概率统计试卷B
- 格式:doc
- 大小:68.00 KB
- 文档页数:3
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
① 任意实数; ② 1; ③ 2; ④ 12.3.若随机变量X 的概率密度为(),()xf x aex -=-∞<<+∞,则=a ( 2 ). ① 12-; ②12; ③1; ④ 32.4.若连续型随机变量X 的分布函数为)(x F ,则以下结论错误的是( 3 ).① ()P a X b <≤=)()(a F b F -; ② ()()()P a X b F b F a <<=-; ③ ()()()P a X b F a F b <<≠-; ④ ()0.P X a ==.5.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是( 4 )。
① 8; ② 16; ③ 28; ④ 44. 三、某校入学考试的数学成绩近似服从正态分布(65,100)N .若85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?(8分)解: 设X 表示考生的数学成绩,则 ~ (65,100)X N 近似,于是858565{85}1{85}1{}1010X P X P X P -->=-≤=-≤ (4分)1(2)10.9772 2.28%≈-Φ=-= (8分)即数学成绩“优秀”的考生大致占总人数的2.28%。
四、某灯泡厂有甲、乙两条流水线,它们所出产的灯泡中,寿命大于2500小时的分别占80%和90%,从它们生产的灯泡中各自随机地抽取一个,求下列事件的概率:(1)两个灯泡寿命均大于2500小时;(2)两灯泡中至少有一个寿命大于2500小时;(3)两个灯泡中至多有一个寿命大于2500小时.(12分)解:用B A ,分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于2500小时,则它们相互独立.(1) 72.09.08.0)()()(=⨯==B P A P AB P , (4分)22,()0,0x e x f x x -⎧>=⎨≤⎩,33,0()0,y e y f y y -⎧>=⎨≤⎩,写出二维随机变量(), X Y 的联合密度函数(), f x y ,并求概率(2,1)P X Y <>. (10分) 解:由随机变量X 与Y 相互独立,得(23)0,0,6,(,)()().0,x y X Y x y e f x y f x f y else -+>>⎧==⎨⎩(5分) 2(23)1(2,1)6x y P X Y dx edy +∞-+<>=⎰⎰(8分) 2234316()()(1)0.0489xyedx edy e e+∞----==-≈⎰⎰(10分)八、 某保险公司多年的资料表明,在索赔户中被盗索赔户占20%,用X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率函数;(2)利用棣莫佛-拉普拉斯中心极限定理,求索赔户中被盗索赔户不少于10户且不多于26户的概率的近似值。
东华大学2018~ 2019学年第 二 学期期_末__试题踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。
课程名称 概率论与数理统计A(理工类)(B 卷)使用专业 全校各专业查表数据: 75.1)15(05.0 t ,74.1)16(05.0 t ,13.2)15(025.0 t ,11.2)16(025.0 t ,99.0)2.33(,89.0)2.05(,975.0)96.1(,95.0)645.1(,9.0)28.1((一) 填充题(每题4分,共5题)1.有0.005的男子与0.0025的女子是色盲,且男子与女子的总数相等,现随机地选一人,发现是色盲者,则P(男子|色盲)=______________。
2.设随机变量),3(~),,2(~p B p B ,如果95)1(P ,则 )1( P ___________. 3.设随机变量 X 与 Y 相互独立,且X~B (16,), Y 服从于参数为 9 的泊松分布,则D (X −2Y +1)=_________________。
4.设总体X 的概率密度为f (x )=e | | (−∞<x <+∞),X ,X …,X 为总体的随机简单样本,其方差为S ,则E (S )=__________________。
5. 设n ,1是从正态母体),(2a N 中抽取的简单子样, 和2n S 分别表示它的子样的均值和子样方差,又设ξ ~N(μ,α )且与n ,1独立,统计量____________~11 n n S nn .(二)选择题(每题4分,共5题,全部是单选题)1.一批产品中有30%的一级品,现进行放回抽样检查,共取4个样品,则取出的4个样品中恰有2个一级品的概率是( )(A)0.168 (B)0.2646 (C)0.309 (D)0.3602.设随机变量X~N(μ,σ ),则随σ增大,P (|X −μ|<σ)( )。
学号:姓名:班级:..........................................................密.......................................................封...........................................................线..........................................................专业本科各专业年级2007级班2008~2009学年第 1 学期概率论与数理统计课程期末试卷试卷类型:B 卷青岛理工大学试卷纸共 4 页第 1 页试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须..........................................................密.......................................................封..........................................................线....................................................................................................................密.......................................................封..........................................................线....................................................................................................................密.......................................................封..........................................................线..........................................................2008年下学期概率统计试卷(B)参考答案1. 设A, B, C 是三个随机事件. 事件:A 发生, B , C 中至少有一个不发生表示为(空1) .2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y . 则P {Y =2}=(空2) . 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4} =41×(0+21+31+41)=4813. 3. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 则常数c = (空3) . 概率}0|1{≠<X X P =(空4) .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++=所以3516c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 4. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计{|2|P X Y +≥12}=(空5) .解 {2}2()()22(4)E X Y E X E Y +=+=⨯+-=,{2}4()()22Cov(,)D X Y D X D Y X Y +=+-⨯840.5124=-⨯⨯⨯=. 所以, {|2|P X Y +≥12}≤2411236=. 5. 若1X ,2X ,3X 为来自总体2(,)X N μσ 的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 则常数k =(空6) . 解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.1.设A, B 为任二事件, 则下列关系正确的是( ).(A) ()()()P A P AB P AB =+. (B)()()()P A B P A P B =+ . (C) ()()()P A B P A P B -=-. (D) ()()()P AB P A P B =.解 由文氏图易知本题应选(D).2. 设事件A 与B 独立, 则下面的结论中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()()()P P P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).3. 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为随机变量X 的分布函数, 则对任意实数a , 有( ).(A) 0()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-. (C) ()()F a F a -=. (D) ()2()1F a F a -=-.解 由分布函数的几何意义及概率密度的性质知答案为(B).4. 设随机变量X 服从标准正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=. 若{}P X x α<=, 则x 等于( ).(A) /2u α . (B) 1/2u α- . (C) (1)/2u α-. (D) α-1u . 解 答案是(C).5. 设连续型随机变量X 的概率密度为f (x ), 则31Y X =+的概率密度为g (y )为( ).(A)111()333f y -. (B) 3(31)f y +. (C) 3()1f y +. (D) 1133()f y -.解 由随机变量函数的分布可得, 本题应选(A). 6. 在下列结论中, 错误的是( ).(A) 若随机变量X 服从参数为n ,p 的二项分布,则().E X np =(C) 若X 服从泊松分布, 则()()D X E X =. (D) 若2~(,),X N μσ 则~(0,1)X N μσ-.解 )1,1(~-U X , 则3112212)()(22==-=a b X D . 选(B). 7. 在下列结论中, ( )不是随机变量X 与Y 不相关的充分必要条件(A) E (XY )=E (X )E (Y ). (B) D (X +Y )=D (X )+D (Y ). (C) Cov(X ,Y )=0. (D) X 与 Y 相互独立.解 X 与 Y 相互独立是随机变量X 与Y 不相关的充分条件,而非必要条件. 选(D). 8. 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ 的样本, 则下列结论中正确的是( ).(A) ().E X n μ= (B) 2().D X σ=(C) 22().E S σ= (D) 以上全不对.解 选(C).9. 设随机变量X 与Y 都服从标准正态分布, 则下列结论中正确的是( ).(A) X +Y 服从标准正态分布. (B) X 2+Y 2服从2χ分布.(C) X 2和Y 2都服从2χ分布. (D)22X Y服从F 分布.解 因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).10. 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).三、(10分)在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球取自第二箱的概率. 解 以A 表示“取得的球是白球”,i H 表示“取得的球来自第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. ...................... 4分 (1) 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. ............ 4分(2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==. .................. 2分 四、(10分) 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它 求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}22P Y X ≤≤;(3) X 与Y 是否独立?并说明理由. 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =.故 2,01,()0,其它.X x x f x <<=⎧⎨⎩ ............................. 2分当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰; 当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它 ............................... 2分(2) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. ............................. 4分 (3) 因为(,)()()X Y f x y f x f y ≠,所以X 与Y 是否独立. …………………………………2分 五、(10分)设随机变量(X , Y )的分布律为若E (XY )=0.8, 求常数a ,b 和协方差Cov(X ,Y ). 解 首先,由∑∑∞=∞==111i j ijp得4.0=+b a . 其次,由0.8()100.420110.2210.22E XY a b b ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=+,得3.0=b . 进而1.0=a . ...................................................... 2分由此可得边缘分布律于是 4.14.026.01)(=⨯+⨯=X E , 5.05.015.00)(=⨯+⨯=Y E .故 Cov(,)()()()0.8 1.40.50.1X Y E XY E X E Y =-=-⨯=. ...................... 4分六、(10分)设某种商品每周的需求量X 是服从区间[10,30]上均匀分布的随机变量,而经销商店进货量为区间[10,30]中的某一整数. 该经销商店每销售一单位该种商品可获利500元; 若供大于求则削价处理, 每处理一单位该种商品亏损100元; 若供不应求, 则可从外部调剂供应, 此时每一单位商品仅获利300元. 为实现该商店所获利润期望值不小于9280元的目标, 试确定该经销商店对该种商品的进货量范围.解 设进货量为a 单位, 则经销商店所获利润为500300()300200,30,500100()600100,10.a a X a X a a X M X a X X a X a +-=+<=--=-⎧⎨⎩≤≤≤ ............ 4分 需求量X 的概率密度为()1,1030,200,.f x x =⎧<<⎪⎨⎪⎩其它 ........................... 2分 由此可得利润的期望值为30301010111()(600100)(300200)202020a a a aE M M dx x a dx x a dx =-++=⎰⎰⎰ .............. 2分 21535052502a a =-++依题意, 有21535052502a a -++≥9280,即21535040302a a -+≤0, 解得623≤a ≤26. 故期望利润不少于9280元的进货量范围为21单位~26单位. ................................................................ 2分七、(10分) 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求:(1) 未知参数λ的矩估计量; (2) 极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. ................................ 4分 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏, ...................... 2分取对数1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆx λ=,λ的极大似然估计量为1ˆX λ=. 4分八、(12分)已知一批零件的长度X (单位:cm)服从正态分布(,1)N μ, 从中随机地抽取16个零件, 得到长度的平均值为40cm.(1) 取显著性水平α=0.05时, 是否可以认为μ=41? (2) 求μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的条件与结论之间有什么关系? 解 (1) 提出假设 H 0: μ=μ0=41; H 1:μ≠μ0 . ................................... 2分 对于α=1-0.95= 0.05, 选取检验统计量X z =拒绝域为|z |>z 0.025=1.96 ............... 2分代入数据n =16, x =40, σ=1, 得到||x z ===4>1.96. 所以拒绝原假设, 不能认为μ=41 2分(2) 已知x =40, σ =1,α = 0.05, 查表可得0.025 1.96,z z α==所求置信区间为22()(40 1.96,40 1.96),x z x αα+=(39.51,40.49).= ..... 4分(3) 假设检验中的显著性水平α=0.05与置信区间估计的置信水平0.95满足关系0.95=1-α; .. 1分μ的双侧假设检验的接受域与μ的置信水平为0.95的置信区间相同...................... 1分 注意:题目参考数据: t 0.025(24)=2.0639, t 0.025(23)=2.0687, t 0.05(24)=1.7109, t 0.05(23)=1.7139z 0.025=1.96, z 0.05=1.65。
昆明理工大学试卷(历年试题)考试科目: 概率统计B(48学时) 考试日期: 命题教师:2013年概率统计试题一、填空题(每小题4分,共40分)1.设A,B,C 为三个事件,则A,B,C 中至少有两个发生可表示为 。
2.已知1()4p A =,1(|)2p A B =,1(|)3p B A =,则()p A B ⋃= 。
3.设事件A,B 互不相容,且1()2p A =,1()3p B =,则()p AB = 。
4.进行独立重复实验,设每次成功的概率为p ,失败的概率为1p -,将实验进行到出现一次成功为止,以X 表示实验次数,则()p X k == 。
5.已知随机变量X 服从参数2λ=的泊松分布,即(2)X P :,则(0)p X == 。
6.已知随机变量(2,1)X N -:,(2,1)Y N :且,X Y 相互独立,则2X Y -服从的分布是 。
7.若随机变量X 满足()1,()2,E X D X =-=则2(31)E X -= 。
8.设12,X X 是来自于总体X 的样本,1121233X X μ=+),2121122X X μ=+)为总体均值μ的无偏估计,则12,μμ))中较有效的是 。
9.设12,,n X X X L 为来自总体2(,)N μσ的一个样本,2σ已知,则212()nii XX σ=-∑服从的分布是 ,212()nii Xμσ=-∑服从的分布是 。
10.设12,,n X X X L 为来自总体2(,)N μσ的一个样本,2σ未知,则μ的1α-的置信区间是为 。
一、 填空题(每小题4分,共40分)1.AB BC AC U U 2. 13 3.124. ()p X k ==1(1)k p p -- 1,2,k =L5. 2e -6.(6,5)N -7. 88. 2μ)9. 22(1),()n n χχ-10. 2(_(1),(1))x n x n αα-- 二、(10分)某保险公司把被保险人分为三类:谨慎的、一般的、冒失的,统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30。
东莞理工学院(本科)试卷(B 卷)2011 --2012 学年第二学期一、填空题(共70分 每空2分)2、已知事件A ,B 满足)()(B A P AB P =,且3.0)(=A P ,则=)(B P 0.7 。
3、.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的点数),则这两颗骰子的点数和为5的概率是91。
4、袋中有6只白球,4只红球,从中抽取两只。
如果作不放回抽样,则抽得的两个球颜色不同的概率为158;如果作放回抽样,则抽得的两个球颜色不同的概率为 0.48 。
5、已知某对夫妇有四个小孩,则男孩的个数Y 服从的分布为 )5.0 ,4(B ,恰有两个男孩的概率为83,在已知至少有一个女孩的条件下,至少还有一个男孩的概率为1514。
10、一个系统由100个互相独立起作用的部件组成,各个部件损坏的概率均为 0.2,已知必须有80个以上的部件正常工作才能使整个系统工作,则由中心 极限定理可得,整个系统正常工作的概率为 0.5 。
13、设随机变量X 的概率密度为:⎩⎨⎧≤≤=其它 ,010 ,)(2x kx x f , 则=k 3 .,=2EX 53。
14、设二维随机向量),(Y X 的联合分布密度函数=)(x f XY ⎩⎨⎧≤≤-其它, 00 ,y x e y ,则X 的密度函数=)(x f X ⎩⎨⎧<≥-0,00 ,x x e x ,Y X 与的独立性为不独立。
15、某食品超市的牛奶销售量服从正态分布,每天平均销售200公斤,标准差为20公斤。
如果老板希望牛奶供不应求的概率不超过0.025,则该超市购进的牛奶量至少为239.2公斤。
16、设随机变量X 的概率密度为:⎩⎨⎧≤≤+=其它 ,010 )1()(x x x f θθ,则参数θ的矩估计量=θ XX --112 17、设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量3211X X X T -+=,)(313212X X X T ++=,3213614121X X X T ++=, )(21214X X T +=中, 总体均值的无偏估计量为421,,T T T , 在上述无偏估计量中最有效的一个为 2T18、在假设检验中,显著性水平α=0.01时拒绝H 0,则当显著水平α=0.05时应 拒绝 (拒绝、接收、有时拒绝有时接收)H 0。
华东理工大学2009–2010学年第一学期《概率论与数理统计》期末考试试卷B 答案 2010.01开课学院: 理学院, 专业:大面积, 考试形式:闭卷, 所需时间120分钟 考生姓名: 学号: 班级 任课教师题号 一 二 三 四 五 六 七 八 总分 得分 评卷人附表:975.0)96.1(=Φ;0860.2)20(975.0=t ;59.3)11,9(,91.3)9,11(975.0975.0==F F 。
一、(共8分)已知有3个箱子,第一个箱子中有4个黑球,2个白球,第二个箱子中有3个黑球,3个白球,第三个箱子中有5个黑球,1个白球,现随机取一个球。
(1)求取出的为黑球的概率;(2)已知取出的为黑球,求此球来源于第一个箱子的概率。
二.(共8分)某单位设置一台电话总机,共有200个分机。
设每个分机在任一时刻使用外线通话的概率为5%,各个分机使用外线与否是相互独立的,该单位需要多少外线,才能以97.5%的概率保证各个分机通话时有足够的外线可供使用?三.(共9分)设),(ηξ的联合概率分布表为η ξ -1 0 10 181 121x 41 y 41如果已知0),cov(=ηξ,求:(1)y x ,;(2))),(max(ηξE ;(3) ηξ,独立吗?四.填空题:(3分一题,共24分)1)向单位圆122<+y x 内随机地投下3点,则这3点恰有2点落在同一象限内的概率为___。
2)设总体 ξ 的概率分布为ξ-1 0 1 }{k P =ξt0.20.3则D ξ=_________。
3)设~ξ)6,0(U ,η=⎩⎨⎧>≤404,1ξξ ,则η的数学期望E η=______。
4) 设ηξ,为两个随机变量,满足,73}0{}0{,72}0,0{=≥=≥=≥≥ηξηξP P P 则{max(,)0}P ξη<=________。
5)已知随机变量ξ,η满足2,2,1,4,0.5,E E D D ξηξηξηρ=-====-用切比雪夫不等式估计{6}P ξη+≥≤______。
概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
北京交通大学2018~2019学年第二学期概率论与数理统计期末考试试卷(B 卷)一.(本题满分8分)将三封信随机投入编号为1、2、3、4的四个信箱,记X 为1号信箱内信的数目,Y 表示有信的信箱数目,求:二维随机变量()Y X ,的联合分布律(5分)及随机变量X 与Y 各自的边缘分布律(3分).解:X 的可能取值为0,1,2,3;Y 的可能取值为1,2,3.()Y X ,的联合分布律以及X 与Y 各自的边缘分布律为YX123⋅i p 0643641864664271064964186427206490649364100641jp ⋅64464366424二.(本题满分8分)设二维随机变量()Y X ,的联合密度函数为()⎩⎨⎧<≤=其它,0122y x ycx y x f ⑴试确定常数c (4分);⑵求随机变量X 的边缘密度函数()x f X (4分).解:⑴()211214121x f x y dxdy dx cx ydy +∞+∞-∞-∞-===⎰⎰⎰⎰,所以,421=c .⑵当11<<-x 时,()()()421218214212x x ydy x dy y x f x f xX -===⎰⎰+∞∞-,因此,X 的边缘密度函数为()()⎪⎩⎪⎨⎧<<--=其它011182142x x x x f X 三.(本题满分8分)某人有n 把钥匙,其中只有一把能打开他的房门,他逐个试开,试过的不再重试.令X 表示试开次数,求随机变量X 的数学期望()X E (4分)与方差()X D (4分).解:随机变量X 的取值为n ,,2,1 ,并且{}nk X P 1==,()n k ,,2,1 =.(){}()2121111111+=+⋅=⋅=⨯==⨯=∑∑∑===n n n n k n n k k X P k X E n k nk nk ,(){}()()()()612161211111212122++=++⋅=⋅=⨯==⨯=∑∑∑===n n n n n n k n n k k X P k XE n k nk nk ,所以,()()()()()()1212161212222-=⎪⎭⎫ ⎝⎛+-++=-=n n n n X E XE X D .四.(本题满分8分)设随机变量()2,~σμN X ,再设μ-=X Y .求随机变量Y 的数学期望()Y E (4分)与方差()Y D (4分).解:随机变量X 的密度函数为()()22221σμσπ--=x X e x f ,()+∞<<∞-x .所以,()()()()⎰⎰∞+∞---∞+∞--=-=-=dxe x dx xf x X E Y E x X 22221σμμσπμμ()()222xx eμσμμ-+∞-=-⎰,令σμ-=xu,则σdxdu=,代入上式,得()σππσσπ222222222=-==+∞-∞+-⎰uueduueYE,()()()222σμ==-=XDXEYE,所以,()()()()⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-=-=πσσπσ21222222YEYEYD.五.(本题满分8分)设甲、乙两种电器的使用寿命X与Y都服从指数分布,其密度函数分别为()⎩⎨⎧≤>=-xxexfxXλλ与()⎩⎨⎧≤>=-yyeyfyYμμ其中0>λ,0>μ都是参数.并且X与Y相互独立.试求甲种电器的使用寿命不超过乙种电器的使用寿命的概率.解:因为随机变量X与Y相互独立,所以()YX,的联合密度函数()()()()⎩⎨⎧>>==+-其它,0,yxeyf xfyx fyxYXμλλμ.所求概率为()YXP≤,则有()()()⎰⎰⎰⎰+∞+∞+-≤==≤,xyxyxdyedxdxdyyx fYXPμλλμ()()⎰⎰⎰⎰+∞+-+∞∞+--+∞+∞--=-==dxedxeedyedxe xxyxxyxμλμλμλλλλμ()μλλμλλμλ+=+-=+∞+-xe.六.(本题满分8分)某箱装有100件产品,其中一、二、三等品分别为70件、20件、10件.现从中抽取一件产品,记⎩⎨⎧=其它若抽到为一等品01X ⎩⎨⎧=其它若抽到为二等品1Y 试求X 与Y 的相关系数ρ,并判断X 与Y 是否相互独立?解:()Y X ,的联合分布律及各自的边缘分布律为YX01⋅i p 00.10.20.310.700.7jp ⋅0.80.2所以,()7.0=X E ,()21.0=X D ,()2.0=Y E ,()16.0=Y D .又()0=XY E ,所以,()()()()()()14.0cov -=-=Y E X E XY E Y X ,()7638.016.021.014.0cov -=-==DYDX Y X ,ρ,由于0≠ρ,所以随机变量X 与Y 相关,从而随机变量X 与Y 不独立.七.(本题满分8分)设随机变量X 与Y 满足:()2=X E ,()3=Y E ,()4=X D ,()16=Y D ,()14=XY E ,试用Chebyshev (切比雪夫)不等式估计概率{}323≥-Y X P .解:()()()032232323=⨯-⨯=-=-Y E X E Y X E ,()()()()Y X Y D X D Y X D ,cov 2324923⨯⨯-+=-()()()()Y E X E XY E -⨯-⨯+⨯=1216449()4614126436=-⨯-+=,所以,由Chebyshev (切比雪夫)不等式,有{}()(){}32323323≥---=≥-Y X E Y X P Y X P ()94923=-≤Y X D .八.(本题满分8分)设随机变量n X X ,,1 相互独立,都服从区间()1,0上的均匀分布,令()n X X U ,,max 1 =,求U 的密度函数()x f U (4分)以及()U E (4分).解:i X 的密度函数为()⎩⎨⎧<<=其它0101x x p ,分布函数为()⎪⎩⎪⎨⎧≥<<≤=111000x x x x x F .所以,随机变量U 的密度函数为()()()()()⎩⎨⎧<<==--其它01011x nx x p x F n x p n n U .所以,()()()1111+==⋅==⎰⎰⎰-+∞∞-n n dx x n dx nx x dx x xp U E nn n .九.(本题满分8分)设随机变量X 与Y 相互独立而且具有相同的分布,其中X 的分布律为X 012P313131令:()Y X U ,min =,()Y X V ,max =.求二维随机变量()V U ,的联合分布律,以及U 与V 各自的边缘分布律(6分).并说明随机变量U 与V 是否相互独立(2分).解:()V U ,的联合分布律以及U 与V 各自的边际分布律为VU12⋅i p 0919292951091929329191jp ⋅919395由于{}{}{}91910200,2⨯===≠===V P U P V U P ,所以,随机变量U 与V 不相互独立.十.(本题满分8分)一商店经销某种商品,每周进货的数量X 与顾客对该商品的需求量Y 是相互独立的随机变量,且都服从区间[]2010,上的均匀分布,商店每售出一单位该商品可得利润1000元,若需求量超过了进货量,商品可从其它商店调剂供应,这时每单位该商品可获利润500元,试求此商店经销该商品所得利润的数学期望.证明:由于X 与Y 相互独立,且都服从区间[]2010,上的均匀分布,所以()Y X ,的联合密度函数为.()()()⎪⎩⎪⎨⎧≤≤≤≤==其它,,0201020101001y x y f x f y x f Y X 再设Z 为商店所得利润,则有()⎩⎨⎧<-+≥=YX X Y X Y X Y Z 50010001000所以,()()()⎰⎰+∞∞-+∞∞-=dxdyy x f y x h Z E ,,()⎰⎰=201020101001dxdyy x h ,()⎪⎪⎭⎫ ⎝⎛++=⎰⎰⎰⎰20201010201050010001001x x dy y x dx ydy dx 67.141667500320000=+=十一.(本题满分8分)向平面区域(){}0402≥-≤≤=x x y y x D ,:,内随机地投掷一点,即二维随机变量()Y X ,服从平面区域D 上的均匀分布.⑴.试求二维随机变量()Y X ,的联合密度函数;⑵.点()Y X ,到y 轴距离的概率密度函数;⑶.设()D Y X ∈,,过点()Y X ,作y 轴的平行线,设S 为此平行线与x 轴、y 轴以及曲线24x y -=所围成的曲边梯形的面积,求()S E .解:⑴.平面区域D 的面积为()3164202=-=⎰dx x A 所以,二维随机变量()Y X ,的联合密度函数为()()()⎪⎩⎪⎨⎧∉∈=Dy x Dy x y x f ,,0163,⑵.点()Y X ,到y 轴距离的概率密度函数,即是分量X 的边缘密度函数,当20≤≤x 时,()()()24041631632x dy dy y x f x f x X -===⎰⎰-+∞∞-,所以,分量X 的边缘密度函数为()()⎪⎩⎪⎨⎧≤≤-=其它02041632x x x f X ⑶.由题设,所作曲边梯形的面积为()344302X X dx x S X-=-=⎰所以,()()⎰+∞∞-⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=dxx f x x X X E S E X 343433()384163342023=-⋅⎪⎪⎭⎫ ⎝⎛-=⎰dx x x x 十二.(本题满分8分)设随机变量X 与Y 相互独立,且都服从标准正态分布()1,0N .令随机变量22Y X Z +=.试求随机变量Z 的密度函数()z f Z .解:由题意,得()2221x X ex f -=π()∞<<∞-x ,()2221y y ey f -=π()∞<<∞-y .设随机变量22Y X Z +=的分布函数为()z F Z ,则(){}{}z Y X Pz Z P z F Z ≤+=≤=22当0≤z 时,(){}()022=∅=≤+=P z Y X P z F Z;当0>z 时,(){}()()⎰⎰≤+=≤+=zy x YXZdxdyy f x f z Y X P z F 2222⎰⎰≤++-=zy x y x dxdye 2222221π作极坐标变换θθsin ,cos r y r x ==,则有()⎰⎰⎰--==zr zr Z rdrerdr ed z F 022202221πθπ所以,随机变量22Y X Z +=的分布函数为()⎪⎩⎪⎨⎧≤>=⎰-000022z z rdre z F z rZ 所以,随机变量22Y X Z +=的密度函数为()()⎪⎩⎪⎨⎧≤>='=-0022z z zez F z f z Z Z .十三.(本题满分4分)设随机变量X 与Y 相互独立,都服从正态分布⎪⎭⎫⎝⎛21,μN .求数学期望Y X E -.解:因为随机变量X 与Y 相互独立,而且都服从正态分布,所以其差Y X -也服从正态分布.而()()()0=-=-=-μμY E X E Y X E ,()()()12121=+=+=-Y D X D Y X D ,因此,()1,0~N Y X U -=.()ππππ22222210222222=-====-+∞-∞+-∞+∞--⎰⎰u u u e uedu eu U E Y X E .。
概率论与数理统计(B )
1、(10分)设事件A 、B 的概率分别为1/3和1/2,试求下列三种情况下)B A (P 的值:
(1)A 与B 互斥;
(2)A ⊂B ;
(3))AB (P =1/8
2、 (12分)某商店一个月内售出的三种品牌的彩电分别为518、247和116台,根据以往的经验,该三种品牌彩电的返修率分别为0.24%、0.46%和0.58%。
试问售出彩电需要返修的概率?一位顾客买到的一台彩电刚好需要返修,试问他买的是第三种品牌的概率?
3、 (12分)设随机函数X 有分布函数:⎪⎩⎪⎨⎧<≥+=0
00b a 22x x x x e -)F(
试求:(1)待定系数a ,b ;(2)概率密度f(x);(3){}21<<X -P。
4、 (15分)设随机变量)Y ,X (的概率密度为
f (x , y )=⎪⎩
⎪⎨⎧<<<<+其他020,1032y x xy x 求:(1)边缘概率密度)(x f X 和)(y f Y ;
(2)X 和Y 是否相互独立?
(3)求Z=X+Y 的概率密度;
(4)求E(X), D(X).
5、 (12分)一文具店有三种水笔出售,由于售出哪一种水笔是随机的,因而售出一支水笔
的价格是一个随机变量,它取1(元)、1.2(元)、1.5(元)各个值的概率分别为0.3、0.2、0.5,若售出300支水笔. (1) 求收入至少400元的概率;(2)求售出价格为1.2元的水笔多于60支的概率。
6、 (12分)研究两种固体燃烧火箭推进器的燃烧率,设两者都服从正态分布,并且燃烧率
的标准差均近似地为0.05cm/s ,取样本容量为2021==n n ,得燃烧率的样本均值为s cm x s cm x /24,/1821==,设两样本独立。
求两燃烧率总体均值差21μμ-的置信水平为0.99的置信区间。
7、 (15分)设总体X 的概率密度为⎩
⎨⎧<≥=+-c x c x e c x f x 0λ)()1λ(λ,其中0>c 为常数,未知参数0λ>,试求λ的极大似然估计量。
8、 (12分)某种导线,要求其电阻的标准差不超过0.005(欧姆),今在生产的一批导线中
取样品9根,测得s=0.007(欧姆),设总体为正态分布,参数均未知。
问在α=0.05下能否认为这批导线的标准差显著的偏大?
附:=01.0z 2.327, 005.0z =2.576
2025.0χ(9)=19.023,2025.0χ(8)=17.535 ,205.0χ (9)=16.919,205.0χ (8)=15.507,
2975.0χ (9)=2.700,2975.0χ (8)=2.180 ,295.0χ (9)=3.325,295.0χ (8)=2.733。