2013-06《数学建模与数学实验》复习 答案
- 格式:pdf
- 大小:770.83 KB
- 文档页数:13
P594.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
A 宿舍为:A n =365.2100210237=⨯B 宿舍为:B n =323.3100210333=⨯C 宿舍为:C n =311.4100210432=⨯现已分完9人,剩1人用Q 值法分配。
5.9361322372=⨯=A Q7.9240433332=⨯=B Q2.9331544322=⨯=C Q经比较可得,最后一席位应分给A 宿舍。
所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
商人们怎样安全过河由上题可求:4个商人,4个随从安全过河的方案。
解:用最多乘两人的船,无法安全过河。
所以需要改乘最多三人乘坐的船。
如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。
商人只需要按照图中的步骤走,即可安全渡河。
总共需要9步。
P60液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式解:物理量之间的关系写为为()∆=∆,,,,,μρϕl v d p 。
各个物理量的量纲分别为[]32-=∆MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⨯0310100011110010021113173A其中0=Ay 解得()Ty 00012111---=,()Ty 00101102--=,()Ty 01003103--=,()Ty 10000004=所以l v d 2111---=ρπ,μρπ112--=v ,p v ∆=--313ρπ,∆=4π因为()0,,,,,,=∆∆p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为:()213,ππψρv p =∆P771. 在一块边长为m 6的正方形空地上建造一个容积为350m ,深m 5的长方体无盖水池,如果池底和池壁的造价每平方米分别为137元和100元,那么水池的最低总造价为多少元?设:建立优化模型。
葡萄酒的评价摘要葡萄酒的评价结果反映了葡萄酒的优劣程度,而葡萄酒的质量是由多种因素综合决定的。
本文综合考虑了评酒员对葡萄酒的品尝评分、酿酒葡萄及葡萄酒的理化指标等因素,建立了相应的数学模型,利用excel软件,C++编程,变量的相关分析及统计学相关知识等对模型求解,并对所得结果分析比较,对葡萄酒进行评价。
针对问题一,根据附件1中两组品酒员对红、白葡萄酒的品尝评分,分别计算出两组品酒员对红、白葡萄酒各酒样品的评分总值及均值,确定出各酒样品的质量。
通过欧式距离公式,计算出两组品酒员的评价结果差异性数据,得出两组品酒员的评价结果都存在显著性差异。
然后通过计算两组品酒员对两种酒的评价总分的方差均值,判断评价结果的稳定性,从而得出第二组的评价结果更可信。
针对问题二,根据附件2中酿酒葡萄和葡萄酒的理化指标,通过聚类算法对红、白两种葡萄进行聚类划分,将酒样品分为4类。
然后根据葡萄酒质量,划分出样品的等级。
再由葡萄酒样品等级,对聚类后的酿酒葡萄进行分级。
针对问题三,根据附件2,可以得出葡萄酒中的一些物质含量相对于葡萄中的一些物质含量有所减少或增加。
在葡萄酒的制作过程中,由于陈酿条件和发酵工艺及条件可能会造成物质的流失,导致酒中物质含量的减少,而葡萄酒中含量相对增加的物质可能是由葡萄中与其不相关的物质转化而形成的。
通过分析葡萄酒中含量增加的指标与葡萄的各理化指标的相关性系数,判断出酿酒葡萄与葡萄酒的理化指标之间的联系。
针对问题四,对葡萄的理化指标与葡萄酒的评价指标进行相关性分析,结合问题三的结论,得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。
根据附件1,可知评价葡萄酒要综合考虑香气、口感等方面,而葡萄和葡萄酒的理化指标主要与口感相关,但并不能决定葡萄酒的质量。
芳香物质与香气有关,在一定程度上也可能会影响葡萄酒的质量。
分别对葡萄和葡萄酒的芳香物质进行聚类分析,将聚类结果与葡萄酒质量等级比较,从而得出结论。
最后,我们就模型存在的不足之处提出了改进方案,并对优缺点进行了分析。
实验报告姓名:和家慧 专业:通信工程 学号:20121060248 周一下午78节实验一:方程及方程组的求解一 实验目的:学会初步使用方程模型,掌握非线性方程的求解方法,方程组的求解方法,MA TLAB 函数直接求解法等。
二 问题:路灯照明问题。
在一条20m 宽的道路两侧,分别安装了一只2kw 和一只3kw的路灯,它们离地面的高度分别为5m 和6m 。
在漆黑的夜晚,当两只路灯开启时 (1)两只路灯连线的路面上最暗的点和最亮的点在哪里? (2)如果3kw 的路灯的高度可以在3m 到9m 之间变化,如何路面上最暗点的亮度最大? (3)如果两只路灯的高度均可以在3m 到9m 之间变化,结果又如何?三 数学模型解:根据题意,建立如图模型P1=2kw P2=3kw S=20m 照度计算公式:2sin r p k I α= (k 为照度系数,可取为1;P 为路灯的功率)(1)设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q 点的照度分别为21111sin R p k I α= 22222sin R p k I α=22121x h R += 111sin R h =α22222)(x s h R -+= 222sin R h =αQ 点的照度:3232322222322111))20(36(18)25(10))((()(()(x x x s h h P x h h P x I -+++=-+++=要求最暗点和最亮点,即为求函数I(x)的最大值和最小值,所以应先求出函数的极值点5252522222522111'))20(36()20(54)25(30))(()(3)(3)(x x x x x s h x s h P x h x h P x I -+-++-=-+-++-=算法与编程利用MATLAB 求得0)('=x I 时x 的值代码:s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1计算结果运行结果: s1 =19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i因为x>=0,选取出有效的x 值后,利用MATLAB 求出对应的I(x)的值,如下表:综上,x=9.33m 时,为最暗点;x=19.97m 时,为最亮点。
数学建模与数学实验习题答案数学建模与数学实验习题答案数学建模和数学实验习题是数学学习中的重要组成部分,通过这些习题,我们可以更好地理解和应用数学知识。
本文将介绍数学建模和数学实验习题的一些答案和解题方法,帮助读者更好地掌握数学学习。
一、数学建模数学建模是将数学方法和技巧应用于实际问题的过程。
在数学建模中,我们需要将实际问题抽象为数学模型,并通过数学方法进行求解和分析。
下面是一个简单的数学建模问题和其解题过程。
问题:某工厂生产产品A和产品B,每天的产量分别为x和y。
产品A的生产成本为10x+20y,产品B的生产成本为15x+10y。
如果工厂每天的总成本不超过5000元,且产品A的产量必须大于产品B的产量,求工厂一天最多能生产多少个产品。
解题过程:首先,我们需要建立数学模型来描述这个问题。
设产品A的产量为x,产品B的产量为y,则问题可以抽象为以下数学模型:10x+20y ≤ 5000x > y接下来,我们需要解决这个数学模型。
首先,我们可以通过图像法来解决这个问题。
将不等式10x+20y ≤ 5000和x > y转化为直线的形式,我们可以得到以下图像:(图像略)从图像中可以看出,不等式10x+20y ≤ 5000和x > y的解集为图像的交集部分。
通过观察图像,我们可以发现交集部分的最大值为x=250,y=125。
因此,工厂一天最多能生产250个产品A和125个产品B。
除了图像法,我们还可以通过代数法来解决这个问题。
将不等式10x+20y ≤ 5000和x > y转化为等式的形式,我们可以得到以下方程组:10x+20y = 5000x = y通过求解这个方程组,我们可以得到x=250,y=125。
因此,工厂一天最多能生产250个产品A和125个产品B。
二、数学实验习题数学实验习题是通过实际操作和实验来学习数学知识和技巧的一种方式。
下面是一个关于概率的数学实验习题和其答案。
习题:一枚硬币抛掷10次,求出现正面的次数为偶数的概率。
20XX年复习资料大学复习资料专业:班级:科目老师:日期:参考答案一.填空题:(每题2分,共20XXXX 分)1. 阻滞增长模型0.5(10.001)(0)100dx x x dt x ⎧=-⎪⎨⎪=⎩的解为 x(t)=20XXXX00/(1+9exp(-0.5t) )。
2. 用Matlab 做常微分方程数学实验,常用的命令有 ode45,ode23等等。
(写欧拉法等方法而非Matlab 命令的不给分)(本题着重考察数学实验有没有认真做!)3. 整数m 关于模20XXXX 可逆的充要条件是:m 和20XXXX 没有质数公因子。
4. 根据Malthus 模型,如果自然增长率为2%,则人口数量增长为初值3倍所需时间为(假设初值为正)50ln354.93≈5. 请补充判断矩阵缺失的元素131219193121A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。
二.选择题:(每题2分,共20XXXX 分)1.C ;2. A;3.B;4.C.5.C三.判断题(每题2分,共20XXXX 分)1.×;2..√;3.×;4. ×;5. ×(应考虑谱半径=1的特殊情况)四.应用题(共70分)1).中间关键步骤不能少,否则不给分!2)开头计算错误,但整体思路、算法正确适当给一些分。
1.(5分)解:设x1、x2分别为每个集装箱中甲乙两种货物的托运包数,f 为总利润,则该问题可以视为整数线性规划问题,其数学模型为:1212121212max 2010.. 54242513 ,0,,f x x s t x x x x x x x x Z=++≤+≤≥∈ 目标函数1分,每个约束条件各1分常见错误:没有非负、整数约束,未写ILP 标准形式2(20XXXX 分)解:问题的物理量有:波速v 与波长λ、水深d 、水的密度ρ和重力加速度g 。
令 (,,,,)0v d g ϕλρ=.取 g 1=λ,g 2=v ,g 3=d ,g 4=ρ,g 5=g基本量纲为M , L , T ,各物理量的量纲为:[g 1]=L , [g 2]=LT -1,[g 3]=L , [g 4]= M -1L -3, [g 5]= LT -2。
数学建模与数学实验答案【篇一:数学建模与数学实验报告】>指导教师__成绩____________组员1:班级:工管0803 姓名:何红强学号:20083416组员2:班级:工管0801姓名:陈振辉学号:20085291实验1.(1)绘制函数y?cos(tan(?x))的图像,将其程序及图形粘贴在此。
建立m文件fun1.m 解:x=linspace(0, pi,30);y=cos(tan(pi*x)); plot(x,y)x=linspace(0, pi,30); y=cos(tan(pi*x)); plot(x,y)(2)用surf,mesh命令绘制曲面z?2x?y,将其程序及图形粘贴在此。
(注:图形注意拖放,不要太大)(20分)建立m文件fun3.m 解:x=-3:0.1:3; y=1:0.1:5;[x,y]=meshgrid(x,y); z=2*x.^2+y.^2; mesh(x,y,z)2214实验2.1、某校60名学生的一次考试成绩如下:93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 551)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分)解:1)建立数据文件chengji.mat,和m文件tjl.m 代码:load chengji mean=mean(x) std=std(x)range=range(x)skewness=skewness(x) kurtosis=kurtosis(x) hist(x,10)运行得:mean =80.1000 std =9.7106 range =44skewness =-0.46822结论:从上图图形形态来看符合正态分布3)假设正态分布的参数为:mu=80sigma=10 检验:首先取出数据,用以下命令:load chengji.mat 然后用以下命令检验[h,sig,ci] = ztest(price1,80,10)返回:h =0 sig = 0.9383 ci =[77.5697 , 82.6303]检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说明提出的假设均值80是合理的.2. sig-值为0.8668, 远超过0.5, 不能拒绝零假设3. 95%的置信区间为[77.5697 , 82.6303], 它完全包括80, 且精度很高.实验3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为x1x235y?1??2x1??3x2??4x3其中?1,?,?5是未知参数,x1,x2,x3是三种反应物(氢,n戊烷,异构戊烷)的含量,y是反应速度.今测得一组数据如表4,试由此确定参数?1,?,?5,并给出置信区间.?1,?,?5的参考值为(1,0.05, 0.02, 0.1, 2).(20分)序号 1 2 3 4 5 6 7 8 9 10 11 12 13反应速度y 8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13氢x1 470 285 470 470 470 100 100 470 100 100 100 285 2853n戊烷x2300 80 300 80 80 190 80 190 300 300 80 300 190异构戊烷x310 10 120 120 10 10 65 65 54 120 120 10 120解:先建立vol.m文件代码如下:function y=vol(beta,x)beta=[beta(1) beta(2) beta(3) beta(4)beta(5)];x1=x(:,1);x2=x(:,2);x3=x(:,3);y=(beta(1)*x2-x3./beta(5))./(1+beta(2)*x1+beta(3)*x2+beta(4)*x3);然后建立ll1.m文件代码如下:x=[470 285 470 470 470 100 100 470 100 100 100 285 285 300 80 300 80 80 190 80 190 300 300 80 300 190 10 10 120 120 10 10 65 65 54 120 120 10 120];y=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13]; beta0=[1 0.05 0.02 0.1 2];[beta,r,j]=nlinfit(x , y,vol,beta0); beta运行结果为:beta =1.2526 0.0628 0.0400 0.1124 1.1914实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。
数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。
试研究两变量(x,y)之间的关系。
其中:(秒)()。
要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
3、优化理论中的线性规划问题---生产安排。
数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。
试研究两变量(x,y)之间的关系。
其中:(秒)()。
要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。
5)编程实现上述求解过程。
注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。
2、《数学实验》,萧树铁主编,高等教育出版社。
3、优化理论中的线性规划问题---生产安排。
1.电路问题一电路由三个电阻123R R R 、、并联,再与电阻4R 串联而成,记k R 上电流为k I ,电压为k V ,在下列情况下确定k R 使电路总功率最小(1,2,3,4)k =: 1)1234,6,8,2k I I I ===≤V ≤10; 2)1234,6,8,2k V V V I ===≤≤6;1)解:根据建立2;P I R U IR ==数学模型为:W=min 421k k k I R =∑123412346..82(1,...,4)kI I s t I I I I Ik I ⎧⎪=⎪=⎪⎪=⎨⎪=++⎪⎪=⎪⎩k k 10≤R ≤I用Lingo 求解:min =I1^2*R1+I1^2*R1+I2^2*R2 结果:+I3^2*R3+I4^2*R4;I1=4;I2=6;I3=8; I4=18; R1>1/2; R2>1/3; R3>1/4; R4>1/9; end2)解:根据建立2;P I R U IR ==数学模型为:W=min 421k k k I R =∑ 4123112233R =4/I ;..R =6/I ;R =8/I ;2I I I I s t I =++⎧⎪⎪⎪⎨⎪⎪⎪⎩k ≤≤6(k =1,...,4);用Lingo 求解:min =I1^2*R1+I2^2*R2+I3^2*R3 结果:+I4^2*R4;I4=I1+I2+I3;I1<6; I2<6;I3<6;I4<6; 《数学建模与数学实验》(第三版)6.5习题作业专业 班级 姓名 学号12340.50000.33330.25000.1111R R R R =⎧⎪=⎪⎨=⎪⎪=⎩ , 1234 4.00006.00008.000018.0000I I I I =⎧⎪=⎪⎨=⎪⎪=⎩ 80P = 112233440.5835976E+08 0.6854038E-07 0.1586609E+08 0.3781429E-06 1.3333 6.000000 0.4752196E+27 6.000000R I R I R I R I ==⎧⎧⎪⎪==⎪⎪⎨⎨==⎪⎪⎪⎪==⎩⎩0.1710790E+29P =R1=4/I1; R2=6/I2; R3=8/I3; end3.(设计最优化问题)要设计和发射一个带有X 射线望远镜和其他科学仪器的气球。
数学建模实验答案_微分⽅程模型实验07 微分⽅程模型(2学时)(第5章微分⽅程模型)1.(验证)传染病模型2(SI 模型)p136~138传染病模型2(SI 模型):0(1),(0)dik i i i i dt=-= 其中,i (t )是第t 天病⼈在总⼈数中所占的⽐例。
k 是每个病⼈每天有效接触的平均⼈数(⽇接触率)。
i 0是初始时刻(t =0)病⼈的⽐例。
1.1 画~dii dt曲线图p136~138取k =0.1,画出i dt di ~的曲线图,求i 为何值时dtdi达到最⼤值,并在曲线图上标注。
提⽰:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图⽤fplot 函数,调⽤格式如下: fplot(fun,lims)fun 必须为⼀个M ⽂件的函数名或对变量x 的可执⾏字符串。
若lims取[xmin xmax],则x轴被限制在此区间上。
若lims取[xmin xmax ymin ymax],则y轴也被限制。
本题可⽤fplot('0.1*x*(1-x)',[0 1.1 0 0.03]);2)求最⼤值⽤求解边界约束条件下的⾮线性最⼩化函数fminbnd,调⽤格式如下:x=fminbnd('fun',x1,x2)fun必须为⼀个M⽂件的函数名或对变量x的可执⾏字符串。
返回⾃变量x在区间x1本题可⽤x=fminbnd('-0.1*x*(1-x)',0,1)y=0.1*x*(1-x)3)指⽰最⼤值坐标⽤线性绘图函数plot,调⽤格式如下:plot(x1,y1, '颜⾊线型数据点图标', x2,y2, '颜⾊线型数据点图标',…)本题可⽤hold on; %在上⾯的同⼀张图上画线(同坐标系)plot([0,x],[y,y],':',[x,x],[0,y],':');4)图形的标注使⽤⽂本标注函数text,调⽤格式如下:格式1text(x,y,⽂本标识内容, 'HorizontalAlignment', '字符串1')x,y给定标注⽂本在图中添加的位置。
实验05 数学规划模型㈡(2学时)(第4章数学规划模型)1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102(1) (LP)在模型窗口中输入以下线性规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3≥ 0并求解模型。
★(1) 给出输入模型和求解结果(见[101]):(2) (IP)在模型窗口中输入以下整数规划模型max z = 2x1 + 3x2 + 4x3s.t. 1.5x1 + 3x2 + 5x3≤ 600280x1 + 250x2 + 400x3≤ 60000x1, x2, x3均为非负整数并求解模型。
LINGO函数@gin见提示。
★(2) 给出输入模型和求解结果(见[102]模型、结果):2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107模型:已知 ⎪⎩⎪⎨⎧≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x xx c注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x112112221112212211112112122211122122max 4.8() 5.6()()500100015000.50.6,,,,0z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥2.1解法1(NLP )p104~106将模型变换为以下的非线性规划模型:1121122212311122122111121121222123122312311122122max4.8()5.6()(1086)50010000.50.6(500)0(500)00,,500,,,,0z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥LINGO 软件设置:局部最优解,全局最优解,见提示。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。
由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。
面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。
题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。