注塑成型工艺过程和特性之结晶性塑料
- 格式:doc
- 大小:32.50 KB
- 文档页数:24
塑料注塑性能工艺概括一、注塑性能1. 结晶性,收缩率分子结构简单、对称性高的聚合物从高温向低温转变时都能结晶,如聚乙烯,聚丙烯,聚偏二氯乙烯,聚四氟乙烯等;一些分子链节较大,但分子之间作用力也很大的聚合物也可以结晶,如聚酰胺,聚甲醛等;分子链上有很大侧基的聚合物一般很难结晶,如聚苯乙烯,聚醋酸乙烯酸,聚甲基丙烯酸甲酯等;分子链刚性大的聚合物也不能结晶,如聚砜,聚碳酸酯,聚苯醚等。
结晶聚合物一般都具有耐热性、非透明性和较高的强度。
结晶程度越高,体积收缩越大(收缩率越大),易因收缩不均而引起翘曲。
结晶必须发生在塑料的玻璃化温度之上,熔点之下。
一般没有明确的熔点,对称性高的熔点高,对称性低的熔点低。
冷却速度提高以及模温降低,结晶度降低,密度减小。
切应力和剪切速率增大,取向程度将提高,结晶速度和结晶度增大;但作用时间太长,变形松弛使取向结构减小或消失,结晶速度又会减小。
压力增大,聚合物结晶温度将提高,结晶度将增大,密度增大。
聚合物沿料流方向收缩大,强度高;与料流垂直方向收缩小,强度低。
厚度越大,收缩也越大。
塑料品种各种塑料都有其各自的收缩范围,同种类塑料由于填料、分子量及配比等不同,则其收缩率及各向异性也不同。
塑件特性塑件的形状、尺寸、壁厚、有无嵌件,嵌件数量及布局对收缩率大小也有很大影响。
模具结构模具的分型面及加压方向,浇注系统的形式,布局及尺寸对收缩率及方向性影响也较大。
预热情况、成形温度、成形压力、保持时间、填装料形式及硬化均匀性对收缩率及方向性都有影响。
成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。
产生的收缩差使塑件易发生翘曲、变形、裂纹结晶塑料(收缩率)非结晶塑料(收缩率)PE(1.5~3.5) PTEE() PS(0.5~0.8) PPO(0.5~1.0) EP(0.1~0.5) 未知(收缩率)MF(0.5~1.5) 塑料名称 PA1010 塑料制品壁厚/mm 1 0.5~1 PP HDPE POM 1~2 1.5~21~1.5 2~2.5 1.5~2 2~2.6 105~120% 2 3 1.1~1.3 4 2~2.5 5 1.8~2 2.5~3 - 2.5~3.5 120~140% 110~150% 2~2.5 6 7 8 >8 高度/水平的收缩率百分比 PP( 1.0~2.5) PVDF() PSF(0.4~0.8) UF(0.6~1.4) PA() PET(2.0~2.5) POM(1.2-3.0) PBT(1.3~2.4) PC(0.3~0.8) PF(0.4~0.9) PMMA(0.2~0.8) 硬PVC(0.6~1.5) ABS(0.4~0.7) 2.5~4 70% 1.4~1.62. 各个转化温度,热敏性(热降解)1热降解:由于聚合物在高温下受热时间过长(或浇口截面过小,剪切作用大时)而引起的变色降解反应。
华侨大学课程名称:增强增韧尼龙66汽车专用料姓名:彭儒学号:9专业:08高分子二班任课教师:钱浩前言:尼龙是结晶型塑料,品种颇多,已达到130多种,应用于注塑加工的有尼龙6、尼龙66、尼龙610、尼龙1010以及共聚性尼龙、超韧性尼龙、玻璃纤维增强尼龙、矿物增强尼龙等等。
世界市场中,应用量最大的是尼龙66。
尼龙最早在1889年首先由Gabriel和Maass 两人合成制得,但系统的研究并最终实现工业化实在1929年,由美国杜邦公司的Carothers着手进行的。
1931年Carothers申请了第一篇尼龙专利,1935年首先制得尼龙66,1939年实现工业化。
尼龙66的应用领域一般在汽车、电子电器、化工设备、机械设备等方面。
从最终用途看,汽车行业消耗的尼龙66占第一位,电子电器占第二位。
大约有88%的尼龙66通过注射成型加工成各种制件,约12%的尼龙66则通过挤出、吹塑等成型加工成相应的制品。
由于尼龙66优良的耐热性、耐化学药品性、强度和加工方便等,因而在汽车工业得到了大量应用,目前几乎已能用于汽车的所有部位,如发动机部位,电器部位和车体部位。
发动机部位包括进气系统和燃油系统,如发动机气缸盖罩、节气门、空气滤清器机器外壳,车用空气喇叭、车用空调软管、冷却风扇及其外壳、进水管、刹车油罐及灌盖,等等。
车体部位零部件有:汽车挡泥板、后视镜架、保险杠、仪表盘、行李架、车门手柄、雨刷支架、安全带扣搭、车内各种装饰件等等。
车内电器方面如电控门窗、连接器、保鲜盒、电缆扎线等。
工艺特点:⑴吸水性尼龙66较易吸湿,如果长时间暴露在空气下,会吸收大气中的水分。
吸水后会发生体积膨胀,影响制品的尺寸精度,如在注塑前吸收过量的水分时,其制作的外国外观和力学性质都会受损。
⑵结晶性尼龙66为结晶性高聚物,一般在20%~30%之间。
结晶度的高低与性能有关,结晶度高,拉伸强度、耐磨性、硬度、润滑性等性能有所提高,热膨胀系数和吸水性趋于下降。
PET塑料注塑⼯艺解析PET塑料注塑成型⼯艺是塑料加⼯中⾮常重要的技术⼯艺之⼀,对于PET塑料瓶⽽⾔,⼤多数情况下塑料包装⼚都会采⽤吹塑成型的⽅式制作加⼯,但注塑成型⼯艺尤其特有的加⼯优势,对于PET注塑成型来说,技术⼈员需要考虑很多⽅⾯因素,如下。
PET塑料简介PET化学名为聚对苯⼆甲酸⼄醇酯,⼜称聚酯。
⽬前在客户中使⽤最多的是GF-PET,主要是打瓶胚。
PET化学和物理特性PET的玻璃化转化温度在165℃左右,材料结晶温度范围是120~220℃。
PET在⾼温下有很强的吸湿性。
对于玻璃纤维增强型的PET材料来说,在⾼温下还⾮常容易发⽣弯曲形变。
可以通过添加结晶增强剂来提⾼材料的结晶程度。
⽤PET加⼯的透明制品具有光泽度和热扭曲温度。
可以向PET中添加云母等特殊添加剂使弯曲变形减⼩到最⼩。
如果使⽤较低的模具温度,那么使⽤⾮填充的PET材料也可获得透明制品。
注塑成型⼯艺注射成型法主要⽤于增强PET的成型。
通常采⽤螺杆式注射机。
螺杆⼀般均需进⾏硬化处理,以免在长期使⽤后发⽣磨耗。
注射机喷嘴孔的长度应尽可能短,其直径应控制在3mm左右。
增强PET的熔点⾼达260℃,为防⽌喷嘴堵塞,应安装功率较⼤的加热器。
另外,喷嘴孔的尖端最好加⼯成如图-1所⽰的逆锥式,使流道和喷嘴内的熔融物料能够⽅便地切断。
注塑机注塑成型主要⽤于增强PET的成型。
PET⼀般情况下只能选⽤螺杆式注塑机成型。
最好选⽤顶部带有⽌逆环的突变型螺杆,其表⾯硬度⼤⽽且耐磨损,长径⽐未L/D=(15~20):1压缩⽐约为3:1。
L/D太⼤物料在料筒内停留时间过长,过度受热容易引起降解,影响制品性能。
压缩⽐太⼩剪切⽣热少,易塑化不良,制品性能差。
反之会使玻璃纤维较多的断裂,⼒学性能下降。
加⼯玻璃纤维增强PET时,料筒内壁磨损较厉害,料筒使⽤耐磨材料制造或者衬有耐磨材料。
喷咀以短为好,内壁要求磨光,孔径要求尽可能⼤些。
以液压制动阀门式喷咀为好。
喷咀要有保温和控制温度的措施来保证喷咀不会冻结堵塞。
塑料注塑工艺标准1、PP塑料制品:1.1概述:聚丙烯,英文简称PP,为一种白色蜡状材料,密度0.90g/cm3。
PP具有良好的电性能和化学稳定性,其机械性能、耐热性均高于PE,经过增强的PP可用做工程材料。
PP成纤性好,耐疲劳性好,用其制成的铰链几十万次不断;PP低温冲击性不好,成型收缩率大,产品精度不高。
1.2加工:1.2.1成型特性:1.2.1.1结晶性料,吸湿性小,可能发生熔融破裂,长期与热金属接触易发生分解。
1.2.1.2流动性极好,溢边值0.03mm左右。
1.2.1.3冷动速度快,浇注系统及冷却系统应散热缓慢。
1.2.1.4成型收缩范围大,收缩率大,易发生缩孔、凹痕、变形、方向性强。
1.2.1.5注意控制成型温度,料温低方向性明显,尤其是低温高压时更明显,模温低于50℃以下塑件不光泽,易发生熔接不良、流痕;90℃以上时易发生翘曲、变形。
1.2.1.6塑件应壁厚均匀,避免缺口、尖角,以避免应力集中。
1.2.1.7注塑模及注塑制品:A、最小脱模斜度30’---1°。
B、最小壁厚0.85mm。
C、流程与壁厚的关系: ,其中t为壁厚(mm),l为流程(mm)。
D、塑件转接处均应有不小于0.5---1mm的圆角。
E、塑件壁厚应尽可能均匀一致,以防制品结构缩水和翘曲、变形。
1. 3注塑工艺条件:1.2.3.1干燥温度和时间:封袋PP无须干燥即可注塑,预热温度和时间:80---100℃/1---2h。
1.2.3.2料筒温度:200---230℃。
1.2.3.3射嘴温度:180---190℃。
1.2.3.4模温:20---60℃。
1.2.3.5注射压力:≤69---98Mpa1.2.3.6注射时间(包括保压时间):≤20---60S。
1.2.3.7冷却时间:≤20---90S。
1.2.3.8螺杆转速:≤80rpm。
2、PE塑料制品:2.1概述:聚乙烯,英文简称PE,有低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)及线性低密度聚乙烯(LLDPE)三种。
常用塑料的注塑工艺一、聚乙烯-PE1.物理特性:一般常用聚乙烯为高密聚乙烯(HDPE)密度0.95熔点130℃,低密聚乙烯(LDPE)密度0.92熔点120℃。
2.工艺特性:①结晶型聚合物,有明显的熔点,软化温度范围窄(3—5℃)②注塑压力的变化对聚乙烯的流动性的影响比料筒温度的影响要明显,所以在注塑成型时先从注塑压力方面考虑。
但过高的剪切速率会出现熔体破裂现象,在制品表面出现毛糙、斑纹等熔体破裂现象.③乙烯吸水性低,含水小于0.01℅,生产时可以不进行干燥处理.如储藏不当引起水分过量可在70-80℃温度下干燥1-2h。
④收缩率大且方向性明显,制品易翘曲变形。
HDPE收缩率1.5-5℅,LDPE收缩率2-5℅,收缩率一般视制品壁厚而定,制品壁厚越大收缩率越大。
⑤聚乙烯对注塑机无特殊要求,一般均可使用。
3.制品与模具①制品制品的壁厚与熔体的流动长度有关,而聚乙烯的流动性又随密度的不同有所不同,因此在选择制品厚度时需充分考虑流动比,低密聚乙烯的流长比为280:1,高密度聚乙烯的流长比为230:1。
在选择制品的壁厚时,应考率收缩率的影响,从有利于熔体流动、减少制品收缩的角度出发,一般聚乙烯的壁厚应在1-3.5mm之间。
②模具的排气孔槽深度应控制在0.03mm以下。
4.树脂准备注塑用的聚乙烯为了保证制品有一定的机械强度,通常选用熔体指数稍底的品级,而对于强度要求不高、薄壁、长流程的制品,熔体指数相应选择大些,熔体指数(MI)是在温度为190℃,负荷为2160g下,10分钟内熔体通过孔径为2.1mm,长度为8mm孔的克数。
熔体指数值越小,树脂的分子量就越大,流动性就越差。
5.成型工艺①注塑温度注塑温度应根据注塑制品实际情况来确定,一般低密聚乙烯料筒温度在160-220℃之间,高密聚乙烯在175-240℃之间。
在料筒温度分布上喷嘴和加料段温度低一些,比计量段和压缩段低20℃左右,如果加料段温度过高,有可能造成物料粘附在螺杆上,造成加料不畅。
ABS 丙烯腈-丁二烯-苯乙烯共聚物典型应用范围:汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等。
注塑模工艺条件:干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。
建议干燥条件为80~90C下最少干燥2小时。
材料温度应保证小于0.1%。
熔化温度:210~280C;建议温度:245C。
模具温度:25…70C。
(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。
注射压力:500~1000bar。
注射速度:中高速度。
化学和物理特性:ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。
每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。
从形态上看,ABS是非结晶性材料。
三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。
ABS的特性主要取决于三种单体的比率以及两相中的分子结构。
这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。
这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。
ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。
PC 聚碳酸酯典型应用范围:电气和商业设备(计算机元件、连接器等),器具(食品加工机、电冰箱抽屉等),交通运输行业(车辆的前后灯、仪表板等)。
注塑模工艺条件:干燥处理:PC材料具有吸湿性,加工前的干燥很重要。
建议干燥条件为100C到200C,3~4小时。
加工前的湿度必须小于0.02%。
熔化温度:260~340C。
模具温度:70~120C。
注射压力:尽可能地使用高注射压力。
注射速度:对于较小的浇口使用低速注射,对其它类型的浇口使用高速注射。
1、PA12 聚酰胺12或尼龙12化学和物理特性PA12是半结晶-结晶热塑性材料, PA12有很好的电气绝缘性,并且不会因潮湿影响绝缘性能,有很好的抗冲击性机化学稳定性,PA12对强氧化性酸无抵抗能力。
粘性主要取决于湿度、温度和储藏时间,它的流动性很好。
收缩率0.5-2%,主要取决于材料品种、壁厚及其它工艺条件。
典型用途水量表和其他商业设备,电缆套,机械凸轮,滑动机构以及轴承等。
注塑模工艺条件干燥条件:85℃/4~5小时,加工之前应保证湿度在0.1%以下;加工温度:240~300℃;普通材料不要超过310℃,阻燃材料不要超过270℃。
模具温度:未增强型材料为30~40C,薄壁、大面积元件及增强型材料为80~100C,精确地控制模具温度对PA12来说是很重要的。
注射压力:最大可到1000bar(建议使用低保压压力和高熔化温度)。
注射速度:高速(对于有玻璃添加剂的材料更好些)。
流道和浇口:未加添加剂的材料,流道直径应在3mm左右,增强型材料要求5~8mm的大流道直径,流道形状应当全部为圆形,注入口尽可能短,可以使用多种形式的浇口;大型塑件不要使用小浇口(这是为了避免对塑件过高的压力或过大的收缩率),浇口厚度最好和塑件厚度相等,如果使用潜入式浇口,建议最小的直径为0.8mm。
热流道模具很有效,但是要求温度控制很精确以防止材料在喷嘴处渗漏或凝固。
如果用热流道,浇口尺寸应当比冷流道要小一些。
2、PA6 Nylon6聚己内酰胺化学和物理特性PA6本色原料呈乳白色透明或半透明状颗粒,化学物理特性和PA66很相似,然而,它的熔点较低,而且工艺温度范围很宽。
它的抗冲击性和抗溶解性比PA66要好,但吸湿性也更强。
因为塑件的许多品质特性都要受到吸湿性的影响,因此使用PA6设计产品时要充分考虑到这一点。
为了提高PA6的机械特性,经常加入各种各样的改性剂。
玻璃就是最常见的添加剂,有时为了提高抗冲击性还加入合成橡胶,如EPDM和SBR等。
注塑生产工艺及问题解析一、注塑成型工艺过程1、注塑过程完整的注塑过程包括加料、塑化、注射入模、保压冷却和脱模等几个步骤,但究其实质可看做只是塑化和流动/冷却两个过程.(1)塑化这是塑料在料筒内经加热及螺杆旋转剪切达到流动状态并具备良好可塑性的全过程。
螺杆旋转不断地将料斗中落下的料粒拽入料筒的同时螺杆后退让料筒中的料在外电热及剪切摩擦热下进行熔化,最后将已熔融的胶料定量贮存到螺杆端部等待注射.(2)流动与冷却这一过程是指螺杆在油缸作用下前进,将具有流动性和温度均匀的熔胶注入模具开始,而后经过型腔注满,熔体在受控制条件下(如施以保压)冷固定型,直至塑件在模中脱出.a)充满阶段:这一阶段以螺杆开始向前移动起,直玫模腔被熔胶充满.b)压实阶段:这是指熔胶充满模腔时起至螺杆撤回(倒索)为至的阶段.C)倒流阶段:这一阶段是从螺杆后退时开始的,这时模腔内的压力比流道内高,因此就会发生未凝结的熔胶倒流,使模腔内的压力下降.d)冻结后的冻却阶段:这一阶段是指浇口的塑料完全冻结时起到塑件在模内顶出为止.2、成型工艺条件注塑工艺最重要的条件即是影响塑化流动和冷却的温度、压力及相应的各个作用时间。
可以说:要保证塑件质量合格及稳定,必须的条件是准确而稳定的工艺参数。
在调整工艺参数时,原则上按压力--------------- 时间----- 温度的顺序来调机,不应该同时变动两个或以上参数,防止工艺条件紊乱造成塑件质量不稳定.以下是对各工艺参数的说明:(D温度参数注塑成型过程中需控制的温度有料筒温度,喷嘴温度和模具温度,料筒温度及喷嘴温度主要影响塑料的流动和冷却. a)料筒温度:一般自后至前逐步升•高,以使均匀塑化.b)喷嘴温度:通常略低于料筒最高温度,防止喷嘴发生“流涎”现象,但亦不可太低防早凝堵塞.C)模具温度:对塑件内在性能和表现质量影响很大,对于表面要求比较高的胶件模温要求较高.(2)压力参数注塑成型过程中的压力包括塑化压力(背压)和注射压力.a)塑化压力(背压)・保证螺杆在旋转覆位时增加塑化压力使熔胶的温度均匀及把挥发性气体包括空气排出射料缸外.・把附加剂(如:色粉.色种.扩散剂等)与熔胶均匀地混合起来・提供均匀稳定的塑化熔胶以便保证塑件重量稳定.・在保证塑件质量的情况下尽可能低以免徙耗损材料・背压的大小调节视胶料不同而异,一般不超过20KG∕CM2(具体各胶料背压值可参见本工艺资料第一部分有关内容)b)注射压力•克服塑料熔体从料筒流向型腔的滞阻力,给予充模压力及对充入的熔料进行压质.•对于流动性差的塑料,注射压力要取大,对于型腔阻力大的薄壁胶料,注射压力也要取大.⑶时间参数(成型周期)I --- 充模时间—注射时间—I' -- 保压时间----- 1I总冷却时间成型周期 --------- 闭模冷却时间------------------ 1---- 其它时间(如:开模.脱模.喷脱剂等)・注射时间和冷却时间是基本组成部分,其多少对啤塑件的质量有决定性的影响.・充模时间一般不超过IOSo・保压时间较长,与胶件臂厚有关(厚壁取长时间),以保证最小收缩.•冷却时间取决于塑料结晶性,制品料厚,模具温度等因素视具体情形调整.⑷注射速度・注射速度通过调节单位时间内向注射油缸供油多少来实现.•一般说来(在不引负作用的前提下)尽量使用高射速充模,以保证塑件熔接强度及表现质量,而相对低的压力也使塑件内应力减小提高了强度.・用高压低速进料的情况可使流速平稳,剪切速度小,塑件尺寸稳定,避免缩水缺陷.二、塑料模的基本认识塑料模具是注射成型生产中赋予塑料形状所用部件的组合体,塑料模的结构视塑料性质、制件形状、结构以及注射机的不同等因素而可能形式大小差异很大,然而其基本结构大致相同,即主要由浇注系统、成型零件、结构零件三大部分组成.其中浇注系统与成型零件是塑料直接接触的部分,并随塑料制品而变化,它是模具中最重要、最复杂、变化最大、要求表面精度及光洁度最高的部分.**浇注系统&成型零件浇注系统指塑料从喷嘴进入型腔的流道部分,包括:主流道、冷料穴、分流道和浇口等.成型零件指构成成品形状的各零件,包括:动、静模型腔/型芯、排气槽、(成型)顶针等.**典型的模具结构典型的模具结构包括以下几个主要部分:1.主流道:是模具连接注射机喷嘴通至型腔或分流道的一段,主流道进口顶部呈凹形,以便与喷嘴连接.主流道进口直径应略大于喷嘴直径(0.8mm)以免溢料并防止两者连接不准而发生堵截.进口直径根据制品大小而定,一般为Φ4-8πιπι主流道直径应向内扩大,呈3-5角度,以便流道顺利出模.2.分流道:在多型腔模中连接主流道和各个型腔的通道.为使熔料能等速度地充满各型腔,分流道在模里的排列应尽可能等距对称,而分流道的截面积形状/尺寸对熔料的流动有很大影响,且对脱模/造模的难易都有影响.常用的分流道截面形状是梯形或半圆形而且是开在带有脱模杆的半模上.流道的表面必须抛光以减小流动阻力而提供较快速度充模,流道的尺寸决定于塑料品种,制品尺寸及壁厚(具体参见有关数据数据)在满足成型要求的前提下应尽量减少截面积,以免增加水□料的比例及使冷却时间增加,降低了生产效率.3.冷料位:设在主流道末端的空穴,用来容纳喷嘴两次注射之间所产生的冷料,从而防止分流道或水口堵塞.如果冷料进入型腔则会导致制件内应力加大或机械强度不足,冷料位尺寸一般为Ψ3-10mm,深度6mm左右,为便于脱模(拉出水口),其底部通常都是拉料杆位(脱模杆),拉料杆的头部通常都设计成下凹陷或带有沟槽形成,便于拉出主流道连整个流道系统.4.浇口(入水口)是熔料通过直/分流道后进入型腔的通道,浇口的截面积通常是整个流道系统中截面积最小的部分.内浇口的尺寸形状对制件的质量影响很大,其主要的作用可列述以下几点:1)控制料流速度;2)成型中水口位早凝结可防其倒流;3)使料通过时产生较高的剪切力使料温提升,从而降低其表面粘度,提高其流动性;4)便于制件与流道分离;浇口的形状尺寸和位置设计都须根据塑料品种,制件结构和形状等具体情况做出选择,一般来说,浇口的位置都是开在制件厚壁位(以利补缩)及不影响外观的位置.浇口尺寸设计应考虑熔体的性质.5.型腔是制件在模具中成型的部分,用来构成型腔的零件称为成型零件,一般包含以下:1)凹模 ----- 构成制件外形的成型零件;2)凸模/型芯 ----- 构成制件内部形状,如:沟、孔、槽等;由于熔体进入型腔后产生很高的压力,故对成型零件的材料强度、刚度要求较高,且材料应具耐腐蚀性.成型零件一般都经过热处理提高硬度.注:常用于塑料模的钢材有:718、S-136;而合金模具是用热作钢8407.6.排气位1)开设在模具内的槽形排气位,防止熔料进入型腔时卷入气体.当熔料进入型腔时,原存入型腔的空气及熔料带入的气体必须在料流的尽头通过排气槽向外排出,如排出不完全,则可能会造成件带气孔、熔接痕、充模料不齐,甚至困入高温压缩空气而烧伤胶件的情况出现.2)一般情况下,排气孔既可开设在型腔内熔料流动的尽端,也可开设在模具的分模面上.(在凹模上开一般0.03-0.06mm深,L5-6.Omm宽的槽)3)注射件排气孔是不会有很多熔料渗(迫)出的,因为熔料会在该处冷却固化而自动将通道堵死。
结晶性塑料有明显的熔点,固体时分子呈规则排列。
规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。
常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。
结晶对塑料性能的影响
1)力学性能
结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。
2)光学性能
结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。
减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。
3)热性能
结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM时,呈现粘流态。
因此结晶性塑料的使用温度从Tg(玻璃化温度)提高到TM(熔融温度)。
4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。
影响结晶的因素有哪些?
1)高分子链结构,对称性好、无支链或支链很少或侧基体积小的、大分子间作用力大的高分子容易相互靠紧,容易发生结晶。
2)温度,高分子从无序的卷团移动到正在生长的晶体的表面,模温较高时提高了高分子的活动性从而加快了结晶。
3)压力,在冷却过程中如果有外力作用,也能促进聚合物的结晶,故生产中可调高射出压力和保压压力来控制结晶性塑料的结晶度。
4)形核剂,由于低温有利于快速形核,但却减慢了晶粒的成长,因此为了消除这一矛盾,在成型材料中加入形核剂,这样使得塑料能在高模温下快速结晶。
结晶性塑料对注塑机和模具有什么要求
1)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相应提高。
2)结晶性塑料熔点范围窄,为防止射咀温度降低时胶料结晶堵塞射咀,射咀孔径应适当加大,并加装能单独控制射咀温度的发热圈。
3)由于模具温度对结晶度有重要影响,所以模具水路应尽可能多,保证成型时模具温度均匀。
4)结晶性在结晶过程中发生较大的体积收缩,引起较大的成型收缩率,因此在模具设计中要认真考虑其成型收缩率
5)由于各向异性显着,内应力大,在模具设计中要注意浇口的位置和大小,加强筋和位置与大小,否则容易发生翘曲变形,而后要靠成型工艺去改善是相当困难的。
6)结晶度与塑件壁厚有关,壁厚冷却慢结晶度高,收缩大,易发生缩孔、气孔,因此模具设计中要注意控制塑件壁厚的控制
结晶性塑料的成型工艺
1)冷却时释放出的热量大,要充分冷却,高模温成型时注意冷却时间的控制。
2)熔态与固态时的比重差大,成型收缩大,易发生缩孔、气孔,要注意保压压力的设定
3)模温低时,冷却快,结晶度低,收缩小,透明度高。
结晶度与塑件壁厚有关,塑件壁厚大时冷却慢结晶度高,收缩大,物性好,所以结晶性塑料应按要求必须控制模温。
4)各向异性显着,内应力大,脱模后未结晶折分子有继续结晶化的倾向,处于能量不平衡状态,易发生变形、翘曲,应适当提高料温和模具温度,中等的注射压力和注射速度。
注射工艺的影响因素
液态金属充型技术
机床加工线切屑集中处理方案
合适的检测方法是液位测量成功的关键
全面解析注塑机伺服系统及未来市场趋势
利用信息技术提高塑料粉碎机产品曝光率
中走丝线切割机床选型时常遇到的七大陷阱注塑行业多元发展微注塑工艺技术分析
新科技带来塑料机械行业发展新空间
数控机床操作中需注意的问题
壳牌液压油通过新技术提升液压系统效率
食品软包装材料检测的发展趋势
螺杆泵运行时注意事项
超声波金属塑料焊接术未来iPhone更轻更坚
塑料,橡塑 编辑:mszcm。