高中数学选修4-4极坐标系(公开课)
- 格式:ppt
- 大小:1017.50 KB
- 文档页数:12
极坐标知识集结知识元极坐标知识讲解1.极坐标系【知识点的认识】极坐标系与点的极坐标在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ)决定一个点的位置.其中,ρ称为点M 的极径,θ称为点M的极角.由极径的意义可知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系,我们约定,极点的极坐标是极径ρ=0,极角θ可取任意角.2.简单曲线的极坐标方程【知识点的认识】一、曲线的极坐标方程定义:如果曲线C上的点与方程f(ρ,θ)=0有如下关系(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(ρ,θ)=0;(2)以方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上.则曲线C的方程是f(ρ,θ)=0.二、求曲线的极坐标方程的步骤:与直角坐标系里的情况一样①建系(适当的极坐标系)②设点(设M(ρ,θ)为要求方程的曲线上任意一点)③列等式(构造△,利用三角形边角关系的定理列关于M的等式)④将等式坐标化⑤化简(此方程f(ρ,θ)=0即为曲线的方程)三、圆的极坐标方程(1)圆心在极点,半径为r,ρ=r.(2)中心在C(ρ0,θ0),半径为r.ρ2+ρ02﹣2ρρ0cos(θ﹣θ0)=r2.四、直线的极坐标方程(1)过极点,θ=θ0(ρ∈R)(2)过某个定点垂直于极轴,ρcosθ=a(3)过某个定点平行于极轴,r sinθ=a(4)过某个定点(ρ1,θ1),且与极轴成的角度α,ρsin(α﹣θ)=ρ1sin(α﹣θ1)五、直线的极坐标方程步骤1、据题意画出草图;2、设点M(ρ,θ)是直线上任意一点;3、连接MO;4、根据几何条件建立关于ρ,θ的方程,并化简;5、检验并确认所得的方程即为所求.3.点的极坐标和直角坐标的互化【知识点的认识】坐标之间的互化(1)点的极坐标和直角坐标的互化以直角坐标系的原点O为极点,x轴的正半轴为极轴,且在两种坐标系中取相同的长度单位(如图).平面内任意一点P的直角坐标与极坐标分别为(x,y)和(ρ,θ),则由三角函数的定义可以得到如下两组公式:,.通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ<2π.(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为:.(3)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为:.例题精讲极坐标例1.在极坐标系中,已知M(1,),N,则|MN|=()A.B.C.1+D.2例2.在极坐标系中,已知A(3,),B(4,),O为极点,则△AOB的面积为()A.3B.C.D.2例3.已知直线l:(t为参数)与曲线ρ2=的相交弦中点坐标为(1,1),则a等于()A.-B.C.-D.当堂练习单选题练习1.已知曲线C的极坐标方程为:ρ=2cosθ-4sinθ,P为曲线C上的动点,O为极点,则|PO|的最大值为()A.2B.4C.D.2练习2.在极坐标中,O为极点,曲线C:ρ=2cosθ上两点A、B对应的极角分别为,则△AOB 的面积为()A.B.C.D.练习3.已知直线l过点P(-2,0),且倾斜角为150°,以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2ρcosθ=15.若直线l交曲线C于A,B两点,则|PA|∙|PB|的值为()A.5B.7C.15D.20练习4.在平面直角坐标系中,记曲线C为点P(2cosθ-1,2sinθ+1)的轨迹,直线x-ty+2=0与曲线C 交于A,B两点,则|AB|的最小值为()A.2B.C.D.4练习5.在极坐标系中,直线ρcosθ=2与圆ρ=4cosθ交于A,B两点,则|AB|=()A.4B.C.2D.练习6.在同一平面直角坐标系中,将直线x-2y=2按φ:变换后得到的直线l,若以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,则直线l的极坐标方程为()A.4ρcosθ-ρsinθ=4B.ρcosθ-16ρsinθ=4C.ρcosθ-4ρsinθ=4D.ρcosθ-8ρsinθ=4填空题练习1.在极坐标系中,圆ρ=1上的点到直线的距离的最大值是___.练习2.在极坐标系中,点(2,)到直线ρsinθ-ρcosθ-6=0的距离为___.练习3.在极坐标系下,已知圆,则圆O的直角坐标方程是_________________练习4.在极坐标系中,若点A(3,),B(3,),则△AOB的面积为___解答题练习1.'在平面直角坐标系xOy中,以原点为极点,x轴为极轴建立极坐标系,曲线C的方程是,直线l的参数方程为(t为参数,0≤α<π),设P (1,2),直线l与曲线C交于A,B两点.(1)当α=0时,求|AB|的长度;(2)求|PA|2+|PB|2的取值范围.'练习2.'在直角坐标xOy中,直线l的参数方程为{(t为参数)在以O为极点.x轴正半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ=4sinθ-2cosθ.(I)求直线l的普通方程与曲线C的直角坐标方程:(Ⅱ)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA||PB|的值.'。
《极坐标与直角坐标的互化》教学设计一、教材分析《极坐标与直角坐标的互化》是高中新教材人教版选修4-4第一讲第二节的内容,是在学生已经学习过平面极坐标系的前提下,通过生活实例、学生之间相互讨论进行探究,在老师的引导下自主完成极坐标与直角坐标的互化的公式,并进行极坐标与直角坐标的互化.为后面学习简单曲线的极坐标方程及参数方程奠定基础.二、学情分析通过前面对极坐标的学习,学生已经对极坐标系以及点的极坐标表示有了了解.用坐标表示方位的思想已经普遍存在于日常生活中,所以学生对于极坐标与直角坐标的互化学习应该很容易接受.三、教学目标分析1.知识与技能:能够写出极坐标平面内点的极坐标的表示;学生自己探究出平面内一点极坐标与平面直角坐标的互化公式,能够利用互划公式解决相关习题.2.过程与方法:通过自主探究体会数形结合、类比的数学思想方法;通过探究活动培养学生合作、观察、分析、比较和归纳能力.3.情感态度与价值观:通过数学家的浪漫故事引入,提升学生的学习兴趣,通过生活中的具体事例引入极坐标与平面直角坐标的互化,使学生认识极坐标与平面直角坐标的互化来描述实际问题的方便性及实用性,体验数学的实际应用价值.通过对问题的探究使学生享受到成功的喜悦.四、教学重难点:重点:掌握极坐标和直角坐标的互化关系式.难点:实现极坐标和直角坐标之间的互化.五、教学方法:情境引入法,体会数学之美实际问题设问,贴近生活小组合作研究法,解决相关问题谈话式教学法,老师提问学生回答六、教学基本流程七、教学过程1、复习引入:情境1:百岁山矿泉水广告情境2: 17 世纪著名的法国哲数学家笛卡尔,美丽的瑞典公主拉夏贝尔的爱情故事引出心形曲线)sin 1(θρ-=a .师生活动:讲述百岁山矿泉水广告里含有的故事,从而引出心型曲线,如果有学生知道就让学生来讲.设计意图:情境引入,引起学生的兴趣,渗透数学史.情境3:每一年的四月都会在安宁区仁寿山举行“桃花节”,会吸引来自于各地的游客前去观赏,某天,一旅客到达仁寿山顶入口处想去八卦台和寿台游览,但不认识路,刚巧遇到了两个当地人,分别询问了八卦台和寿仙台的位置. 甲回答:从入口处向东走3200米,再向北走200米就到八卦台了.乙回答:从入口处向东偏北︒60方向走400米就到寿仙台了.请问(1)甲、乙两人分别用到了什么数学思想回答旅客的问路?(2)我们如何能知道这名从入口出发游览两处景点后再回到入口共走了多少路程呢? 师生互动:分别请两名同学在黑板上画出直角坐标系下和极坐标系下甲乙两人为游客所指的路,从而引出课题极坐标系和直角坐标系下的坐标互划问题.设计意图:通过现实生活中的实际问题引入问题,引发学生思并引入课题.2、新课探究:探究问题1:(1)极坐标与直角坐标互化时需要满足什么条件?(2)可以有几种方案解决上述问题?请你给出具体的解题过程.(3)请你总结出第一象限点的直角坐标和极坐标的互划公式.结论:直角坐标系的原点0为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位.平面内任意一点P 的直角坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式:{θρθρsin cos ==y x { x y y x =+=θρtan 222说明(1)上述公式即为极坐标与直角坐标的互化公式(2)通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2.(3)互化公式的三个前提条件(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x 轴的正半轴重合;(3)两种坐标系的单位长度相同.设计意图:通过引例中的问题的探究让同学们感受到直角坐标和极坐标的不同,具体解决问题中需要统一形式,从而引发学生研究解决问题的兴趣,小组合作学习提高学习效率,能很好的提升学习效果,解决问题的过程中培养和提高学生的发现能力和总结归纳能力.探究问题2:上面推导出来的公式是否适合平面内任意一个位置的点呢?师生互动:教师提问,学生小组讨论回答.。