概率及其意义
- 格式:ppt
- 大小:3.29 MB
- 文档页数:19
简述概率及其代表的意义
概率是用来表达一件事情发生的可能性的量度,可以用来研究随机现象发生的规律。
概率以数字表述,单位是百分比或者分数。
它被称为某一事件发生的“可能性”,是我们研究和量化不确定事件发生可能性的一种手段。
概率的本质是“经验概率”,它是根据不同的预期(经验)考虑无法精确预测的结果,以计算出某一事件发生的比例或几率的概念。
它实际上是一种数字化的描述,即事件发生的可能性是多少。
另外,概率也可以用来描述统计数据的分布规律。
它可以描述不同类型数据出现的概率,并为任何因素及其相关因素提供有价值的指导建议。
总之,概率可以看作是不确定事件发生可能性的一种量化,它基于经验概率的概念,代表的是某一事件发生的几率,可以用来对可能出现的结果进行预测,用它分析样本数据,以得出有价值可靠的统计结论。
概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。
概率的基本概念概率是概念一层次的产物,是对人们观察、实验中一系列结果出现的可能性进行度量的数值。
概率理论是一种基本的数理工具,广泛应用于统计学、自然科学、社会科学以及工程技术等领域。
在本文中,将介绍概率的基本概念及其应用。
一、概率的定义概率的定义一直是概率论的核心问题之一。
根据古典概率、频率概率和主观概率三种学派的观点,概率可以有多种定义方式。
1. 古典概率古典概率是一种基于理论计算或样本空间的概率定义方法。
它假设所有可能的结果是等可能发生的,概率可通过事件发生的次数与样本空间大小的比例来计算。
2. 频率概率频率概率是一种基于实际观测结果的概率定义方法。
它通过统计实验重复进行,事件发生的频率趋于一个稳定值,这个稳定值就是概率。
3. 主观概率主观概率是一种基于主观判断的概率定义方法。
它依赖于个体的主观信念、经验和判断,是一种主观确定的概率。
概率的定义方式有时候是灵活的,可以根据具体情况选择合适的定义方法。
概率具有多种基本性质,下面介绍几个重要的性质。
1. 非负性概率的取值范围在[0,1]之间,即概率值不会小于0,也不会大于1。
2. 规范性样本空间的概率为1,即必然事件的概率为1。
3. 可加性对于两个不相容事件A和B,它们的概率之和等于两个事件分别发生的概率的和。
4. 完备性对于样本空间Ω中的任意事件A,事件A发生的概率加上事件A不发生的概率等于1。
三、概率的计算方法概率的计算可以通过多种方法进行,根据问题的特点选择不同的计算方法。
1. 古典概率的计算古典概率的计算方法是最简单的,只需要将事件发生的可能性个数除以样本空间的可能性个数即可。
条件概率是在给定其他事件已经发生的条件下,某一事件发生的概率。
条件概率的计算可以通过贝叶斯定理进行。
3. 边际概率的计算边际概率是指多个事件中某一事件发生的概率。
边际概率的计算可以通过联合概率和条件概率进行。
四、概率的应用概率在现实生活中具有广泛的应用,下面介绍几个常见的概率应用场景。
目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。
《25.2.1概率及其意义》教学设计福建省泉州实验中学陈学亮一.内容和内容解析内容:华东师大版九年级上册“25.2随机事件的概率”(第一课时:概率及其意义)内容解析:不确定现象大量存在于自然界和人类社会中,概率正是研究这种现象、揭示其统计规律并帮助我们形成决策的数学工具.随着现代科学技术的发展,概率在自然科学、社会科学和工农业生产中得到越来越广泛的应用.掌握概率的基本知识和思想方法已成为现代社会公民的必备素养,因此它是初中数学的一个重要内容,也是数学研究的一个重要分支.本节内容是“概率及其意义”,是在学生学习了必然事件、随机事件、不可能事件知识的基础上的进一步研究.本节课将学习从定量的角度去刻画随机事件发生可能性大小的概念——概率.教材这样编排其主要意图有二:1.遵从概率的产生规律,从概率的古典定义开始探究,学生易于接受,同时符合学生的认知规律.2.为后面学习列举法求概率及用频率估计概率奠定基础,起到承上启下的作用.因此本节课的教学重点是概率的意义以及学会运用分析的方法在较为简单的问题情境下计算概率.二.目标和目标解析目标:1.知识与技能:了解概率的概念,理解随机事件的概率公式,会用分析的方法计算简单随机事件的概率.2.过程与方法:通过对现实生活中的“抛掷硬币”、“投掷骰子”、“转转盘”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法,体验数学活动与现实生活的联系.3.情感、态度与价值观:培养学生的协作能力和探究能力,激发学生的好奇心和求知欲,提升学生的数据分析和数学建模两大核心素养.目标解析:1.通过分析实际生活中随机事件发生可能性的大小来认识概率是反映随机事件发生可能性大小的量.2.经历动手操作、想象、归纳和总结等活动理解等可能事件,并掌握等可能事件概率的一般求法,能够应用到实际生活当中去.3.在探究概率的过程中,培养学生的动手能力、协作能力和探究能力,发展他们的概率观念和应用意识,同时激发他们的好奇心和求知欲,培养他们勇于探索的精神、交流与合作的精神.三.教学问题诊断分析学生已经理解了随机事件发生的可能性有大有小,本节课用一个数值去刻画这个大小,就是概率.概率的意义具有一定的抽象性,从定性到定量的转化,学生需要一个较长时期的认识过程,对概率的认识和理解会随着学生自身年龄的增长以及知识面和生活经验的延伸而发展.对于抛硬币和掷骰子的试验,计算相关事件的概率对学生来说是比较容易接受的,但学生容易忽略对求概率方法适用范围的判断.目前,求概率时试验要满足以下条件:(1)每一次试验中,可能出现的结果只有有限种;(2)每一次试验中,各种结果出现的可能性相等.例如:从男女学生数量不等的班级里随机的抽取一名学生是男学生的概率,有同学认为所抽取的要么是男同学要么是女同学,抽到男女同学的结果都有可能发生,因而抽到男同学的概率等于抽到女同学的概率为21. 四.重难点分析教学重点:1.概率的定义. 2.求简单随机事件发生的概率.教学难点:对机会均等的结果的理解.五.教学支持条件分析为了加大课堂容量和学生的思维活动量,根据现代教学理论,本节课采用多媒体课件展示,利用EXCEL 软件进行了数据分析以及借助FLASH 软件制作频率折线图,这使得原本杂乱无章不便分析的数据直观化、形象化。
16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。
常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。
以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。
1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。
2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。
3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。
4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。
5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。
6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。
条件概率意义条件概率是概率论中非常重要的概念,它是指在已知某个事件发生的条件下,另一事件发生的概率。
在实际应用中,条件概率常常被用来计算风险和决策,如医学诊断、证券交易等。
下面将从概率的角度阐述条件概率的意义及其应用。
一、条件概率的概念条件概率可以用符号表示为P(A|B),表示在已知事件B发生的条件下,事件A发生的概率。
其中A和B都是事件,即某个结果的集合。
在条件概率中,A称为“后验事件”,表示发生了条件B之后,我们做的预测;B称为“先验事件”,表示我们已经知道的条件。
例如,我们想知道一枚硬币投掷3次,出现正面两次的概率。
根据全概率公式,我们知道投掷3次出现正面两次的概率为:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)其中,B1、B2、B3分别表示前两个正面,前两个反面,前一正一反的3种情况;A表示最终出现正面两次的情况。
假设我们知道前两次投掷出现了正面,那么B1事件就已经发生了。
此时,我们需要计算出A事件发生的概率,即已知B1的条件下,A事件的概率。
此时,B1称为先验事件,A称为后验事件,条件概率可表示为:P(A|B1) = P(出现正面|前两次投掷为正面) = 1/2二、条件概率的意义1. 表示预测的准确性条件概率给出了在已知某个条件的情况下,发生某个事件的概率。
它可以帮助我们对事件的发生进行预测,并用概率值表示这种预测的准确度。
在医学诊断中,医生可以根据病人的各种指标,如年龄、性别、症状等,计算出某种疾病的可能性。
这种可能性就是在已知一些条件下,得出的疾病的预测概率。
2. 评估风险和决策条件概率还可以用来评估风险和做出决策。
在证券交易中,投资者可以根据公司的财务报表、行业状况等信息,计算出某股票的预测收益率和风险系数。
根据这些概率值,投资者可以做出是否买入、卖出或持有的决策。
在保险业中,保险公司可以根据客户的年龄、健康状况等条件,计算出客户在未来出现意外的概率。
目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。
概率分布的涵义和意义概率分布是概率论中的一个重要概念,它描述了随机变量的所有可能取值及其对应的概率。
在统计学和概率论中,概率分布是研究随机变量性质的基础,具有广泛的应用和深远的意义。
概率分布的涵义概率分布是对随机变量的概率性质进行建模和描述的数学工具。
它通过给每个可能的取值分配一个概率值,来描述随机变量所有可能取值的概率分布情况。
概率分布可以用来计算事件发生的概率、预测未来的结果以及进行决策等。
概率分布的意义1. 描述随机事件的可能性:概率分布可以描述随机变量的所有可能取值及其对应的概率,通过概率分布可以知道每个事件发生的可能性大小。
这对于预测和决策具有重要意义。
2. 衡量随机事件的不确定性:概率分布可以衡量随机事件的不确定性。
当随机变量的概率分布较为集中时,说明事件发生的概率较高,不确定性较小;而当概率分布较分散时,说明事件发生的概率较低,不确定性较大。
3. 进行概率统计推断:概率分布可以用来进行概率统计推断。
通过已知的概率分布,可以计算出事件发生的期望值、方差、标准差等统计指标,进而对随机事件的性质进行推断和研究。
4. 模拟和预测随机事件:概率分布可以用来模拟和预测随机事件。
通过已知的概率分布,可以生成符合该分布的随机数序列,从而模拟和预测实际情况中的随机事件。
5. 优化决策和风险管理:概率分布可以用来进行决策优化和风险管理。
通过对随机变量的概率分布进行分析,可以基于最大概率或期望值等准则制定最优决策,并对决策结果的风险进行评估和管理。
常见的概率分布包括离散型分布和连续型分布。
离散型分布主要用于描述离散型随机变量,如伯努利分布、二项分布、泊松分布等;连续型分布主要用于描述连续型随机变量,如正态分布、指数分布、均匀分布等。
这些概率分布在实际问题中有广泛的应用,例如在金融领域中使用正态分布对资产收益进行建模和风险评估,在工程领域中使用指数分布对设备的寿命进行预测等。
总结起来,概率分布是概率论中的重要概念,它描述了随机变量的所有可能取值及其对应的概率。
概率的进一步认识知识点中
一、什么是概率
概率是一个变量,表示件事情发生的机率大小。
概率是数学中一种量度,也是一个抽象的概念,包含了多个事件的发生机率。
如果在一系列实验中,一个事件发生的次数越多,那么这种事件发生的可能性就越大,它具有一定的发生概率。
二、概率的定义
概率可以定义为一种事件发生的可能性,它可以通过实验测定和理论计算,可以量化描述一个事件的发生机率,用于计算任何事件是否发生。
常见的概率有绝对概率和相对概率。
绝对概率可以通过实验测定,就是一次实验中其中一种事件出现的频率与实验次数的比值,可用来测定当前实验中发生的概率。
而相对概率,是一种统计和概率比较的方法,它通过比较和计算两个事件发生概率的大小,来测定其中一个事件发生的概率。
三、概率的意义
概率是实际生活中一种重要的概念,它可以用来帮助我们确定事件发生的可能性,指导我们预测未来的情况,以及帮助我们分析从一些随机事件中受益。
此外,它对风险评估和经济分析也很有帮助。
四、概率的应用
概率可以应用于社会科学,金融学,数学,工程学,数据科学,生物学,医学等领域,常用于人们分析不确定的环境,了解系统变换,估计风险。
概率论是数学中的一个重要分支,研究随机事件发生的规律。
它是应用数学的一个重要工具,广泛应用于统计学、物理学、生物学等领域。
概率的基本概念概率是描述随机事件发生可能性的数值。
对于一个随机试验,试验的每一个结果都称为样本点。
样本空间是所有可能的样本点的集合。
而事件是样本空间的一个子集。
概率的基本公理有三个:非负性、规范性和可列加性。
非负性指概率必须是非负的数值,即大于等于0。
规范性指样本空间的概率为1,即必然事件的概率为1。
可列加性指如果两个事件互斥,则它们的概率可以相加。
概率的计算方法在概率论中,有三种常见的计算方法:古典概型、几何概型和统计概型。
古典概型适用于样本空间中的每个样本点发生的概率相等的情况。
例如,掷一枚公正的硬币,正面和反面出现的概率都是1/2。
几何概型适用于样本空间是一个连续的区间的情况。
例如,从一个范围为0到1的均匀分布随机选择一个数,落在某个子区间的概率可以用该子区间的长度表示。
统计概型适用于实际问题中,根据历史数据或样本数据进行估计的情况。
例如,根据过去的天气数据,预测明天下雨的概率。
条件概率和独立性条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。
条件概率可以用P(A|B)表示,读作“A在B发生的条件下的概率”。
独立性指两个事件的发生与否是相互独立的。
如果两个事件A和B是独立的,那么P(A|B) = P(A),即B的发生对A的发生没有影响。
条件概率和独立性是概率论中的重要概念,它们在实际问题的建模和分析中有着广泛的应用。
例如,在医学诊断中,根据症状来计算各种疾病的概率,可以通过条件概率来实现。
期望值和方差期望值是随机变量的平均值,用E(X)表示。
对于离散型随机变量,期望值可以通过每个取值与其对应的概率相乘再求和来计算;对于连续型随机变量,期望值可以通过对密度函数进行积分来计算。
方差是随机变量偏离其期望值的程度的度量,用Var(X)表示。
它等于随机变量与其期望值之差的平方的均值。
1.概率及其意义【知识与技能】通过试验,理解事件发生的可能性问题,感受理论概率的意义.【过程与方法】经历试验等活动过程,学会用分析的方法在较为简单的问题情境下预测概率.【情感态度】发展学生合作交流的意识和能力.【教学重点】运用分析的方法在较为简单的问题情境下预测概率.【教学难点】对概率的理解.一、情境导入,初步认识教师活动:拿出一枚硬币抛掷,提问:结果有几种情况?学生活动:拿出一枚硬币抛掷,发现结果只有两种情况——“出现正面”和“出现反面”,而且发生的可能性均等,各占50%的机会.教师引入:一个事件发生的可能性就叫做该事件的概率.学生联想:抛掷一枚硬币出现正面的概率是12,出现反面的概率是12.教师引导:可记作P(出现正面)=12,P(出现反面)=12.二、思考探究,获取新知抛掷一枚普通的六面体骰子,“出现数字为5”的概率为多少?学生回答:16,可记作P(出现数字5)=16.上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的,请看下面一个例子,见课本P136表25.2.1.学生活动:对表25.2.1中的问题进行试验.思路点拨:(1)关注的是哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的比就是所关注的结果发生的概率.【教学说明】引导学生在实验中寻找方法.问题情境1:课本P137问题1学生活动:分四人小组展开对“问题1”的试验,并从中得到规律:如果掷的次数很多,试验的频率渐趋稳定,平均每6次就有1次掷出“6”. 【教学说明】通过试验,让学生逐步计算一个随机事件发生的试验频率,并观察其中的规律性,从而归纳出试验概率趋于理论概率这一规律.例1见课本P 139例1思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P(抽到男同学名字)=12242112=; P(抽到女同学名字)=101121221204=<,得出结论为抽到男同学名字的概率大 【教学说明】让学生感受到古典概率的内涵以及计算方式.拓展延伸:课本P 140“思考”【教学说明】分小组进行讨论,然后再在全班进行发言.例2 见课本P 140例2思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=81243=,黑球16只,P(取出黑球)= 162243=.也可以这样计算黑球:P(取出黑球)=1-P(取出红球)=121-33=. 例3见课本P 140例3思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率,P 甲(取出黑球)843015==,P 乙(取出黑球)=80842902915=>,所以选乙袋成功机会大.三、运用新知,深化理解1.任意投掷均匀的骰子,4朝上的概率是______.2.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是______.3.一副扑克牌(去掉大王和小王),随机抽取一张,抽取红桃的概率是______.4.如图,有一个被等分为8个扇形的转盘,转动转盘,指针落在白色区域的概率是( )A.1B.1/3C.5/8D.3/85.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?(4)哪一个概率最大?【答案】1.1/6 2.6/13 3.1/4 4.C5.(1)1/9 (2)1/3 (3)5/9 (4)摸到黄球的概率最大四、师生互动,课堂小结1.什么叫概率?2.本节中的试验结果所产生的趋势与理论概率之间有什么关系?3.试验次数的大小与所得的“估计值”有什么关系?4.谈谈你对概率的理解和体会.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.通过抛掷硬币,用学生喜欢的掷骰子和扑克牌试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索,合作交流运用分析的方法预测概率,使学生掌握本节课的知识.学生在解决问题的过程中,提高了思维能力,增强思维的缜密性,并且培养了学生解决问题的能力和信心.。