单片机1-----CS-51系列单片机的结构和时序
- 格式:ppt
- 大小:1.28 MB
- 文档页数:58
简述51系列单片机的内部组成结构51系列单片机是一种常见的微控制器,由一系列功能模块组成,包括中央处理器、存储器、输入输出接口以及时钟和定时器等。
下面将对51系列单片机的内部组成结构进行简要描述。
1. 中央处理器(CPU):中央处理器是51系列单片机的核心部件,负责执行指令、进行运算和控制外围设备。
51系列单片机采用经典的8051架构,拥有8位数据总线和16位地址总线。
其指令集包括丰富的算术、逻辑、移位和控制指令,可以满足各种应用需求。
2. 存储器:51系列单片机具有不同类型的存储器,包括程序存储器(ROM)和数据存储器(RAM)。
ROM用于存储用户程序和常量数据,可以是内部ROM或外部扩展的ROM芯片。
RAM用于存储变量和临时数据,可以是内部RAM或外部扩展的RAM芯片。
3. 输入输出接口:51系列单片机提供了多个通用输入输出引脚,用于与外部设备进行数据交互。
这些引脚可以配置为输入模式或输出模式,并具有上拉电阻和输入/输出缓冲器等功能。
通过这些引脚,单片机可以与各种传感器、执行器、显示器和通信接口等外部设备进行连接,实现与外界的数据交换。
4. 时钟和定时器:51系列单片机内部集成了时钟电路和多个定时器/计数器模块。
时钟电路提供基准时钟信号,用于同步CPU和其他模块的操作。
定时器/计数器模块可以生成精确的时间延迟、定时和计数功能,广泛应用于定时控制、脉冲计数、PWM输出等场景。
5. 中断系统:51系列单片机支持多级中断系统,可以响应外部中断请求和内部定时器中断。
通过中断系统,单片机可以实现对实时事件的快速响应,提高系统的实时性和可靠性。
6. 串行通信接口:51系列单片机内部集成了串行通信接口,支持多种通信协议,如UART、SPI和I2C。
通过这些接口,单片机可以与其他设备进行数据交换,实现数据采集、通信和控制等功能。
7. 外部扩展接口:51系列单片机提供了多个外部扩展接口,如总线接口和片选引脚等。
51单片机的基本结构51单片机是一种高性能、低功耗的微控制器,是嵌入式系统中常用的一种芯片。
它具有集成度高、易编程、可编程性强等特点,在各种电子设备中广泛应用,包括家电、工业控制、汽车电子、智能仪器等领域。
51单片机的基本结构主要包括CPU、存储器、输入输出端口、定时计数器和串口通信等部分。
1.CPU51单片机的CPU是其核心部分,负责执行指令、进行运算处理。
它通常采用哈佛结构,即指令和数据分开存储。
51单片机的CPU主要由ALU (算术逻辑单元)、寄存器组、指令寄存器、程序计数器等部分组成,能够完成基本的运算和控制功能。
2.存储器51单片机的存储器包括ROM(只读存储器)和RAM(随机存储器)。
ROM用于存储程序代码和常量数据,是只读的;RAM用于存储变量数据和临时结果,是可读写的。
在51单片机中,通常ROM用于存储程序代码和初始化数据,RAM用于存储运行时数据和临时结果。
3.输入输出端口51单片机的输入输出端口用于与外部设备进行数据交换。
它可以通过不同的接口与外部设备连接,比如并行口、串行口、通用输入输出口等。
通过输入输出端口,51单片机可以与外部设备进行数据传输和通信,实现各种功能。
4.定时计数器51单片机的定时计数器可以用于计时和计数,通常用于控制时序和频率。
在51单片机中,定时计数器可以生成各种定时中断,实现定时控制功能。
定时计数器可以根据需要设定不同的时钟源和计数模式,实现灵活的定时控制。
5.串口通信51单片机的串口通信功能可以用于与外部设备进行串行通信,比如与PC机、外围设备等进行数据传输。
串口通信包括串行口和UART(通用异步收发器),可以通过串行口进行双向数据传输。
串口通信在51单片机中广泛应用于各种通信设备和控制系统中。
总的来说,51单片机的基本结构包括CPU、存储器、输入输出端口、定时计数器和串口通信等部分,通过这些部分的组合和协作,可以实现各种功能和应用。
在实际应用中,设计人员可以根据需要对这些部分进行配置和扩展,实现更丰富的功能和性能要求。
51单片机基本结构详解1.什么是单片机单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU 、随机存储器RAM 、只读存储器ROM 、多种I/O 口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调试电路电路、模拟多路转换器、A/D 转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统。
图1-1 单片机外形图2.单片机的引脚排列常用的单片机有40个引脚,其排列和功能如图2-1所示。
外ROM读选通信号外接晶体引线端地址锁存控制引脚内外ROM选择引脚21222324252627282930313233343536373839402019181716151413121110987654321VSS XTAL1XTAL2T1/P3.5TO/P3.4TXD/P3.1RXD/P3.0RST/VPD P1.7P1.6P1.5P1.4P1.3P1.2P1.1P1.0INT0/P3.2INT1/P3.3P2.0P2.1P2.2P2.3P2.4P2.5P2.6P2.7P0.7P0.6P0.5P0.4P0.3P0.2P0.1P0.0VCC EA/VPP ALE/PROG PSEN RD/P3.7WR/P3.6电源引脚接地引脚复位信号P1口P0口P3口P2口图2-1单片机的引脚排列和功能3.单片机最小系统单片机最小系统是单片机正常工作的最小硬件要求,包括供电电路、时钟电路、复位电路,如图3-1所示。
图3-1 单片机的最小应用系统判断单片机芯片及时钟系统是否正常工作有一个简单的办法,就是用万用表测量单片机晶振引脚(18、19脚)的对地电压,以正常工作的单片机用数字万用表测量为例:18脚对地约2.24V ,19脚对地约2.09V 。
对于怀疑是复位电路故障而不能正常工作的单片机也可以采用模拟复位的方法来判断,单片机正常工作时第9脚对地电压为零,可以用导线短时间和+5V 连接一下,模拟一下上电复位,如果单片机能正常工作了,说明这个复位电路有问题。
计算机工作时,是在统一的时钟脉冲控制下一拍一拍地进行的。
这个脉冲是由单片机控制器中的时序电路发出的。
单片机的时序就是CPU在执行指令时所需控制信号的时间顺序,为了保证各部件间的同步工作,单片机内部电路应在唯一的时钟信号下严格地控时序进行工作,在学习51单片机的时序之前,我们先来了解下时序相关的一些概念。
既然计算机是在统一的时钟脉冲控制下工作的,那么,它的时钟脉冲是怎么来的呢?要给我们的计算机CPU提供时序,就需要相关的硬件电路,即振荡器和时钟电路。
我们学习的8051单片机内部有一个高增益反相放大器,这个反相放大器的作用就是用于构成振荡器用的,但要形成时钟,外部还需要加一些附加电路。
8051单片机的时钟产生有以下两种方法:1. 内部时钟方式:利用单片机内部的振荡器,然后在引脚XTAL1(18脚)和XTAL2(19脚)两端接晶振,就构成了稳定的自激振荡器,其发出的脉冲直接送入内部时钟电路,外接晶振时,晶振两端的电容一般选择为30PF左右;这两个电容对频率有微调的作用,晶振的频率范围可在1.2MHz-12MHz之间选择。
为了减少寄生电容,更好地保证振荡器稳定、可靠地工作,振荡器和电容应尽可能安装得与单片机芯片靠近。
2. 外部时钟方式:此方式是利用外部振荡脉冲接入XTAL1或XTAL2。
HMOS和CHMOS单片机外时钟信号接入方式不同,HMOS型单片机(例如8051)外时钟信号由XTAL2端脚注入后直接送至内部时钟电路,输入端XTAL1应接地。
由于XTAL2端的逻辑电平不是TTL的,故建议外接一个上接电阻。
对于CHMOS型的单片机(例如80C51),因内部时钟发生器的信号取自反相器的输入端,故采用外部时钟源时,接线方式为外时钟信号接到XTAL1而XTAL2悬空。
如下图外接时钟信号通过一个二分频的触发器而成为内部时钟信号,要求高、低电平的持续时间都大于20ns,一般为频率低于12MHz的方波。
片内时钟发生器就是上述的二分频触发器,它向芯片提供了一个2节拍的时钟信号。
51单片机基本结构详解1.什么是单片机单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU 、随机存储器RAM 、只读存储器ROM 、多种I/O 口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调试电路电路、模拟多路转换器、A/D 转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统。
图1-1 单片机外形图2.单片机的引脚排列常用的单片机有40个引脚,其排列和功能如图2-1所示。
外ROM读选通信号外接晶体引线端地址锁存控制引脚内外ROM选择引脚21222324252627282930313233343536373839402019181716151413121110987654321VSS XTAL1XTAL2T1/P3.5TO/P3.4TXD/P3.1RXD/P3.0RST/VPD P1.7P1.6P1.5P1.4P1.3P1.2P1.1P1.0INT0/P3.2INT1/P3.3P2.0P2.1P2.2P2.3P2.4P2.5P2.6P2.7P0.7P0.6P0.5P0.4P0.3P0.2P0.1P0.0VCC EA/VPP ALE/PROG PSEN RD/P3.7WR/P3.6电源引脚接地引脚复位信号P1口P0口P3口P2口图2-1单片机的引脚排列和功能3.单片机最小系统单片机最小系统是单片机正常工作的最小硬件要求,包括供电电路、时钟电路、复位电路,如图3-1所示。
图3-1 单片机的最小应用系统判断单片机芯片及时钟系统是否正常工作有一个简单的办法,就是用万用表测量单片机晶振引脚(18、19脚)的对地电压,以正常工作的单片机用数字万用表测量为例:18脚对地约2.24V ,19脚对地约2.09V 。
对于怀疑是复位电路故障而不能正常工作的单片机也可以采用模拟复位的方法来判断,单片机正常工作时第9脚对地电压为零,可以用导线短时间和+5V 连接一下,模拟一下上电复位,如果单片机能正常工作了,说明这个复位电路有问题。