导数在生活中的应用例子
- 格式:docx
- 大小:36.79 KB
- 文档页数:2
浅谈导数在实际生活中的一些应用
导数是分析学的重要概念,它可以帮助我们深入研究函数的性质及其变化情况。
其中最重要的是:它可以帮助我们求函数的增减趋势,而增减趋势和曲线形状联系紧密,可以为求最值提供有力的支持。
因此,导数(例如求最值问题)在实际生活中有许多重要的应用。
(1)导数在经济学中有着广泛的应用,从投资策略到税制设计都离不开它。
例如:利润最大化问题,可以使用导数(求利润函数的导数为零);关于税制设计,可以根据函数的导数的特点来制定出最优的策略等。
(2)在多元函数极值优化中,可以使用多元导数来定位函数极值。
例如:设计种植结构时,可以使用多元导数求一个准确的极值点。
(3)导数在物理学中也有广泛的应用,例如:求力矩与角度的关系,由导数可以轻松求出最大力矩角度;求流体压力场、温度场等,均可以利用导数研究局部变化情况,从而有效地分析问题。
导数在实际问题中的应用例1在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 箱高602xh -=cm ,解法一:设箱底边长为x cm ,则得箱子容积260)(322xx h x x V -== )600(<<x .23()602x V x x '=-)600(<<x 令23()602x V x x '=-=0,解得 x=0(舍去),x=40, 并求得 V(40)=16 000由题意可知,当x 过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm 时,箱子容积最大,最大容积是16 000cm 3解法二:设箱高为x cm ,则箱底长为(60-2x )cm ,则得箱子容积x x x V 2)260()(-=)300(<<x .(后面同解法一,略) 由题意可知,当x 过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数260)(322x x h x x V -==、x x x V 2)260()(-=在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?解:设圆柱的高为h ,底半径为R ,则表面积S=2πRh+2πR 2由V=πR 2h ,得2V h R π=,则S(R)= 2πR 2V R π+ 2πR 2=2V R+2πR 2令 22()Vs R R'=-+4πR=0 解得,从而h=2VR π即h=2R , 因为S(R)只有一个极值,所以它是最小值 答:当罐的高与底直径相等时,所用材料最省变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S =2Rh π+22R π⇒h =RR S ππ222-⇒V (R )=RR S ππ222-πR 2=3221)2(21R SR R R S ππ-=- )('R V )=026R S π=⇒ ⇒R h R Rh R 222622=⇒+=πππ.例3已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为q p 8125-=.求产量q 为何值时,利润L 最大? 分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格.由此可得出利润L 与产量q的函数关系式,再用导数求最大利润. 解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭,利润221125(1004)2110088L R C q q q q q ⎛⎫=-=---=-- ⎪⎝⎭(0100)q << 1214L q '=-+ 令0L '=,即12104q -+=,求得唯一的极值点84q =答:产量为84时,利润L 最大。
导数在实际生活中的应用举例
1. 工程设计中:当设计一个桥梁时,需要考虑桥梁的结构,桥梁的载重量,以及桥梁的弯曲变形,而对于桥梁的弯曲变形,需要使用导数求解,以此来确定桥梁的设计参数。
2. 地质勘探中:当地质勘探时,需要知道地质结构的变化,以及地质变化的趋势,而这些变化的趋势,都可以使用导数来求解。
3. 气象预报中:当气象预报时,需要知道气象要素的变化趋势,以及气象要素的变化速度,这些变化的速度,都可以使用导数来求解。
导数在实际生活中的运用导数是微积分中的重要概念,它描述了函数在某一点上的变化率。
导数在实际生活中有许多应用,例如:1. 物理学:导数被广泛应用于物理学中的运动学和动力学。
导数可以描述物体在某一时刻的加速度和速度,以及其位置和速度之间的关系。
例如,在抛物线运动中,导数可以用来描述物体在不同时间点的速度和加速度,从而可以预测物体的轨迹。
2. 经济学:导数在经济学中的应用非常广泛。
例如,在微观经济学中,导数可以用来描述供求关系、生产函数和成本函数。
在宏观经济学中,导数可以用来描述经济增长率、通货膨胀率和失业率等关键绩效指标。
3. 工程学:导数在工程学中的应用也非常广泛。
例如,在电力工程中,导数可以用来描述电流的变化率和电压的变化率,从而可以预测电路的性能。
在机械工程中,导数可以用来描述速度和加速度等关键参数,从而可以预测机械元件的性能。
4. 生物学:导数在生物学中的应用也很重要。
例如,在生物医学中,导数可以用来描述药物的代谢率和药物的效果,从而可以设计更有效的药物。
在生态学中,导数可以用来描述物种群的增长率和灭绝率,从而可以预测生态系统的稳定性和可持续性。
5. 计算机科学:导数在计算机科学中的应用也非常广泛。
例如,在计算机图形学中,导数可以用来定义曲线和曲面,从而可以绘制出复杂的图形。
在人工智能中,导数可以用来设计更高效的算法,例如反向传播算法用于神经网络的训练。
总之,导数在实际生活中有多种应用,涵盖了许多不同的领域,包括物理学、经济学、工程学、生物学和计算机科学。
了解导数的应用有助于我们更好地理解和应用微积分的原理。
例谈导数的几个简单的应用王耀辉高中阶段学习导数以后,常常把导数作为研究函数单调性、极大(小)值、最大(小)值和解决生活中优化问题等来运用.实际上,它还有其他方面更多的应用.本文就根据高中学过的一些内容,列举了导数的几个简单的应用,供读者学习时参考.1.利用导数的定义求极限 在一些教辅资料、高考题中,出现了一类特殊极限求值问题,最常见的是00型,感觉不好求.若能灵活运用导数的定义,问题便会迎刃而解.例1.求值:(1)0sin lim x x x →,(2)0ln(1)lim x x x→+. 解:(1)根据导数的定义,该式实际上为求函数()sin f x x =在点0x =处的导数. 所以00sin sin sin 0lim =lim x x x x x x→→-00(sin )|cos |cos 01x x x x =='====. (2)根据导数的定义,该式实际上为求函数()ln(1)f x x =+在点0x =处的导数. 所以000ln(1)1lim=[ln(1)]||11x x x x x x x ==→+'+==+. 例2.(2010年全国卷文科21题)设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.解:由已知得()(1)x f x x e ax =--≥0(x ≥0),即1x e ax --≥0(x ≥0), 当0x =时,a R ∈;当0x >时,分离参数得1x e a x -≤(0x >),令1()x e g x x-=(0x >),求导得21()x x xe e g x x-+'=(0x >),再令()1x x h x xe e =-+(0x >),则()0x h x xe '=>(0x >),∴()1x x h x xe e =-+在(0,)+∞上递增,∴()(0)0h x h >=,∴()0g x '>,∴1()x e g x x-=在(0,)+∞上递增.∴0()lim ()x g x g x →>,所以0lim ()x a g x →≤.因为00001lim ()=lim =lim 0x x x x x e e e g x xx →→→---00()||1x x x x e e =='===,所以1a ≤. 综上所述,实数a 的取值范围为1a ≤.2.利用函数极值点导数为零的性质,在三角函数中求值例3.已知()sin 2cos 2()f x a x x a R =+∈图像的一条对称轴方程为2x π=,则a 的值为( )A .12B C .3 D .2 解析:由于三角函数的对称轴与其曲线的交点为极值点,所以由()2cos 22sin 2f x a x x '=-,得()2cos 2sin =0266f a πππ'=-,故3a =. 例4.已知函数()cos f x x x =的图像向左平移ϕ(0)ϕ>个单位所得图像对应的函数为偶函数,则ϕ的最小值是( )A .6πB .3πC .23πD .56π解析:设函数()f x 图像向左平移ϕ(0)ϕ>个单位后的函数解析式为:()cos())g x x x ϕϕ=++,由于()g x 为偶函数,所以(0)0g '=.又()sin())g x x x ϕϕ'=-+-+,所以sin 0ϕϕ-=,tan ϕ=ϕ的最小值为23π.例5.已知2cos sin x x -=,求tan x 的值.解析:设()2cos sin f x x x =-,则曲线()2cos sin f x x x =-过点(,t .由于2cos sin )x x x x -=+cos cos sin )x x ϕϕ=+)x ϕ=+,其中cos ϕϕ==所以函数()2cos sin f x x x =-在点(,t 处取极小值,导数为零.即()2sin cos 0f t t t '=--=,所以1tan 2t =-,从而1tan 2x =-.3.导数在数列求和中的应用例6.已知数列{}n a 的通项为12n n a n -=⋅,求数列{}n a 前n 项的和n S .解析:令2x =,则11ni i i x -=⋅∑1()n i i x ='=∑12(1)1(1)=1(1)nn n x x n x n x x x +'⎡⎤--++⋅=⎢⎥--⎣⎦所以n S 121(1)22=(12)n n n n +-+⋅+⋅-1=1(1)22n nn n +-+⋅+⋅4.导数在二项式中的应用例7.证明:1231232n n n n n n C C C nC n -+++⋯+=⋅.证明:令012233(1)n n nn n n n n x C C x C x C x C x +=+++++…,对等式两边求导,得:1121321(1)23n n n n n n n n x C C x C x nC x --+=++++…, 令1x =,代入上式即得1123223n n n n n n n C C C nC -⋅=+++⋯+,即1231232n n n n n n C C C nC n -+++⋯+=⋅.5.导数在三角恒等变换公式中的应用在三角恒等变换公式中,公式多,不易记,应用导数可以将这些恒等式进行沟通.(1)两角和、差的三角函数公式cos cos cos sin sin αβαβαβ-=+(),①视α为变量,β为常量,对等式①两边求导,得sin()sin cos cos sin αβαβαβ--=-+即sin()sin cos cos sin αβαβαβ-=-,②反过来,视α为变量,β为常量,对等式②两边求导,得cos cos cos sin sin αβαβαβ-=+()故利用上述求导方法有:cos cos cos sin sin αβαβαβ±=()αα对求导对求导sin()sin cos cos sin αβαβαβ±=±(2)二倍角公式 22cos 2cos sin ααα=-αα对求导对求导sin 22sin cos ααα=(3)积化和差公式 1sin cos [sin()sin()]2αβαβαβ⋅=++- αα对求导对求导1cos cos [cos()cos()]2αβαβαβ⋅=++-, 1cos sin [sin()sin()]2αβαβαβ⋅=+-- αα对求导对求导1sin sin [cos()cos()]2αβαβαβ⋅=-+--. 当然,导数的应用不只这些,本文只是抛砖引玉,有兴趣的读者还可以继续探索.。
导数在生活中应用例子
导数是微积分中的一个重要概念,它在生活中有着广泛的应用。
导数可以帮助我们理解和解决许多实际问题,比如物体的运动、变化率的计算等。
下面我们就来看一些导数在生活中的应用例子。
首先,导数可以帮助我们理解物体的运动。
比如一辆汽车在高速公路上行驶,我们可以通过对汽车的位置随时间的变化进行求导,来得到汽车的速度。
这样我们就可以通过导数来计算汽车的加速度、减速度等运动状态,从而更好地理解汽车的行驶情况。
其次,导数还可以用来计算变化率。
比如在经济学中,我们可以通过对某一商品的需求量随价格的变化进行求导,来得到需求量对价格的弹性。
这样我们就可以通过导数来计算商品的价格弹性,从而更好地了解市场需求的变化情况。
另外,导数还可以帮助我们优化问题。
比如在工程中,我们可以通过对某一工艺的成本函数进行求导,来得到成本函数的最小值点。
这样我们就可以通过导数来优化工艺成本,从而更好地提高工程效率。
总之,导数在生活中有着广泛的应用。
它可以帮助我们理解物体的运动、计算变化率、优化问题等,对于我们的生活和工作都有着重要的意义。
因此,学好导数对于我们更好地理解和解决实际问题是非常重要的。
希望大家能够在学习导数的过程中,能够更加深入地理解它在生活中的应用。
应用导数求解实际问题的例子以下是一些应用导数求解实际问题的例子:1. 假设一张长方形的长为x,宽为y,且其周长为20个单位长度。
求该长方形的最大面积。
解析:题目要求我们求最大面积,这意味着需要优化函数A=xy,其中x和y都是长度单位。
由于周长为20个单位长度,可以写出等式2(x+y)=20,即x+y=10。
这个等式可以用来解出一个变量,例如,y=10-x。
现在我们可以将y代入面积函数中,从而得到A=x(10-x)=10x-x^2。
此时,我们需要求导并令导数等于零,以便找到函数的极值点。
求导后得到A' = 10 - 2x,令A'等于零,可以求得x=5,这是A的最大值点。
将x=5代入原函数,得到A=25,因此该长方形的最大面积为25平方单位长度。
2. 假设你正在绕椭圆形的操场跑步,其中长轴为6个单位长度,短轴为4个单位长度。
你的速度是每秒8个单位长度,且沿椭圆形跑道以正方向移动。
在点(2,0)处你的方向是多少度?解析:该问题需要我们求解椭圆形上的切线,因此需要将椭圆的参数方程与速度向量表示为函数,然后取导数。
对于该椭圆形,参数方程为x=3cos(t),y=2sin(t),其中t是参数。
速度向量可以表示为v=<dx/dt, dy/dt>,即v=<-3sin(t), 2cos(t)>。
现在,在点(2,0)处,即当t=0时,我们可以求出速度向量的大小为2sqrt(5)个单位长度。
椭圆形上的切线的斜率为dy/dx,可以通过求解dy/dt和dx/dt的比率来得到。
因此,dy/dx=dy/dt/dx/dt= (2cos(t)) / (-3sin(t))。
将t=0代入该公式,可以求得dy/dx=-2sqrt(5)/3。
最后,用反正切函数找到与这个斜率相对应的角度,这个角度就是切线的方向角。
因此,切线的方向角为arctan(-2sqrt(5)/3)≈-68.2度。
由于题目中要求以正方向为基础,因此角度为360-68.2≈291.8度。
高中数学中的导数应用案例全面解析与计算导数是高中数学中的一个重要概念,在不同的数学问题中都有广泛的应用。
本文将通过一些具体案例,全面解析和计算导数的应用,以帮助读者更好地理解和应用导数。
案例一:汽车行驶问题假设一辆汽车以恒定的速度行驶,车速为v(t)(单位:m/s)。
我们需要求出汽车行驶过程中的加速度a(t)。
根据导数的定义,加速度a(t)可以表示为车速v(t)对时间t的导数,即a(t) = dv(t)/dt。
由此,我们可以通过求车速对时间的导数得到加速度。
在具体计算中,我们可以用一个具体的函数来描述车速v(t)的变化规律。
例如,假设车速v(t) = 2t + 3,其中t为时间(单位:s)。
根据导数的计算规则,这个函数的导数即为加速度。
对v(t)进行求导,有:dv(t)/dt = d(2t + 3)/dt = 2因此,这辆汽车的加速度恒定为2 m/s²。
案例二:曲线的切线问题假设有一条曲线y = f(x),我们需要求出该曲线在某一点P(x0, y0)处的切线斜率k。
根据导数的定义,斜率k可以表示为曲线y = f(x)在点P处的斜率,即k = dy/dx |x=x0。
其中,dy/dx表示y对x的导数,"|"表示在x=x0的意思。
在实际计算中,我们首先需要确定曲线函数f(x)的具体形式,以及点P(x0, y0)的坐标。
然后,对曲线函数进行求导,并将x的值代入导函数,即可得到切线斜率k的值。
以一个具体的例子来说明。
假设曲线为y = x²,要求在点P(2, 4)处的切线斜率k。
首先,对曲线函数y = x²进行求导,得到导函数dy/dx = 2x。
然后,将点P(2, 4)中的x坐标代入导函数2x,即可得到切线斜率:k = dy/dx |x=2 = 2(2) = 4所以,在曲线y = x²的点P(2, 4)处,切线的斜率为4。
通过以上两个案例,我们可以看到导数在不同数学问题中的应用。
1.加速度:在物理学中,速度的导数是加速度。
在现实生活中,当我们在汽车或自行车上加速或减速时,我们可以感受到加速度的变化。
2.利率变化:在经济学中,利率是一个关键变量,它可以表示为借款利率或存款利率的导数。
当利率上升时,我们可以看到贷款成本增加,投资可能会减少,而存款收益可能会增加。
3.生长速度:在生物学和生态学中,物种数量的变化可以表示为种群增长率的导数。
这个概念被用来研究生物多样性、生态系统的稳定性以及种群的变化。
例如,研究一种鸟类或鱼类的种群增长率,可以了解它们是否正常繁殖或受到威胁。
导数在生活中应用实例分析导数知识是学习高等数学的基础,它在自然科学、工程技术及日常生活等方面都有着广泛的应用.导数是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不在天文、物理、工程领域有着广泛的应用,而且在日常生活及经济领域也是逐渐显示出重要的作用.类型一环境问题例1烟囱向其周围地区散落烟尘造成环境污染,已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比,而与该烟囱喷出的烟尘量成正比.现有A、B两座烟囱相距20km,其中B座烟囱喷出的烟尘量是A的8倍,试求出两座烟囱连线上的点C,使该点的烟尘浓度最低.分析由题意知要确定某点的烟尘浓度最低,显然其烟尘浓度源自这两座烟囱,与其距离密切相关,因此可考虑先设出与某个烟囱的距离,从而表示出相应的烟尘浓度,再确定其最小值即可.解不妨设A烟囱喷出的烟尘量是1,而B烟囱喷出的烟尘量为8,设AC=x(其中0<x<20),所以BC=20-x,依题意得点C处的烟尘浓度y=k/×2+k・8/(20-x)2(其中k是比例系数,且k>0),y′=2k(3x-20)(3x2+400)x2(20-x)2.令y′=0得(3x-20)(3x2+400)=0又0<x<20,所以x=20/3因为当x∈(0,20/3)时,y′<0;当x∈(20/3,20)时,y′>0,故当x=20/3时,y取得最小值,即当C位于距点A为20/3km时,使该点的烟尘浓度最低.类型二工程造价问题例2某地为了开发旅游资源,欲建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=25,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为a2万元/km.当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元.已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=3’km.(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;(3)在AB上是否存在两个不同的点D′、E′,使沿折线PD′E′O修建公路的总造价小于(2)中得到的最小总造价,证明你的结论.分析由题意知要求修建公路的总造价最小值,可以先建立相应的总造价函数关系式,再确定其最小值即可.解(1)如图,PH⊥α,HB"α,PB⊥AB,由三垂线定理逆定理知,AB⊥HB,所以∠PBH是山坡与α所成二面角的平面角,则∠PBH=θ,PB=PHsinθ=1.设BD=x,0≤x≤1.5.则PD=x2+PB2&=x2+1&∈[1,2].记总造价为f1(x)万元,据题设有f1(x)=(PD2+1+12AD+AO)a=(x2-12x+114+3& )a=x-14(2a+4316+3&) a.当x=14,即BD=14(km)时,总造价f1(x)最小;(2)设AE=y,0≤y≤54,总造价为f2(y)万元,根据题设有f2(y)=PD2+1+y2+3&+1232-14则f′2(y)=yy2+3&-12a,由f′2(y)=0,得y=1;当y∈(0,1)时,f′2(y)<0,f2(y)在(0,1)内是减函数;当y∈(1,54)时,f′2(y)>0,f2(y)在(1,54)内是增函数.故当y=1,即AE=1时总造价f2 (y)最小,且最小总造价为6716a万元;(3)不存在这样的点D′、E′.事实上,在AB上任取不同的两点D′、E′.为使总造价最小,E显然不能位于D′与B之间.故可设E′位于D′与A之间,且BD′=x1,AE′=y1,0≤x1+y2≤32,总造价为S万元,则S=x21-x12+y21+3&-y12+114+ a.类似于(1)、(2)讨论知,x21-x12≥-116,y21+3&-y12≥32,当且仅当x1=14,y1=1同时成立时,上述两个不等式等号同时成立,此时BD′=14,AE=1,S取得最小值6716a,点D′、E′分别与点D、E重合,所以不存在这样的点D′、E′,使沿折线PD′E′O修建公路的总造价小于(2)中得到的最小总造价.类型三最省钱车速问题例3统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=1128000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?分析要求确定从甲地到乙地要耗油量,这就涉及行驶时间与车速,因此根据题意先写出耗油量与车速间的关系,再利用导数知识确定其最小值.解(1)当x=40时,汽车从甲地到乙地行驶了10040=2.5小时,要耗油1128000×403-380×40++) 8×2.5=17.5(升).所以当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升;(2)当速度为x千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h(x)升,依题意得h(x)=(1128000x3-380x+8)・100x=11280x2-800x-154(0<x≤120),h′(x)=x640-800x2=x3-803640x2(0<x≤120)令h′(x)=0得x=80.当x∈(0,80)时,h′(x)<0,h(x)是减函数;当x∈(80,120)时,h′(x)>0,h(x)是增函数.当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.所以当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升..四、借助物理知识排列组合中有分类计数原理和分步记数原理.如果把这两个原理分别理解成电学中的并联和串联,并用此思想解答某些问题,显得特别方便快捷.例4甲、乙、丙3人独立地破译1个密码,他们能译出此密码的概率分别为15、13、14,则3人合作能译出此密码的概率为.解析3人破译密码,是相互独立而不互斥的事件,可以看成是并联问题,只要其中有1个或多人译出密码,问题即解决,故3人合作能译出密码的概率为:P(A+B+C)=1-P(A・B・C)=1-P(A)・P(B)・P(C)=1-(1-1/5)(1-1/3)(1-1/4)=3/5.五、借助表格知识运用表格解概率问题,可以使复杂问题条理化、抽象问题直观化,从而达到化难为易的目的.例5一个均匀的正方体玩具的各个面分别标有数字1,2,3,4,5,6,将这个玩具先后抛掷两次,试问:(1)向上的数之和为5的概率是多少?(2)向上的数之和至少是9的概率是多少?(3)向上的数之和为多少时概率最大?解析将正方体玩具先后抛掷两次可能出现的36种结果用图表来表示(如图),所有的答案都可在图形中寻找.(1)向上的数之和为5的概率是436=19;(2)向上的数之和至少是9的概率是10/36=5/18;(3)由图知向上的数之和为7时有6种情形,概率最大,最大概率为1/6.总结除了上诉例子,对经济学家来说,对其经济环节进行定量分析是非常必要的,而将数学作为分析工具,不仅可以给企业经营者提供客观、精确的数据,而且在分析的演绎和归纳过程中,可以给企业经营者提供新的思路和视角,也是数学应用性的具体体现。
§2—6 导数应用举例我们知道,函数()x f y =的导数()x f '的一般意义,就是表示函数对自变量的变化率,因此,很多非均匀变化的变化率问题都可以应用导数来研究。
在()x f y =具有不同的实际意义时,作为变化率的导数就具有不同的实际意义。
一、 导数在物理上的应用举例 (一) 导数的力学意义设物体作变速运动的方程为()t s s =,则物体运动的速度()t v 是位移()t s s =对时间t 的变化率,即位移s 对时间t 的一阶导数()()dtdst s t v ='=;此时,若速度v 仍是时间t 的函数()t v ,我们可以求速度v 对时间t 的导数()t v ',用a 表示,就是()().22dtsd t s t v a =''='=在力学中,a 称为物体的加速度,也就是说,物体运动的加速度a 是位移s 对时间t 的二阶导数。
例1某物体的运动方程为()22310212秒米取g gt t s -=,求2=t 秒时的速度和加速度。
解: 根据导数的力学意义,得()()()()()()()().141024242,420242242,12,62秒米秒米=-=-==-=-=-=''=-='=g a g v g t t s t a gt t t s t v(二)导数的电学意义设通过某导体截面的电量q 是()t q q =,则通过该导体的电流()t I 是电量()t q q =对时间t 的变化率(单位时间内通过的电量),即电量的一阶导数()().dtdqt q t I ='= 例2设通过某导体截面的电量()ϕω+=t A q sin (库仑),其中ϕω,,A 为常数,时间t 的单位为秒,求通过该截面的电流().t I解: 因为()ϕω+=t A q sin ,所以()()()[]()ϕωωϕω+='+='=t A t A t q t I cos sin (安培)。
导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。
这
就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。
2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。
二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。
2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。
三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。
2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。