概率统计模拟题一
- 格式:docx
- 大小:140.81 KB
- 文档页数:15
考研数学一(概率统计)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.对任意两个事件A和B,若P(AB)=0,则( ).A.AB=B.C.P(A)P(B)=0D.P(A—B)=P(A)正确答案:D解析:选(D),因为P(A—B)=P(A)一P(AB).知识模块:概率统计部分2.在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于( ).A.{T(1)≥t0}B.{T(2)≥t0)C.(T(3)≥t0)D.{T(4)≥t0}正确答案:C解析:{T(1)≥t0)表示四个温控器温度都不低于临界温度t0,而E发生只要两个温控器温度不低于临界温度t0,所以E={T(3)≥t0},选(C).知识模块:概率统计部分3.设A,B为任意两个不相容的事件且P(A)>0,P(B)>0,则下列结论正确的是( ).A.B.C.P(AB)=P(A)P(B)D.P(A-B)=P(A)正确答案:D解析:因为A,B不相容,所以P(AB)=0,又P(A-B)=P(A)-P(AB),所以P(A-B)=P(A),选(D).知识模块:概率统计部分4.设A,B为两个随机事件,其中00且P(B|A)=,下列结论正确的是( ).A.P(A|B)=B.P(A|B)≠C.P(AB)=P(A)P(B)D.P(AB)≠P(A)P(B)正确答案:C解析:知识模块:概率统计部分5.设0,则下列结论正确的是( ).A.事件A,B互斥B.事件A,B独立C.事件A,B不独立D.事件A,B对立正确答案:B解析:知识模块:概率统计部分6.设X和Y为相互独立的连续型随机变量,它们的密度函数分别为f1(x),f2(x),它们的分布函数分别为F1(x),F2(x),则( ).A.f1(x)+f2(x)为某一随机变量的密度函数B.f1(x)f2(x)为某一随机变量的密度函数C.F1(x)+F2(x)为某一随机变量的分布函数D.F1(x)F2(x)为某一随机变量的分布函数正确答案:D解析:可积函数f(x)为随机变量的密度函数,则f(x)≥0且,显然(A)不对,取两个服从均匀分布的连续型随机变量的密度函数验证,(B)显然不对,又函数F(x)为分布函数必须满足:(1)0≤F(x)≤1;(2)F(x)单调不减;(3)F(x)右连续;(4)F(-∞)=0,F(+∞)=1,显然选择(D).知识模块:概率统计部分7.设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与一X分布函数相同,则( ).A.F(x)=F(一x)B.F(x)=一F(一x)C.f(x)=f(一x)D.f(x)=一f(一x)正确答案:C解析:知识模块:概率统计部分8.设随机变量X的密度函数为,则P{a 知识模块:概率统计部分9.设随机变量X~N(μ,σ2),则P(|X一μ|<2σ)( ).A.与μ及σ2都无关B.与μ有关,与σ2无关C.与μ无关,与σ2有关D.与μ及σ2都有关.正确答案:A解析:知识模块:概率统计部分10.设X~N(μ,42),Y~N(μ,52),令p=P(X≤μ一4),q=P(Y≥μ+5),则( ).A.p>qB.p<qC.p=qD.p,q的大小由μ的取值确定正确答案:C解析:知识模块:概率统计部分11.设随机变量X~N(μ,σ2),其分布函数为F(x),则对任意常数a,有( ).A.F(a+μ)+F(a一μ)=1B.F(μ+a)+F(μ一a)=1C.F(a)+F(一a)=1D.F(a一μ)+F(μ一a)=1正确答案:B解析:知识模块:概率统计部分12.设随机变量X~U[1,7],则方程x2+2Xx+9=0有实根的概率为( ).A.B.C.D.正确答案:C解析:知识模块:概率统计部分填空题13.设P(B)=0.5,P(A—B)=0.3,则P(A+B)=__________.正确答案:0.8解析:因为P(A—B)=P(A)一P(AB),所以P(A+B)=P(A—B)+P(B)=0.8.知识模块:概率统计部分14.设P(A)=0.6,P(B)=0.5,P(A—B)=0.4,则P(B—A)=_________,P(A+B)=__________.正确答案:0.9解析:因为P(A—B)=P(A)一P(AB),所以P(AB)=0.2,于是P(B—A)=P(B)一P(AB)=0.5—0.2=0.3,P(A+B)=P(A)+P(B)一P(AB)=0.6+0.5一0.2=0.9.知识模块:概率统计部分15.设事件A,B相互独立,P(A)=0.3,且,则P(B)=___________.正确答案:解析:知识模块:概率统计部分16.设A,B为两个随机事件,且P(A)=0.7,P(A—B)=0.3,则=_________.正确答案:0.6解析:由P(A—B)=P(A)一P(AB)=0.3及P(A)=0.7,得P(AB)=0.4,则=1一P(AB)=0.6.知识模块:概率统计部分17.设P(A)=0.4,且P(AB)=P(AB),则P(B)=____________.正确答案:0.6解析:因为P(AB)=P(A+B)=1一P(A+B),所以P(AB)=1一P(A+B)=1一P(A)一P(B)+P(AB),从而P(B)=1一P(A)=0.6.知识模块:概率统计部分18.设A,B为两个随机事件,则=_________.正确答案:0解析:知识模块:概率统计部分19.设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为___________.正确答案:解析:A,B,C都不发生的概率为=1一P(A+B+C),而ABCAB且P(AB)=0,所以P(ABC)=0,于是P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)=,故A,B,C都不发生的概率为.知识模块:概率统计部分20.设事件A,B,C两两独立,满足ABC=,P(A)=P(B)=P(C),且P(A+B+c)=,则P(A)=__________.正确答案:解析:由P(A+B+C)=P(A)+P(B)+P(C)一P(AB)一P(AC)一P(BC)+P(ABC)且ABC=,P(A)=P(B)=P(C),得知识模块:概率统计部分21.有16件产品,12个一等品,4个二等品.从中任取3个,至少有一个是一等品的概率为_________正确答案:解析:设A={抽取3个产品,其中至少有一个是一等品},.知识模块:概率统计部分22.设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为__________.正确答案:解析:设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),知识模块:概率统计部分23.从n阶行列式的展开式中任取一项,此项不含a11的概率为,则n=_________.正确答案:9解析:n阶行列式有n!项,不含a11的项有(n一1)(n一1)!个,则=,则n=9.知识模块:概率统计部分24.设一次试验中,出现事件A的概率为P,则n次试验中A至少发生一次的概率为___________,A至多发生一次的概率为___________.正确答案:解析:知识模块:概率统计部分25.正确答案:解析:知识模块:概率统计部分26.正确答案:4解析:知识模块:概率统计部分27.设X~B(2,p),Y~B(3,p),且P(X≥1)=,则P(Y≥1)=_________.正确答案:解析:知识模块:概率统计部分28.设X~N(2,σ2),且P(2≤X≤4)=0.4,则P(X<0)=__________.正确答案:0.1解析:知识模块:概率统计部分29.设随机变量X服从参数为λ的泊松分布,且P(X=0)=,则P(X≥1)=_________正确答案:1-e-2解析:知识模块:概率统计部分30.设随机变量X服从参数为λ的指数分布,且E[(X一1)(X+2)]=8,则λ=__________.正确答案:解析:知识模块:概率统计部分31.正确答案:2解析:知识模块:概率统计部分32.一工人同时独立制造三个零件,第k个零件不合格的概率为,以随机变量X表示三个零件中不合格的零件个数,则P(X=2)=__________.正确答案:解析:知识模块:概率统计部分33.正确答案:解析:Y的可能取值为2,3,6,知识模块:概率统计部分34.设随机变量X~N(0,1),且Y=9X2,则Y的密度函数为__________.正确答案:解析:知识模块:概率统计部分35.设随机变量X的概率密度函数为,则Y=2X的密度函数为fY(y)=_________正确答案:解析:知识模块:概率统计部分36.设离散型随机变量X的分布函数为则Y=X2+1的分布函数为_________.正确答案:解析:知识模块:概率统计部分解答题解答应写出文字说明、证明过程或演算步骤。
概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。
解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。
(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。
则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。
2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。
3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。
解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。
4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。
概率统计期中考试模拟题(一)(第一章--第三章方差结束)一、填空题(每小题3分,共15分)1.设随机事件A , B , C 的概率均为p ,且A 与B , C 分别相互独立,B 与C 不相容,若A , B , C 中至少有一个发生的概率为97,则A , B , C 中至少有两个发生的概率为 。
2.将一枚均匀硬币掷2n 次,则出现正面次数多于反面次数的概率等于 。
3.设A , B 为两个事件,则{}{}P AB P AB {}{}P A P B (填符号(≥≤=><,,,,)之一)。
4.设随机变量)2()1(),(~===X P X P P X 且λ,则=>}1{X P 。
5.设随机变量)exp(~λX ,则随机变量32+-=X Y 的概率密度是: 。
二、解答下列各题(每小题7分,共42分)1.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,求:(1)常数,a b ; (2)方差)(X D 。
2. 设0()1,0()1P A P B <<<<且(|)(|)1P A B P A B +=,证明事件A 与B 相互独立。
3. 设事件A , B , C 两两独立,其发生的概率均为0.6,若已知A 发生的条件下B , C 至少一个发生的概率为0.2,求A , B , C 最多发生两个的概率。
4.设1(),1,2,33P X i i ===,(|),4,592k i P Y k X i k i-====-,求随机变量Y 的概率分布。
5.设随机变量~(2,1)X U -,随机变量2Y X =,求Y 的概率密度。
6. 设随机变量),(Y X 的概率密度为1,0,1(,)0,x y f x y <<⎧=⎨⎩其他,求),(Y X 的联合分布函数。
三(15分)、设二维随机变量),(Y X 的概率密度为01,1,(,)0,x x x y ae f x y <<<<⎧=⎨⎩其他 试求:(1)常数a ; (2)边缘密度函数()X f x 及()Y f y ;(3)判断Y X 与是否相互独立,为什么? (4)概率{0.5}P X Y +≤。
概率论与数理统计模拟题一、填空题1、已知,7.0)B (P 4.0)A (P ==,B (A P )=0.2,则B)P(A += 0.5 。
2、已知,7.0)(,3.0)(=⋃=B A p B p 则B A P ()= 0.4 。
3、已知随机事件A 的概率0.5P(A)=,随机事件B 的概率P(B)=0.6,及条件概率 P(A|B)=0.8,则事件A B 的概率P(A B)= 0.7 。
4、已知事件A ,B ,C 相互独立,且P(A)=0.5,P(B)=0.9,P(C)=0.4。
则{}B C A )(P += 0.9 。
5、某射手每射击一枪击中目标的概率为0.8,今他对靶独立重复射击10枪,则至少有一枪击中目标的概率是__________________。
6、一口袋中装有4只白球,3只黑球,从中陆续不放回地取出三只球,则取出的三只球恰好有二只黑球的概率是 12/35 。
7、袋中有4个白球,10个红球。
甲先从袋中任取一个球,取后不放回,再放入一个与所取的颜色相反的球,然后乙再从袋中任取一球。
则甲取出的是白球,乙取出的是红球的概率是__________________。
8、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有60%住户至少订甲、乙两种报中的一种,则同时订甲、乙两种报的住户的百分比(概率)是 15% 。
9、某居民小区有45%住户订甲种报纸,有30%住户订乙种报纸,有2%住户同时订两种报纸。
则住户至少订甲、乙两种报纸中的一种报纸的百分比(概率)是____________。
10、若某居民小区有60%住户订甲报,有30%住户订乙报,有25%住户同时订甲、乙两种报纸。
则订甲报而不订乙报的住户的百分比(概率)是________。
11、已知事件A 与B 相互独立,又知A 发生且B 不发生的概率与B 发生且A不发生的概率相等即P(A B )=B)A P(。
又已知95)B A P(=。
则)(A P =__________。
北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B是两个互不相容的事件,P(A)>0 ,P(B)>0,则()一定成立。
[A]P(A)=1-P(B)[B]P(A│B)=0[C]P(A│B)=1 [D]P(AB)=02、设A,B是两个事件,P(A)>0,P(B)>0,当下面条件()成立时,A 与B一定相互独立。
[A]P( AB)=P(A)P(B)[B]P(AB)=P(A)P(B)[C]P(A│B)=P(B)[D]P(A│B)=P(A)3、若A、B相互独立,则下列式子成立的为()。
[A] P(AB) P(A)P(B) [B] P(AB)0[C] P(AB) P(BA) [D]P(AB) P(B)4、下面的函数中,()可以是离散型随机变量的概率函数。
[A] P 1 k e1(k 0,1,2 ) k![B] P 2 k e1(k 1,2 )k![C]P 3 k 1(k0,1,2 ) 2k[D] P 4 k1(k 1, 2, 3) k25、设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x) aF1(x)bF2(x)是某一随机变量的分布函数,则下列个组中应取()。
[A] a 1 3 [B] a2 2 ,b2,b3 2 3[C a 3,b 2[D a 1,b 3] ]5 5 2 2二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T,错误的填F,填在答题卷相应题号处。
考研数学三概率论与数理统计(大数定律和中心极限定理)模拟试卷1(总分:86.00,做题时间:90分钟)一、<B>选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
</B>(总题数:10,分数:20.00)1.设随机变量X 1,X 2,…,X n相互独立,S n =X 1 +X 2+…+X N,则根据列维一林德伯格中心极限定理,当n充分大时S N近似服从正态分布,只要X 1,X 2,…,X N(分数:2.00)A.有相同期望和方差.B.服从同一离散型分布.C.服从同一均匀分布.√D.服从同一连续型分布.解析:解析:因为列维一林德伯格中心极限定理的条件是,X 1,X 2,…,X n独立同分布而且各个随机变量的数学期望和方差存在.显然4个选项中只有选项(C)满足此条件:均匀分布的数学期望和方差都存在。
选项(A)不成立,因为X 1,X 2,…,X n有相同期望和方差,但未必有相同的分布,所以不满足列维一林德伯格中心极限定理的条件;而选项(B)和(D)虽然满足同分布,但数学期望和方差未必存在,因此也不满足列维一林德伯格中心极限定理的条件,故选项(B)和(D)一般也不能保证中心极限定理成立.2.假设随机变量X 1,X 2,…相互独立且服从同参数A的泊松分布,则下面随机变量序列中不满足切比雪夫大数定律条件的是(分数:2.00)A.X 1,X 2,…,X n,…B.X 1 +1,X 2 +2,…,X n +n,…C.X 1,2X 2,…nX n,…√解析:解析:切比雪夫大数定律的条件有三个:第一个条件要求构成随机变量序列的各随机变量是相互独立的.显然无论是X 1,…,X n,…,还是X 1 +1,X 2 +2,…,X n +n,…;X 1,2X 2,…,nX n,…以及X 1,都是相互独立的;第二个条件要求各随机变量的期望与方差都存在.由于EX n =λ,DX2λ,.因此四个备选答案都n =λ,E(X n +n)=λ+n,D(X n +n)=λ,E(nX n )=nλ,D(nX n )=n满足第二个条件;第三个条件是方差DX 1,…,DX n,…有公共上界,即DX n<c,c是与n无关的常数.对于(A)=DX n =λ<λ+1;对于(B):D(X n +n)=DX n =λ<λ+1;对于(C):D(nX n )=n 2 DX n =n 2λ没有公共上界;对于(D):综上分析,只有(C)中方差不满足方差一致有界的条件,因此应选(C).3.设随机变量序列X 1,…X n,…相互独立,根据辛钦大数定律,当n→∞时学期望,只要{X n,n≥1}(分数:2.00)A.有相同的数学期望.B.有相同的方差.C.服从同一泊松分布.√D.服从同一连续型分布,一∞<x<+∞).解析:解析:辛钦大数定律要求:{X n,n≥1}独立同分布且数学期望存在.选项(A)、(B)缺少同分布条件,选项(D)虽然服从同一分布但期望不存在,因此选(C).4.设X n表示将一枚匀称的硬币随意投掷n次其“正面”出现的次数,则(分数:2.00)A.B.C. √D.解析:5.设随机变量X服从F(3,4)分布,对给定的α(0<α<1),数F α (3,4)满足P{X>F α (3,4)}=α,若P{X≤x}=1一α,则x=(分数:2.00)√C.F α (4,3).D.F 1-α (4,3).解析:解析:因X~F(3,4),故~F(4,3).又1一α=P{X≤x}=P{X<x}= 所以=F 1-α(4,3),即因此选(A).6.设X 1,X 2,X 3,X 4是来自正态总体N(0,2 2 )的简单随机样本,记Y=a(X 1一2X 2 ) 2 +b(3X 3—4x2,其中a,b为常数.已知Y~χ2 (n),则4 )(分数:2.00)A.n必为2.B.n必为4.C.n为1或2.√D.n为2或4.解析:解析:依题意X i~N(0,2 2 )且相互独立,所以X 1 -2X 2~N(0,20),3X 3—4X 4~N(0,100),且它们相互独立.由χ2分布的典型模式及性质知(1)当时,Y~χ2(2);(2)当b=0,或a=0,时,Y~χ2 (1).由上可知,n=1或2,即应选(C).7.设X 1,X 2,…,X n是来自标准正态总体的简单随机样本,S 2为样本均值和样本方差,则(分数:2.00)服从自由度为n一1的χ2分布.D.(n一1)S 2服从自由度为n一1的χ2分布.√解析:解析:显然,(n一1)S 2服从自由度为n一1的χ2分布,故应选(D).其余选项不成立是明显的:对于服从标准正态分布的总体,由于X 1,X 2,…,X n相互独立并且都服从标准正态分布,可见服从自由度为n的χ2分布.8.设随机变量X~t(n)(n>1),(分数:2.00)A.Y~χ2 (n).B.Y~χ2 (n一1).C.Y~F(n,1).√D.Y~F(1,n).解析:解析:根据t分布的性质,如果随机变量X~t(n),则X 2~F(1,n),又根据F分布的性质,如果X 2~F(1,n),则~F(n,1).因此~F(n,1),故应选(C).9.设随机变量X服从n个自由度的t分布,定义t α满足P{X≤t α }=1一α(0<α<1).若已知P{|X|>x}=b(b>0),则x等于(分数:2.00)A.t 1-b.C.t b.√解析:解析:根据t分布的对称性及b>0,可知x>0.从而P{X≤x}=1一P{X>x}= 根据题设定义P{X≤t α }=1一α,可知应选(D).10.假设总体X的方差DX存在,X 1,…,X n是取自总体X的简单随机样本,其样本均值和样本方差分别为,则EX 2的矩估计量是(分数:2.00)A.B.C.D. √解析:解析:按定义,EX 2的矩估计量是由于所以EX 2的矩估计量,选(D).二、填空题(总题数:20,分数:40.00)11.将一枚骰子重复掷n次,则当n→∞时,n 1。
《概率论与数理统计》模拟题一.单选题1.对于事件A,B,下列命题正确的是().A.若A,B 互不相容,则A 与B̅也互不相容. B.若A,B 相容,那么A 与B̅也相容. C.若A,B 互不相容,且概率都大于零,则A,B 也相互独立.D.若A,B 相互独立,那么A 与B̅也相互独立. [答案]:D2.在一次假设检验中,下列说法正确的是(). A.既可能犯第一类错误也可能犯第二类错误B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都不变D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:A3.对总体X~N(μ,σ²)的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间().A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含样本的值D.有95%的机会的机会含μ的值 [答案]:D4.在假设检验问题中,犯第一类错误的概率α的意义是(). A.在H 0不成立的条件下,经检验H 0被拒绝的概率 B.在H 0不成立的条件下,经检验H 0被接受的概率 C.在H 0成立的条件下,经检验H 0被拒绝的概率 D.在H 0成立的条件下,经检验H 0被接受的概率 [答案]:C5.在一次假设检验中,下列说法正确的是(). A.第一类错误和第二类错误同时都要犯B.如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C.增大样本容量,则犯两类错误的概率都要变小D.如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 [答案]:C6.设θ 是未知参数θ的一个估计量,若θθ≠ E 则θ是θ的(). A.极大似然估计 B.矩法估计 C.相合估计D.有偏估计[答案]:B7.在对单个正态总体均值的假设检验中,当总体方差已知时,选用().A.t检验法B.u检验法C.F检验法D.σ2检验法[答案]:B8.在一个确定的假设检验中,与判断结果相关的因素有().A.样本值与样本容量B.显著性水平C.检验统计量D.A,B,C同时成立[答案]:D9.对正态总体的数学期望进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是().A.必须接受H0B.可能接受,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0[答案]:A10.设A和B为两个任意事件,且A⊂B,P(B)>0,则必有().A.P(A)<P(A|B)B.P(A)≤P(A|B)C.P(A)>(A|B)D.P(A)≥P(A|B)[答案]:B11.已知P(A)=0.4,P(B)=0.6,P(B|A)=0.5,则P(A|B)=().A.1/2B.1/3C.10/3D.1/5[答案]:B12.甲.乙两人独立的对同一目标各射击一次,其中命中率分别为0.6和0.5,现已知目标被命中,则它是乙命中的概率是().A.3/5B.5/11C.5/8B.6/11 [答案]:C13.设A 和B 为两个任意事件,则下列关系成立的是(). A.(A ∪B )−B =A B.(A ∪B )−B ⊃A C.(A ∪B )−B ⊂A D.(A −B )∪B =A [答案]:C14.设A 和B 为两个任意事件,且A ⊂B ,则必有(). A.P (A )<P(AB) B.P (A )≤P(AB) C.P (A )>P(AB) D.P (A )≥P(AB) [答案]:D15.设每次实验成功的概率为p(0<p<1)则在三次独立重复试验中至少一次成功的概率为(). A.p 3 B.1-p 3 C.(1-p)3 D.1-(1-p)3 [答案]:B16.某人射击时,中靶的概率为2/3,如果射击直到中靶子为止,则射击次数为3的概率(). A. 2/27 B.2/9 C.8/27 D.1/27 [答案]:A17.设随机事件A 和B 满足P (B |A )=1,则(). A.为必然事件 B.P (B |A )=0 C.B ⊂A D.B ⊃A [答案]:C18.设一随机变量X 的密度函数φ(−x )=φ(x ),F(x)是X的分布函数,则对任意实数a 有(). A.F (−a )=1−∫φ(x )a0dx B.F (−a )=12−∫φ(x )a 0dx C.F (−a )=1−F(a)D.F (−a )=2F (a )−1 [答案]:B19.变量X 的密度函数为f (x )={Cx 30<x <10其它,则常数C=().A.3B.4C.1/4D.1/3 [答案]:B20.设X 和Y 相互独立,且分别服从N(0,1)和N(1,1)则(). A.P {X +Y ≤0}=12 B.P {X +Y ≤1}=12C.P {X −Y ≤0}=12D.P {X −Y ≤1}=12[答案]:B21.设X和Y独立同分布,且P {X =1}=P {Y =1}=12,P {X =−1}=P {Y =−1}=12,则下列各式成立的是(). A.P {X =Y }=12 B.P {X =Y }=1 C.P {X +Y =0}=14D.P {XY =1}=14 [答案]:A22.总体方差D 等于(). A.1n ∑(X i −X ̅)2n i=1B.1n−1∑(X i −X ̅)2n i=1 C.1n ∑X i 2−(EX)2n i=1 D.1n−1∑(X i −EX)2n i=1 [答案]:C23.设随机变量X~N(μ,σ²),则随着σ的增大,概率P{|X−μ|<σ}为().A.单调增加B.单调减少C.保持不变D.增减不定[答案]:C24.设随机变量X和Y均服从正态分布X~N(μ,4²),Y~N(μ,5²),记p1=P{X<μ−4},p2= P{Y≥μ+5},则().A.对任何实数μ都有p1=p2B.对任何实数μ都有p1<p2C.仅对个别值有p1=p2D.对任何实数μ都有p1>p2[答案]:A25.设X1,X2,…,X n为来自总体的一个样本,X̅为样本均值,EX未知,则总体方差DX的无偏估计量为().A.1n ∑(X i−X̅)2 ni=1B.1n−1∑(X i−X̅)2 ni=1C.1n ∑(X i−EX)2 ni=1D.1n−1∑(X i−EX)2 ni=1[答案]:B26.设总体X~f(x,θ),θ为未知参数,X1,X2,…,X n为X的一个样本,θ1(X1,X2,…,X n).θ2(X1,X2,…,X n)为两个通缉量(θ1,θ2)为θ的置信度为1-α的置信区间,则应有().A.P{θ1<θ<θ2}=αB.P{θ<θ2}=1-αC.P{θ1<θ<θ2}=1-αD.P{θ<θ1}=α[答案]:C27.在假设建设检验中,记H0为检验假设,则所谓犯第一类错误的是().A.H0为真时,接受H0B.H0不真时,接受H0C.H0不真时,拒绝H0D.H0为真时,拒绝H0[答案]:D28.袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球.则第二人取到黄球的概率是().A.1/5B.2/5C.3/5D.4/5[答案]:B29.事件”甲种产品畅销,乙种产品滞销”,则其对立事件A为().A.”甲种产品滞销,乙种产品畅销”B.”甲.乙两种产品均畅销”C.”甲种产品滞销”D.”甲种产品滞销或乙种产品畅销”[答案]:D30.设A,B,C表示三个随机事件,则A⋃B⋃C表示A.A,B,C中至少有一个发生;B.A,B,C都同时发生;C.A,B,C中至少有两个发生;D.A,B,C都不发生.[答案]:A31.已知事件A,B相互独立,且P(A)=0.5,P(B)=0.8,则P(A⋃B)=()A.0.65;B.1.3;C.0.9;D.0.3.[答案]:C32.设X~B(n,p),则有()A.E(2X-1)=2np;B.E(2X+1)=4np+1;C.D(2X+1)=4np(1-p)+1A.;D.D(2X-1)=4np(1-p).[答案]:D33.X则a=()A.1/3;B.0;C.5/12;D.1/4.[答案]:A34.常见随机变量的分布中,数学期望和方差一定相等的分布是() A.二项分布; B.标准正态分布; C.指数分布; D.泊松分布. [答案]:D35.在n 次独立重复的贝努利试验中,设P (A )=p,那么A 事件恰好发生k 次的概率为(). A.p k ;B.(nk )p k (1-p)n-k ;C.p n-k (1-p)k ;D.p k (1-p)n-k . [答案]:B36.设X则它的数学期望E(X)和方差D(X )分别是 A.1/4,1/16; B.1/2,3/4; C.1/4,11/16; D.1/2,11/16. [答案]:C37.设随机变量X 的密度函数f (x )={2x x ∈[0,A]0 其他,则常数A=().A.1;B.1/2;C.1/2;D.2.[答案]:A38.若T ~t(n),下列等式中错误的是(). A.P{T>0}=P{T ≤0}; B.P{T ≥1}=P{T>1}; C.P{T=0}=0.5;D.P{T>t α}=P{T<-t α}. [答案]:C39.设X ~N(μ1,σ12),它有容量为n 1的样本X i ,i =1,2,…n 1;Y ~N(μ2,σ22),它有容量为n 2的样本Y j ,j=1,2,…n 2.它们均相互独立,X 和Y 分别是它们样本平均值,s 12和s 22分别是它们样本方差,σ12,σ22未知但是相等.则统计量212121221121)2()()(n n n n n n s n s n Y X +-++---μμ应该服从的分布是().A.t(n 1+n 2);B.t(n 1+n 2-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:C40.设X ~N(μ1,σ2),它有容量为n 1的样本X i i=1,2,…n 1;Y ~N(μ2,σ2),它有容量为n 2的样本Y j j=1,2,…n 2.均相互独立,s 12和s 22分别是它们样本方差.则统计量1122221211--n s n n s n 应该服从的分布是().A.χ2(n 1+n 2-2);B.F(n 2-1,n 1-1);C.t(n 1+n 2-2);D.F(n 1-1,n 2-1). [答案]:D41.若μˆ1和μˆ2同是总体平均数μ的无偏估计,则下面叙述中,不正确的是(). A.2μˆ1-μˆ2仍是总体平均数μ的无偏估计; B.21μˆ1-21μˆ2仍是总体平均数μ的无偏估计; C.21μˆ1+21μˆ2仍是总体平均数μ的无偏估计 D.32μˆ1+31μˆ2仍是总体平均数μ的无偏估计. [答案]:B42.假设检验时,当样本容量n 固定时,缩小犯第Ⅰ类错误的概率α,则犯第Ⅱ类错误的概率β().A.一般要变小;B.一般要变大;C.可能变大也可能变小;D.肯定不变. [答案]:B43.设X ~N(μ,σ2),μ和σ2均未知,X 是样本平均值,s 2是样本方差,则(X -t 0.051-n s ,X +t 0.051-n s )作为的置信区间时,其置信水平为().A.0.1;B.0.2;C.0.9;D.0.8. [答案]:C44.已知一元线性回归直线方程为yˆ=a +4x,且x =3,y =6.则a=(). A.0;B.6;C.2;D.-6. [答案]:D45.设(x 1,y 1),(x 2,y 2),...(x n ,y n )是对总体(X,Y)的n 次观测值,l YY =∑=-ni iy y12)(,l XX =∑=-ni ix x12)(分别是关于Y,关于X 的校正平方和及l XY =∑=--ni i i y y x x 1))((是关于X 和Y的校正交叉乘积和,则它们的一元回归直线的回归系数b=().A.XX XYl l ; B.XXXYl l ; C.YYXX XY l l l 2; D.YYXX XY l l l .[答案]:A46.设A,B为两个事件,则AB=().A.A B;B.A B;C.A B;D.A⋃B.[答案]:D47.若X~N(0,1),ϕ(x)是它的密度函数,Φ(x)是它的分布函数,则下面叙述中不正确的是().A.Φ(-x)=-Φ(x);B.ϕ(x)关于纵轴对称;C.Φ(0)=0.5;D.Φ(-x)=1-Φ(x).[答案]:A48.对单个总体X~N(μ,σ2)假设检验,σ2未知,H0:μ≥μ0.在显著水平α下,应该选().A.t检验;B.F检验;C.χ2检验;D.u检验.[答案]:A49.甲乙两人各自同时向敌机射击,已知甲击中敌机的概率为0.8,乙击中敌机的概率为0.5,则恰有一人击中敌机的概率().A.0.8B.0.5C.0.4D.0.6[答案]:B=,则未知参数μ的置信度为0.95的置信区间是.(查表50.设X~N(μ,0.3²),容量n=9,均值X5Z0.025=1.96)A.(4.808,6.96)B.(3.04,5.19)C.(4.808,5.19)D.(3.04,6.96)[答案]:C二.填空题1.设X 1,X 2,…,X 16是来自总体X~(4,σ2)的简单随机样本,2σ已知,令1611X 16i i X==∑则统计量4X-16σ服从分布###(必须写出分布的参数). [答案]:N(0,1)2.设2X~μσ(,),而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为###. [答案]:71.111=∑=ni i X n3.设X~U[a,1],X 1,…,X n 是从总体X 中抽取的样本,求a 的矩估计为###.[答案]:121-∑=ni i X n4.已知F 0.1(8,20)=2,则F 0.9(20,8)=###.[答案]:0.55.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.15,则犯第一类错误的概率为###.[答案]:0.156.设样本的频数分布为X0 1 2 3 4 频数 1 3 2 1 2则样本方差s 2=###.[答案]:27.设X1,X2,,Xn 为来自正态总体N(μ,σ²)的一个简单随机样本,其中参数μ和σ²均未知,记,221Q )n i i X X ==-∑(,则假设H 0:μ=0的t 检验使用的统计量是###.(用X 和Q 表示)[答案]:Xt (1)n n Q =-8.设总体X~N(μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,则样本均值X =###.[答案]:n 2σ9.设总体X ~b,(np),0<p<1,X 1,X 2,…,X n 为其样本,则n 的矩估计是###.[答案]:X n p =10.设总体X ~[U,θ],(X 1,X 2,…,X n )是来自X 的样本,则θ的最大似然估计量是###.[答案]:{}12max X X X n θ=,,11.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下:+2,+1,-2,+3,+2,+4,-2,+5,+3,+4.则零件尺寸偏差的数学期望的无偏估计量###.[答案]:212.设X 1,X 2,X 3,X 4是来自正态总体N(0,2)2的样本,令Y=(X 1+X 2)2+(X 3-X 4)2,则当C=###时CY ~x 2(2).[答案]:1/813.设容量n=10的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值样本方差###.[答案]:s 2=214.设A.B 为随机事件,P(A)=0.5,P(B)=0.6,P(B|A)=0.8则P(B|A)=###.[答案]:0.715.若事件A 和事件B 相互独立,P(A)=α,P(B)=0.3,P (A⋃B )=0.7,则α=###.[答案]:3/716.设X ~N(2,σ²),且P{2<x<4}=0.3,则P{x<0}=###.[答案]:217.一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80/81,则该射手的命中率为###.[答案]:2/318.三个人独立地解答一道难题,他们能单独正确解答的概率分别为1/5.1/3.1/4,则此难题被正确解答的概率为###.[答案]:3/519.设有一箱产品由三家工厂生产的其中1/2是第一加工厂生产的,其余两家工厂各生产1/4,又知第一.第二工厂生产的产品有2%的次品,第三工厂生产的产品有4%的次品,现从箱中任取一只,则取到的次品的概率为###.[答案]:2.5%20.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(有放回)则:第二次取到黑球的概率为###.[答案]:0.221.由长期统计资料得知,某一地区在4月下雨(记事件A)的概率为4/15,刮风(记作事件B)概率为7/15,刮风又下雨(记作事件C)概率为1/10则:p(B|A)=###.[答案]:3/822.一盒子中黑球.红球.白球各占50%,30%,20%,从中任取一球,结果不是红球,则取到的是白球的概率为###.[答案]:2/723.某公共汽车站甲.乙丙动人分别独立地等1.2.3路汽车,设每个人等车时间(单位分钟)均服从[0,5]上的均匀分布,则三人中至少有两个人等车时间不超过2分钟的概率为###.[答案]:0.35224.若随机变量X ~(2,σ²)且p{2<X<4}=0.3,则p{X<2}=###.[答案]:0.525.若随机变量X ~N(-1,1),Y ~N(3,1)且X 和Y 相互独立,设随机变量Z=X-2Y+7,则Z ~###.[答案]:N(0,5)26.设随机变量X ~N(1,22),则EX 2=###.[答案]:5三.计算题1.已知100个产品中有5个次品,现从中有放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.007125.0)95.0()05.0(}2{223===C X P2.某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率.[答案]:).02.0,400(~b XX 的分布律为,)98.0()02.0(400}{400k k k k X P -⎪⎪⎭⎫ ⎝⎛==0,1,,400.k = 于是所求概率为}1{}0{1}2{=-=-=≥X P X P X P 399400)98.0)(02.0(400)98.0(1--=.9972.0=3.已知100个产品中有5个次品,现从中无放回地取3次,每次任取1个,求在所取的3个中恰有2个次品的概率.[答案]:.00618.0}2{310025195≈==C C C X P4.某一城市每天发生火灾的次数X 服从参数8.0=λ的泊松分布,求该城市一天内发生3次或3次以上火灾的概率.[答案]:由概率的性质,得}3{1}3{<-=≥X P X P }2{}1{}0{1=-=-=-=X P X P X P⎪⎪⎭⎫ ⎝⎛++-=-!28.0!18.0!08.012108.0e .0474.0≈5.某公共汽车站从上午7时起,每15分钟来一班车,即7:00,7:15,7:30,7:45等时刻有汽车到达此站,如果乘客到达此站时间X 是7:00到7:30之间的均匀随机变量,试求他候车时间少于5分钟的概率.[答案]:以7:00为起点0,以分为单位,依题意~X ),30,0(U ⎪⎩⎪⎨⎧<<=其它,0300,301)(x x f 为使候车时间X 少于5分钟,乘客必须在7:10到7:15之间,或在7:25到7:30之间到达车站,故所求概率为}3025{}1510{<<+<<X P X P 3130130130251510=+=⎰⎰dx dx6.某元件的寿命X 服从指数分布,已知其平均寿命为1000小时,求3个这样的元件使用1000小时,至少已有一个损坏的概率.[答案]:由题设知,X 的分布函数为.0,00,1)(1000⎪⎩⎪⎨⎧<≥-=-x x ex F x 由此得到}1000{1}1000{≤-=>X P X P .)1000(11-=-=e F各元件的寿命是否超过1000小时是独立的,用Y 表示三个元件中使用1000小时损坏的元件数,则).1,3(~1--e b Y所求概率为}0{1}1{=-=≥Y P Y P .1)()1(13310103----=--=e e e C7.设某项竞赛成绩N X ~(65,100),若按参赛人数的10%发奖,问获奖分数线应定为多少?[答案]:设获奖分数线为,0x 则求使1.0}{0=≥x X P 成立的.0x)(1}{1}{000x F x X P x X P -=<-=≥,1.0106510=⎪⎭⎫ ⎝⎛-Φ-=x 即,9.010650=⎪⎭⎫ ⎝⎛-Φx 查表得,29.110650=-x 解得,9.770=x 故分数线可定为78.8.设随机变量X 具有以下的分布律,试求2)1(-=X Y 的分布律. 4.01.03.02.02101i p X-[答案]:Y 所有可能的取值0,1,4,由,2.0}1{}4{,7.0}2{}0{}1{,1.0}1{}0)1{(}0{2=-=====+=======-==X P Y P X P X P Y P X P X P Y P即得Y 的分布律为9.已知随机变量X 的分布函数⎪⎩⎪⎨⎧>≤<≤=4,140,4/0,0)(x x x x x F ,求).(X E[答案]:随机变量X 的分布密度为,,040,4/1)()(⎩⎨⎧≤<='=其它x x F x f故.2841)()(40240==⋅==⎰⎰∞+∞-x dx x dx x xf X E 10.设05.0=α,求标准正态分布的水平0.05的上侧分位数和双侧分位数.[答案]:由于,95.005.01)(05.0=-=Φu 查标准正态分布函数值表可得,645.105.0=u 而水平0.05的双侧分位数为,025.0u 它满足:,975.0025.01)(025.0=-=Φu 查标准正态分布函数值表可得.96.1025.0=u 2χ分布.11.设),2,21(~2N X 2521,,,X X X 为X 的一个样本,求:(1)样本均值X 的数学期望与方差;(2)}.24.0|21{|≤-X P[答案]:)1(由于),2,21(~2N X 样本容量,25=n 所以,252,21~2⎪⎪⎭⎫⎝⎛N X 于是,21)(=X E .4.0252)(22==X D)2(由),4.0,21(~2N X 得),1,0(~4.021N X - 故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-6.04.021}24.0|21{|X P X P .4514.01)6.0(2=-Φ=12.⎪⎩⎪⎨⎧≤<≤≤--+=其它100101)(x x x A x x f ,则求常数A.期望EX 及方差DX. [答案]:011(1)x dx -=++⎰10()A x dx -⎰,得A=1()EX xf x dx +∞-∞==⎰01(1)x x dx -++⎰10(1)0x x dx -=⎰ 22()EX x f x dx +∞-∞==⎰021(1)x x dx -++⎰120(1)1/6x x dx -=⎰ 61)D(x)22=-=EX EX (。
概率统计模拟题一一、填空题 (每空2分,共16分):1.三个人独立地去破译一个密码, 他们各自能译出密码的概率分别为1/5,1/3,1/4,则三个人至少有一个人不能破译出密码的概率是_______2. 对于随机事件A,B,已知=0.8,P(B)=0.3,P(A|B)=0.4,则P(A B)=________,P()=_______;3.设随机变量X服从正态分布N(2,),已知F(2.5)=0.9938则P(2<X<2.5)=____。
4.已知随机变量X的概率密度则:(1)常数A=________; (2)P{|X|<1/2}=________;5.随机变量X,Y相互独立,且知X~U[1,13],且Z=X-3Y+5, 则D(Z)=________ E(Z)=_______二、选择题(将正确答案的序号填在括号内,每小题3分,共12分):1.若事件A与B相互独立,P(A)=0.6,P(B)=0.3,则P(B|A)=( )。
A. 0.6B. 0.3C. 1/2D. 0.182.一批产品共50个, 其中45个是合格品, 5个是次品, 从这些产品中任取3个,其中有次品的概率是( )。
A. B. C. D.3.若随机变量X的概率密度为f(x)=,则E(X)=( )。
A. 0B. 1C. 2D. 34.设事件A,B互斥,P(A)=p,P(B)=q,(0<p<1,0<q<1)则P(B)=( )。
A.(1-p)qB.p-qC.qD.p三、(14分)甲、乙两门高射炮命中目标的概率分别为0.6及0.8, 其各门炮发射炮弹的概率相等。
今有一敌机来侵犯。
(1)求敌机被炮弹击中的概率?(2)若知敌机被击中,问被甲炮命中的概率是多少?四、(12分)设随机变量X 的概率密度为随机变量Y 服从正态分布N (0,4)分布,且知E(XY)=1.25,求随机变量X,Y 的相关系数。
五、(16分)设从2、4、6三个数字中任取的第一个数为X ,第一个数取后不放回,再取得的第二个数为Y 。
求:(1)(X,Y )的联合分布律 (2)X,Y 的边缘分布律 (3)E(X), D(X)(4) 判断X,Y 是否独立? (5)Z=min(X,Y)的分布律六、(15)设总体X 的概率密度为,是该总体的样本。
求参数的最大似然估计。
七、(15分)某铁厂铁水含碳量X 服从正态分布,规定铁水含碳量均值为4.2,现要对一批产品进行检验,抽测5炉铁水,其含碳量经计算得。
试问这批产品铁水含碳量的均值是否符合规定(?=0.05),并以95%置信度写出铁水含碳量均值的置信区间。
概率统计模拟试题一 解答 一、 填空题 (不要求写过程)1、(设A ,B ,C 表示三个人破译密码事件。
P(三个人至少有一个不能破译密码) =法二 用加法公式 (略)2、P(A B)= 0.38 P()= 0.883、0.4938 ( P(2<X<2.5)=F(2.5)-F(2)=0.9938-0.5=0.4938 )4、A= 1 , P{|X|<1/2}=5、D(Z)= E(Z)=(解:由条件知,,二、1、(B) 2、(D) 3、(C) 4、 (C)三、解:设A表示炮击中飞机,B1,B2表示甲、乙炮发射炮弹。
由已知条件可知 ,,(1)P(敌机被炮弹击中)=P(A)=(2) 所求概率为四、解:由条件可知 E(X)=3, D(X)=9, E(Y)=0, D(Y)=4五、解:(3)(4)X与Y不独立(5)故知Z的分布律为六、解:是唯一驻点,故是最大似然估计七、解: 1.2.选取检验统计量3.H0的拒绝域为W0:4.其中查表得5.在显著水平下,H0相容,认为均值符合规定均值的置信度为95%的置信区间为即概率统计模拟题二一、填空题(每小空2分,共14分)1、有两批零件,其合格率分别为0.9和0.8。
在每批零件中随机地任取一件,则至少有一件是合格的概率为________;而恰好有一件是合格品的概率为__________。
2、设随机变量X服从正态分布分布,且知,则________;P(X=9)=__________。
3、设相互独立的两个随机变量X,Y都服从参数p=1/2的(0-1)分布即Y 1/2 1/2则随机变量Z=max{X,Y}的分布为:4、盒中有三件产品,其中一件是次品,两件是正品。
每次从中任取一件是正品的个数为随机变量X。
有放回地抽取10次,得到样本容量为10的样本,则样本均值的数学期望=__________;样本均值的方差 =_________。
二、选择题(共12分)1、设D(X)=4, D(Y)=1.。
则D(3X-2Y)=( )。
A、40B、34C、25.6D、17.62、设为标准正态分布的分布函数,则( )。
A、;B、;C、;D、3、若随机变量X,Y的分布函数分别为与,则a,b取值为(),可使为某随机变量的分布函数。
A、1/2,-3/2;B、2/3,2/3;C、-1/2,3/2;D、2/5,-3/5。
4、设总体X的密度函数是,已知(2,1,2,3,4,3)是来自该总体的一组样本值。
则未知参数的矩估计值为()。
A 2/5B 3/2C 15D 3三、(13分)有a,b,c三个盒子,a盒中一个白球和两个黑球,b盒中有一个黑球和两个白球,c盒中有三个白球和三个黑球。
扔一个骰子以决定选哪个盒,若扔骰子出现点数为1,2,3则选a盒;若出现点数为5,6,则选c盒。
再从选中的盒中任取一球,试求:(1)取出的一球为白球的概率。
(2)当知取出的球为白球时,求此球是来自a盒的概率?四、(15分)设连续型随机变量X~五、(16分)设二维随机变量(X,Y)的联合分布律为六、(15分)已知总体未知已知是来自该总体的一组样本求参数的矩估计量。
已知其一组样本值为(0.1,0.2,0.1,0.4,0.2,0.2)求参数的矩估计值。
七、(15分)一台自动车床加工的零件长度(单位:cm)X服从正态分布,加工精度。
在工作一段时间后,随机地抽取了这台车床加工的6个零件,测得长度如下:4.81,4.94,5.03,5.14,4.96,5.09问这台车床是否保持同样的加工精度()?模拟试卷二解答一、 1、0.98 , 0.262、0.3085 , 03、因为(X,Y)的联合分布律为4、(由模型E可知X~B(1,p) E(X)=p=2/3, D(X)=p (1-p)=2/9)二、1、(C) 2、(B) 3、(D) 4、(A)三、解:设“取出的一球为白球”=AB1,B2, B3表示从a,b,c盒中取球(选中盒)由条件知, ,,,(1) P(A)=(2) 所求概率为四:解:(1)用连续性(2)(3)(4)五、解:将上表改写如下:(1)(3) E(X)= -0.3, E(Y)=3,E(XY)= -1,COV(X,Y)=E(XY)-E(X)E(Y)= -0.1所以X与Y相关, 也可知道X与Y不独立.六、解:(1)(2)带入上式(3)是的矩估计量又由样本计算得是的矩估计值。
七、解 1.或2. 选取检验统计量3. H0的拒绝域为W0: 或4. 计算得其中或查表得5. 0.831<<12.833在显著水平下,H0相容,认为保持同样的精度概率统计模拟题三一、填空题(共15分)1.在箱中有a (>1)件合格品,b (>1)件次品,每次从中任取一件,取后不放回,连取两次,则两次抽取中恰有一件次品的概率是______ . 第二次抽取出的是次品的概率是______2.设随机变量X服从正态分布, 若P(X>10)=1/2,则=______.3.袋中有2只红球,9只白球,每次随机的任取一只球,取后不放回,直到2只红球都取出为止。
则第2只红球是在第三次抽取中被抽出的概率是________.4.设r.vX~U[1,13],且cov(X,Y)=5/6,则D(X-3Y)= ________二、选择题(12分)1.设P(A)=0.8, P(B)=0.7,P (A|B)=0.8, 则下列结论正确的是( ).A. 事件A与B相互独立B. 事件A与B互斥C.B A D. P(A+B)=P(A)+P(B)2. 已知随机变量X服从参数为n,p的二项分布B(n,p),且E(X)=2.4, D(X)=1.44, 则参数n, p 的值是( ).A. n=4,p=0.6B. n=6,p=0.4C. n=8,p=0.3D. n=24,p=0.13. 设X,Y是两个相互独立的随机变量,且都服从参数为p(0<p<1)的(0---1)分布,则有( ).A. B.C.X=Y D. P(X=Y)=14、设r.v,Y=3X+2, 则Y服从()A B C D三、(16分)甲袋中装有5只白球,6只黑球;乙袋中装有10只白球,12只黑球。
现从甲袋中摸出2只球放入乙袋,求从乙袋中摸出一球为白球的概率。
四.(16分)设随机变量X的概率密度为(1)确定常数A(2)求X的分布函数F(x)(3)求P(X<3/2)(4)求E(X)五. (11分)设二维随机变量(X,Y)的联合分布函数为(1) 确定常数A;(2) 求X,Y的边缘分布函数,并判断X与Y是否相互独立;六. (15分)设总体X的概率密度,参数未知,( )是该总体的样本.求参数A的最大似然估计量七. (15分)设某次考试的考生成绩X服从正态分布,从中随机地抽取36位考生的成绩,计算得平均成绩为66.5分,标准差15分。
问在显著水平下,是否可以认为这次考试全体考生的平均成绩为70分?并写出检验过程。
模拟试卷三解答一、1、,2、103、4、(由题意知,二、1、 (A) 2、(A) 3、(B) 4、(D)三、解:设“从乙袋中摸出的一球为白球”=ABk表示从甲袋中摸出2只球中又k只白球k=0,1,2(1) P(A)=(分数或小数答案均可以)四、解:(1)由规范性:(2)(3)(4)五、解:(1) 由规范性(2)(3) 对任意的(x,y)都有X与Y互相独立六、解:①②③ 是唯一驻点,故是A最大似然估计七、解: 10。
2。
选取检验统计量3。
H。
的拒绝域为W。
:4。
已知条件,s=15。
查表得5。
在显著水平下,拒绝H0,认为考生平均成绩不是70分。