第10讲 C8051F单片机的定时器计数器分析
- 格式:ppt
- 大小:1.18 MB
- 文档页数:47
单片机的时序控制与定时器计数器应用案例分析单片机是一种嵌入式微处理器系统,通常用于控制和处理电子设备中的信号和数据。
在单片机的应用中,时序控制和定时器计数器是非常重要的功能模块,用于实现各种复杂的控制和计时任务。
本文将从时序控制与定时器计数器的基本原理入手,通过具体案例分析来展示它们在单片机应用中的重要性和实际应用价值。
## 时序控制的基本原理时序控制是指按照一定的时间序列来控制设备或系统的工作顺序和时间间隔。
在单片机中,时序控制通常通过定时器和计数器来实现。
定时器用来产生定时脉冲,计数器则用来计数这些脉冲的数量,从而控制设备的工作时序。
实现时序控制的关键在于合理设置定时器的计数值和时钟源,以确保生成的定时脉冲符合实际需求。
在单片机的程序中,可以通过配置定时器寄存器来实现定时器的初始化和工作参数设置,从而实现精确的时序控制。
## 定时器计数器的应用案例分析以STC单片机为例,我们来看一个简单的定时器计数器的应用案例:LED闪烁控制。
假设我们要让一个LED灯每隔一秒闪烁一次,我们可以通过定时器计数器来实现这个功能。
首先,我们需要配置定时器的计数值和时钟源,使其产生1秒的定时脉冲。
然后,在定时器中断服务程序中,每当定时器溢出时,我们就将LED的状态取反,从而实现LED的闪烁控制。
以下是一个示例代码:```c#include <reg51.h>sbit LED = P1^0;void timer_init(){TMOD = 0x01; // 定时器0工作在模式1TH0 = 0x3C; // 定时器初值高位TL0 = 0xB0; // 定时器初值低位ET0 = 1; // 允许定时器0中断TR0 = 1; // 启动定时器0EA = 1; // 允许中断}void timer0_isr() interrupt 1{static bit led_status = 0;led_status = ~led_status;LED = led_status;}void main(){timer_init();while(1);}```在上面的代码中,我们通过定时器0的计时溢出中断来控制LED的状态,从而实现LED的闪烁控制。
单片机定时器与计数器的工作原理及应用摘要:单片机作为现代电子设备中广泛采用的一种集成电路,其内部包含了丰富的功能模块,其中定时器和计数器被广泛应用于各种领域。
本文将介绍单片机定时器和计数器的工作原理及应用,包括定时器的基本原理、工作模式和参数配置,以及计数器的工作原理和常见应用场景。
希望通过本文的阐述,读者能够深入了解单片机定时器和计数器的基本原理和应用,为电子系统设计提供参考。
引言:单片机作为嵌入式系统中的核心部件,承担着控制和处理各种信号的重要任务。
定时器和计数器作为单片机的重要功能模块,为实现各种实时控制任务提供了有效的工具。
定时器可以生成一定时间间隔的定时信号,而计数器则可以对外部事件的频率进行计数,实现时间测量和计数控制等功能。
一、定时器的工作原理单片机中的定时器通常为计数器加上一定逻辑控制电路构成。
定时器的基本工作原理是通过控制计数器的计数速度和计数值来实现不同时间间隔的输出信号。
当定时器触发时,计数器开始计数,当计数值达到预设值时,定时器产生一个输出信号,然后重新开始计数。
定时器通常由以下几个部分组成:1.计数器:定时器的核心部件是计数器,计数器可以通过内部振荡器或外部输入信号进行计数。
通常情况下,计数器是一个二进制计数器,它可以按照1、2、4、8等倍数进行计数。
2.预设值:定时器的预设值决定了定时器的时间间隔。
当计数器达到预设值时,定时器会产生一个输出脉冲。
3.控制逻辑电路:控制逻辑电路用于控制计数器的启动、停止和重置等操作。
通常情况下,控制逻辑电路由一系列的触发器和逻辑门组成。
二、定时器的工作模式定时器可以根据实际需求在不同的工作模式下运行,常见的工作模式有以下几种:1.定时工作模式:在定时工作模式下,定时器按照设定的时间间隔进行计数,并在计数值达到预设值时产生一个输出脉冲。
这种模式常用于周期性任务的触发和时间测量。
2.计数工作模式:在计数工作模式下,定时器通过外部输入信号进行计数,可以测量外部事件的频率。
80C51单片机的定时计数器定时计数器的控制寄存器<>定时器/计数器的工作方式1.定时器/计数器的工作方式0(1)电路逻辑结构当图6-7中的计数器=13位(TH的8位与TL低5位)即得方式0的逻辑电路图。
(2)工作方式0的特点①两个定时器/计数器T0、T1均可在方式0下工作;②是13位的计数结构,其计数器由TH全部8位和TL的低5位构成(高3位不用);③当产生计数溢出时,由硬件自动给计数溢出标志位TF0(TF1)置1,由软件给TH,TL重新置计数初值。
应说明的是,方式0采用13位计数器是为了与早期的产品兼容,计数初值的高8位和低5位的确定比较麻烦,所以在实际应用中常由16位的方式1取代。
2.定时器/计数器的工作方式1(1)电路逻辑结构方式1是16位计数结构的工作方式,计数器由TH全部8位和TL全部8位构成。
其逻辑电路如图6-11所示。
(2)工作方式1的特点①两个定时器/计数器均可在方式1下工作;②是16位的计数结构,其计数器由TH的全部8位和TL的全部8位构成;③当产生计数溢出时,由硬件自动给计数溢出标志位TF0(TF1)置1,由软件给TH,TL重新置计数初值。
(3)计数/定时的范围在方式1下,当为计数工作方式时,由于是16位的计数结构,所以计数范围是:1~65536。
当为定时工作时,其定时时间=(216-计数初值)×机器周期,例如:设单片机的晶振频率f=12MHz,则机器周期为1μs,从而定时范围:1μs~65536μs。
因为80C51单片机的定时计数器是可编程的。
因此,在利用定时/计数器进行定时计数之前,先要通过软件对他进行初始化,初始化一般应进行如下工作:①设置工作方式,即设置TMOD中的各位GATE、C/T、M1M0。
②计算加1计数器的计数初值COUNT,并将计数初值COUNT 送入TH、TL中。
计数方式:计数值= 2n – COUNT ,计数初值:COUNT= 2n –计数值。
定时器计数器工作原理
定时器计数器是一种用于计算时间间隔的电子设备。
它通过内部的晶振、分频器和计数器等组件实现精确的计时功能。
工作原理如下:
1. 晶振:定时器计数器内部搭载了一个晶振,晶振的频率非常稳定,一般为固定的几十千赫兹。
2. 分频器:晶振的频率可能非常高,但计数器需要较低的频率进行计数,所以需要一个分频器将晶振的频率降低,得到一个更低的频率作为计数器的输入。
3. 计数器:分频器将得到的较低频率信号送入计数器,计数器会根据信号的脉冲个数来进行计数。
4. 触发器:计数器会将计数结果保存在一个触发器中,可以通过读取这个触发器来获取时间间隔的计数值。
5. 重置:当计数器达到设定的计数值后,会自动重置为初始状态,重新开始计数。
通过以上几个步骤的组合,定时器计数器可以实现精确的时间间隔计算。
可以根据不同的需求设置不同的晶振频率、分频器的分频倍数和触发器的位数,以实现不同精度的计数功能。
定时器计数器广泛应用于各种电子设备中,如计时器、时钟、
定时开关等。
它们都依赖于定时器计数器的准确计时功能,来实现精确的时间控制。
MCS-51单片机计数器定时器详解80C51单片机内部设有两个16位的可编程定时器/计数器。
可编程的意思是指其功能(如工作方式、定时时间、量程、启动方式等)均可由指令来确定和改变。
在定时器/计数器中除了有两个16位的计数器之外,还有两个特殊功能寄存器(控制寄存器和方式寄存器)。
:从上面定时器/计数器的结构图中我们可以看出,16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。
其访问地址依次为8AH-8DH。
每个寄存器均可单独访问。
这些寄存器是用于存放定时或计数初值的。
此外,其内部还有一个8位的定时器方式寄存器TMOD和一个8位的定时控制寄存器TCON。
这些寄存器之间是通过内部总线和控制逻辑电路连接起来的。
TMOD主要是用于选定定时器的工作方式;TCON主要是用于控制定时器的启动停止,此外TCON还可以保存T0、T1的溢出和中断标志。
当定时器工作在计数方式时,外部事件通过引脚T0(P3.4)和T1(P3.5)输入。
定时计数器的原理:16位的定时器/计数器实质上就是一个加1计数器,其控制电路受软件控制、切换。
当定时器/计数器为定时工作方式时,计数器的加1信号由振荡器的12分频信号产生,即每过一个机器周期,计数器加1,直至计满溢出为止。
显然,定时器的定时时间与系统的振荡频率有关。
因一个机器周期等于12个振荡周期,所以计数频率fcount=1/12osc。
如果晶振为12MHz,则计数周期为:T=1/(12×106)Hz×1/12=1μs这是最短的定时周期。
若要延长定时时间,则需要改变定时器的初值,并要适当选择定时器的长度(如8位、13位、16位等)。
当定时器/计数器为计数工作方式时,通过引脚T0和T1对外部信号计数,外部脉冲的下降沿将触发计数。
计数器在每个机器周期的S5P2期间采样引脚输入电平。
若一个机器周期采样值为1,下一个机器周期采样值为0,则计数器加1。