网架与网壳对比及网壳结构主要缺点
- 格式:docx
- 大小:12.40 KB
- 文档页数:1
浅谈网架与网壳结构的区别与联系陈露(东南大学09级土木工程学院结构1班)摘要:空间结构以前轻巧的外形及合理的受力受到了广泛运用,本文对两种主要的空间结构——网架结构与网壳结构作了一些简单的比较,通过对组成、内力、动力下的特点等方面的比较,加深对网架与网壳结构的认识,希望对网架与网壳的研究、分析与设计有所帮助。
关键字:网架网壳比较目前,大跨空间结构发展迅速,空间结构以其优美的建筑外形和良好的受力性能被广泛运用于工程实践中。
网架与网壳是空间结构的主要形式,他们有许多类似的地方,同时又有各自的特点。
(前言)1.网架与网壳的定义网格结构是由很多杆件通过节点,按照规律的几何图形组成的空间结构。
网格结构中,双层或多层平板形网格结构称为网架结构,而曲面形网格称为网壳结构。
网架与网壳结构都属于空间网格结构范畴,结构形式较为新颖,杆件的布置形式都具有很强的规律性。
2.网架与网壳结构的组成与连接网架结构形似一块大板,一般分为平行桁架系网架、四角锥体系网架、三角锥体系网架、混合型三层网架等;网壳结构为空间曲面形式,分为单层和双层网壳两种,单层网壳结构依靠单层杆件找形,双层网壳依靠上弦杆件找形,腹杆和下弦杆可按相应的平面桁架体系、四角锥体系或三角锥体系。
根据其组成可以判断,网架结构及双层网壳结构的节点允许采用铰接或刚接形式,而单层网壳结构中,杆件之间的节点只允许采用刚接,否则将使单层网壳形成机构。
空间铰接杆系的一个节点有三个自由度,在网架为几何不变的前提下,可用下式判断整个结构的超静定次数。
W=3J-B-S (1) J——网架的节点数B——网架的杆件数S——支座约束数假设某双层正交正放网架上弦的网格数为N×N,下弦网格数为(N-1)×(N-1),则节点数为2N2+2N+1,网架杆件数为8N2,W=-2N2+6N+3-S。
对于大跨结构,一般情况下N较大,设N=10,且上弦点支承,约束数为S=4N,则W=-177.超静定次数为177.可见,网架和双层铰节点网壳结构的冗余度较大,具有较高的安全储备。
大跨空间结构小论文《网架和网壳结构的异同点分析》姓名:学号:专业:土木工程网架与网壳结构异同点分析摘要:空间结构以轻巧的外形及合理的受力受到了广泛运用,本文对两种主要的空间结构——网架结构与网壳结构作了一些简单的比较,罗列了一些异同点,加深对网架与网壳结构的认识,希望对网架与网壳的研究、分析与设计有所帮助。
关键字:网架网壳异同点为了满足社会生活和居住环境的需要,人们向建筑物提出更高要求,需要足够的跨度来达到更大的覆盖空间的目的,而像网架和网壳这种空间结构就应运而生。
所谓空间结构是指建筑结构的形状具有三维空间形状,在荷载作用下具有三维受力特性、呈立体工作状态的结构。
本文旨在探讨网架和网壳的异同点,但是因为他们的有些特性的界线不是很明显,故只能粗中有细地进行分析。
首先讨论它们的相同或类似的部分。
1、网架和网壳隶属体系相同。
它们同属于刚性空间结构体系,一般是由钢杆件按一定规律组成的网格状高次超静定空间杆系结构,具有很好刚度的结构体系。
2、具有一些相似的优缺点。
(1)结构组成灵活多样但又有高度的规律性,便于采用,并适用各种建筑方面的要求。
(2)节点连接简单可靠,加工制作机械化程度高,并已全部工厂化。
(3)用料经济,受力合理,能用较少的材料跨越较大的跨度,节约钢材。
(4)分析计算成熟,已采用计算机辅助设计,大大缩短了设计周期。
(6)适应建筑工业化、商品化的要求。
(7)节点用钢量较大,加工制作费用仍较平面桁架为高。
(8)是汇交于节点上的杆件数量较多,制作安装较平面结构复杂.3、结构形式均多种多样。
网架结构按结构组成分,有双层和三层网架;按支撑条件,可分为周边支撑、点支撑、三边支撑和两边支撑、周边支撑与点支撑相结合的混合支撑等;按网格组成主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。
浅析网架与网壳结构之异同田伟1.结构组成形式多根杆件按照某种规律的几何图形通过节点连接起来的空间结构称为网格结构,当网格为双层或多层平板型时即为网架,而当网格为曲面形状并具有壳体的结构特性时即为网壳。
网架的建筑造型轻巧、美观、大方,便于建筑处理和装饰。
平面布置灵活,施工安装简便,屋盖平整,有利于吊顶、安装管道和设备,但其屋面铺装需要利用支托来找坡排水。
网壳的建筑选型灵活多变,而且十分的优美,不论建筑平面,立面或型体都能给人以美的感受。
另外较之平板网架,网壳结构具有自动排水的功能,2.结构受力特点网架通过上下弦工作原理受力:通过腹杆的连接,上弦受压,下弦受拉从而产生承载力。
其优点为空间工作,传力途径简捷,刚度大,抗震性能好(水平地震作用效应小),结构计算及设计相对简单并已成熟;缺点为各杆件工作内力相差较大,设计时杆件规格归并后存在“强度过剩”问题。
网壳是典型的三维结构,其强度和刚度利用了其几何形状的合理性,以材料直接受压来代替弯曲内力,从而充分发挥材料的潜力。
合理的曲面可以使结构力流均匀,各杆件协同工作,内力分布相对均匀,应力峰值较小,从而可以节约钢材。
网壳结构尤其是单层网壳,在设计中需要考虑的首要问题是非线性稳定计算,以及几何缺陷对结构稳定的影响。
此外,对于寻求网壳结构的合理型体,网壳结构的动力特性分析以及抗风、抗震(水平地震作用效应显著)设计等问题也较网架结构复杂。
3.结构适用性网架及网壳结构一般跨度较大,多用于公用建筑、重要建筑或大型工业厂房。
网架结构的主要优点是经济性强,设计和计算简单,制作安装方便,相对于土建工程能在更短的时间内完成设计和施工。
网壳有杆系结构构造简单和薄壳结构受力合理的特点,造型丰富多彩,不论是建筑平面还是空间曲面外形,都可根据创作要求任意选取,是一种颇受关注、较有前景的空间结构。
4.个人体会网架和网壳结构能够被广泛使用并不断发展,用结构设计的“安全、合理、先进、经济”这一评价指标可做一简单解释。
钢结构网架是,按一定规律布置的杆件通过节点连接而形成的平板型或微曲面型空间杆系结构,主要承受整体弯曲内力。
网壳:按一定规律布置的杆件通过节点连接而形成的曲面状空间杆系或梁系结构,主要承受整体薄膜内力。
立体桁架(拱架):是有上弦、腹杆和下弦构成的横截面为三角形或四边形的格构式桁架。
张弦立体拱架:由立体拱架与索拉组合而形成的结构。
空间网格结构的不足:●杆件和节点几何尺寸的偏差以及曲面的偏离对网壳的内力、整体稳定性和施工精度影响较大,中就给结构设计带来了困难;●对于网架和网壳结构来说,节点用钢量较大;●利用相贯节点实现立体桁架或立体拱架时,可能会处现节点强度验算起控制作用的情况。
采用主管局部加厚将导致增加焊接工作量,而主管全长加厚则容易造成材料的浪费。
●网壳结构可以构成大空间,但当矢高很大时,增加了屋面面积和不必要的建筑空间,增加建筑材料和能源的消耗;空间网格结构的优点:●受力合理,荷载可以沿空间路径传递,因此可以跨越较大的跨度,节约刚材;●网架结构组成形式多,但每一种都十分规则,其布置极易掌握;●结构组成灵活多样但又有高度的规律性,便于采集,适合各种各样建筑方面的要求;●节点连接简便可靠;●适应建筑工业化、商品化的要求;●分析计算成熟已采用计算机辅助设计;●加工制作机械化程度高,并已全部工厂化;●用料经济,能用较少的材料开业较大的跨度;以上就是郑州盛天钢结构工程有限公司为大家介绍的相关内容,希望对您有帮助,/手机震动,来一条微信消息,他说:“我开好房间了,等你!他们都说你技术好,我想试试真假。
真的,我平时对你也不错吧,你可不能让我干等着呀。
”她回:“那好吧,你先等我,我在家里,先洗个澡,换身衣服吧。
”半个小时后,她问:“你在哪里开房?”“欢乐斗地主,电信一区,12号房间,不见不散哦。
”“给老娘滚!”当然,以上是个笑话。
不过,近日成都一家燃气公司也发生了一件类似的事情,董事长在微信里发了一个六十块钱的红包,三名员工一时手痒,按耐不住诱惑,结果伸手一抢纷纷中招:工作时间玩手机,罚款五百!在面对记者采访时,董事长表示:“我为了了解大家的思想动态,所以加入了员工的微信群里。
网壳与网架是有本质的区别:前者空间受力,单层为刚接节点,也可以为双层、多层壳....网架,桁架以铰结节点来传递荷载。
从几何拓扑方面来说,我们可以这样理解。
网架是板的格构化形式;网壳是壳的格构化形式;桁架是格构化的梁。
网架不一定就是平面的,也可以是曲面的,关键是它的厚跨比。
如果网架的厚(高)跨比比较大,具有板(包括平面板和曲面板)的受力性能,那么仍就称之为网架。
而壳体一般是比较薄的,也就是说,厚跨比很小,在整体受力方面接近于壳的特性,这时我们称其格构化形式为网壳。
网壳是一般是曲面的,尤其是单层网壳,否则我们不好保证其结构的几何不变性。
此二者均为空间网格结构。
桁架从材料布局(或分布)来看,整体可以看成是格构化的梁,其整体受力性能与梁相似。
在细部结构上,利用各杆重新引导力流(各杆之间的节点未铰接,不能传递弯矩),整体上与主应力迹线的布局基本是一致的。
各杆件均为二力杆,只受拉压。
桁架,尤其是空间的管桁架,经常是做成拱的形式。
但此时,拱并非纯压拱,整体仍以受弯为主,我们在一定意义也可以认为是曲线梁。
当然,起拱可以增加跨越能力,此时的“梁”内的“轴力”作用也不可以忽视了,只是大多数情形下,尤其是矢跨比较小时,整体上仍以受弯为主。
网架技术参数网架零构件主要规格1 螺栓球100 110 120 130 150 180 200 220 230 250 3002 高强螺栓M20 M22 M24 M27 M30 M33 M36 M39 M42 M48 M52 M56 M643 焊件断面48*3.5 60*3.5 75*3.75 88.5*4 114*4 140*4.5 165*4.5 114*6 133*6 140*8 140*10 159*10 159*12 180*144 网架结构体系及支承类型网架结构分为正放四角锥网架、三角锥网架、三向桁架、曲面网架和异形网架等几种类型。
网架支承类型有周边支承网架、点支承网架、周边支承和点支承结合网架。
网架施工缺陷分析与处理摘要:在我国大型场馆的建设中,网架施工具有十分重要的作用。
钢结构有多种施工方法,每一种施工方法都有其自身的特点和不同的适用范围。
本文对网架常见的施工缺陷进行总结,结合本人多年工作经验提出了相应的整改优化处理措施,希望为相关人员提供参考。
关键词:网架;施工缺陷;处理措施?前言:随着工程项目建设不断加快,网架被广泛的应用到大规模工程项目建设中,在我国大型场馆的建设中,网架施工具有十分重要的作用,相对于其他结构形式,钢结构具有十分突出的优点。
从结构安全的角度出发,需要了解不同施工缺陷对网架结构的影响并对其进行分析,采用适当处理方式消除或者减轻不利影响。
一、网架施工缺陷原因1.1正常使用阶段使用不当引发过大的地基下沉;由于改变使用功能等原因,造成实际的使用荷载过大;任意开洞、局部改造削弱了构件截面和结构整体性;生产条件改变,但未进行必要的鉴定与加固;生产操作不当,造成构件或结构损坏但未及时修复;使用条件恶劣,且没有认真执行结构定期检查维修规定;不可抗力。
如战争、火灾、水灾、地震、爆炸等。
1.2老化阶段由于大自然及人为的各种因素的破坏,建筑物会逐渐老化。
钢结构工程在各种缺陷和隐患的累积损伤下,其寿命将受到严重威胁,该阶段钢结构事故出现的可能性较大,应大力开展钢结构残余可靠度理论以及鉴定与加固的研究工作。
二、网架常见施工缺陷2.1安装误差安装误差指的是结构安装完成后的位形与理想设计状态之间的差别,由于结构设计的对象是理想状态的结构位形,在实际施工过程中由于结构的自重、作用荷载以及施工精度的影响,安装完成后的结构位形会与理想设计状态存在必然的差别。
然而,当安装误差不满足允许误差的规定时,需要采取有效的方法评估其对结构安全性的影响,并采取相应措施减小或者消除该影响。
2.2杆件初始弯曲杆件初始弯曲指的是单根杆件的初始弯曲,通常由制作安装精度、运输碰撞等原因造成,而初始弯曲对杆件的承载能力,尤其是压杆的稳定承载力,具有显著的影响。
网架结构已成为现代世界应用较普遍的新型结构之一。
我国从20世纪60年代开始研究和采用,近年来,由于电子计算技术的迅速发展,解决了网架结构高次超静定结构的计算问题,促使网架结构无论在型式方面以及实际工程应用方面,发展都很快。
网架在需要大跨度、大空间的体育场馆、会展中心、文化设施、交通枢纽乃至工业厂房,无不见到空间结构的踪影。
网架结构的优点是用钢量小、整体性好、制作安装快捷,可用于复杂的平面形式。
适用于各种跨度的结构,尤其适用于复杂平面形状。
这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机结合起来,因而用料经济。
网架主要用于大、中跨度的公共建筑中,例如体育馆、飞机库、俱乐部、展览馆和候车大厅等,中小型工业厂房也开始推广应用。
跨度越大,采用此种结构的优越性和经济效果也就越显著。
网架结构板型网架结构按组成形式主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。
壳型网架结构按壳面形式分主要有柱面壳型网架、球面壳型网架及双曲抛物面壳型网架。
网架结构按所用材料分有钢网架、钢筋混凝土网架以及钢与钢筋混凝土组成的组合网架,其中以钢网架用得较多。
网架结构可分为双层的板型网架结构、单层和双层的壳型网架结构。
板型网架和双层壳型网架的杆件分为上弦杆、下弦杆和腹杆,主要承受拉力和压力。
单层壳型网架的节点一般假定为刚接,应按刚接杆系有限元法进行计算;双层壳型网架可按铰接杆系有限元法进行计算。
单层和双层壳型网架也都可采用拟壳法简化计算。
单层壳型网架的杆件,除承受拉力和压力外,还承受弯矩及切力。
目前中国的网架结构绝大部分采用板型网架结构。
网架结构是空间网格结构的一种。
比较网架结构与网壳结构异同张晓亚 121071网架结构是一种空间杆系结构,受力杆件通过节点有机地结合起来。
节点一般设计成铰接,杆件主要承受轴力作用,杆件截面尺寸相对较小。
这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机地结合起来,因而用料经济。
由于结构组合有规律,大量的杆和节点的形状、尺寸相同,便于工厂化生产,便于工地安装。
网架结构一般是高次超静定结构,具有较高的安全储备,能较好的承受集中荷载、动力荷载和非对称荷载,抗震性能好。
网架结构就整体而言是一个受弯的平板,反应了很多平面结构的特性,大跨度的网架设计对跨度方向的网架刚度要求很大,因而总弯矩基本上是随着跨度二次方增加的。
网壳结构则是主要承受薄膜内力的壳体,主要以其合理的形体来抵抗外荷载的作用。
因此在一般情况下,同等条件特别是大跨度的情况下,网壳要比网架节约许多钢材。
1.网架结构与网壳结构分类网架结构按结构组成分为双层网架、三层网架和组合网架,按支承情况分为周边支承网架、点支撑网架和周边支承与点支撑相结合的网架,按网格形式分为交叉平面桁架体系、四角锥体系和三角锥体系。
一般来说,网壳结构按层数可划分为单层网壳和双层网壳。
单层网壳的网格常用形式有圆柱面单层网壳、球面单层网壳、椭圆抛物面单层网壳和双曲抛物面单层网壳。
双层网壳是由两个同心或不同心的单层网壳通过斜腹杆连接而成。
2.静力分析比较在用空间桁架位移法计算网架结构内力和变形时,作了如下假定:①网架节点为铰接,每个节点有三个自由度;②荷载作用在网架节点上,杆件只承受轴力;③材料在弹性阶段工作,符合胡克定律;④网架变形很小,由此产生的影响予以忽略。
双层网壳结构多采用空间杆系有限元法分析节点位移和杆件内力。
与平板网架假设类似,节点假设为铰接,每个节点有三个线位移u、v、w。
不同的是,下部结构的不同约束状况将使网壳结构的内力和位移产生显著变化。
3.动力特性异同网架与其他结构相比跨度较大,结构相对较柔,有其自身的动力特性:①网架的振型可以分为水平振型和竖向振型两类,水平振型以承受水平振动为主。
网架与网壳对比及网壳结构主要缺点
在节点荷载作用下,各杆件主要承受轴向的拉力或压力,能充分发挥材料的强度,节省钢材。
平板网架与网壳相比,它是一种无水平推力和拉力的空间结构,支座构造较为简单,一般简支支座即可,便于下部支承结构处理。
而网壳结构受力更趋于合理,且可以实现更美观建筑造型。
网壳结构的主要缺点在于:杆件和节点几何尺寸的偏差以及曲面的偏离对网壳的内力、整体稳定性和施工精度影响较大,给结构设计和施工帯来了一定困难。
为了减小网壳结构的这种缺陷,对于杆件和节点的加工精度要求就较高,因此加工难度也増大。
此外,网壳的矢高很大时,增加了屋面面积和不必要的建筑内部空间,建筑材料和能源的消耗也随之增加。
这些问题在大跨度网壳中显得更加突出。
由于网架、网壳结构组合有规律,大量杆件和节点的形状、尺寸相同,并且杆件和节点规格少,便于工厂成批逆,产品质量高,现场进行拼装容易,施工速度快。