分放大电路。