天津大学金杰电磁场与电磁波 例题
- 格式:ppt
- 大小:520.00 KB
- 文档页数:10
1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。
解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。
电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。
B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。
C.梯度的散度恒为零。
D.一个标量场的性质可由其梯度来描述。
5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。
1、高斯定理求电场例2.2.2求真空中均匀带电球体的场强分布。
已知球体半径为a ,电 荷密度为ρ0。
解:(1)球外某点的场强(2)球内某点的场强2、安培环路定理求均匀分布磁场例2.3.2 求载流无限长同轴电缆产生的磁感应强度。
解 选用圆柱坐标系,则应用安培环路定理,得应用安培环路定律,得ar 0 r r E a V S E V S ⎰⎰=⋅d d 001ρε 03023414ρεπa E r r π=2303ra eE r ερ =( r ≥ a ) VS E V S ⎰⎰=⋅d d 001ρε 03023414ρεπr E r r π=003ερr eE r =(r < a )a b c()B e B φρ=(1)0aρ≤<取安培环路 ,交链的电流为 ()a ρ<22122ππI I I a a ρρ=⋅=21022πI B aρρμ=0122πI B eaφμρ=(2)a bρ≤<202πB I ρμ=022πIB eφμρ=(3)b c ρ≤<222232222b c I I I I c b c b ρρ--=-=--220322()2πI c B c b μρρ-=-2203222πI c B e c b φμρρ-=⋅-(4)cρ≤<∞40I =40B =3、拉普拉斯方程 点位 电场强度 书例3.1.3 习题3.74、双导体电容 球型电容例3.1.5 同轴线内导体半径为a ,外导体半径为b 均匀介质,求同轴线单位长度的电容。
解 设同轴线的内、外导体单位长度带电量分别为+ρl 和-ρl ,应用高斯定理可得到内外导体间任一点的电场强度为内外导体间的电位差故得同轴线单位长度的电容为练习:同心球形电容器的内导体半径为、外导体半径为b ,其间填充介电常数为ε的均匀介质。
求此球形电容器的电容。
解:设内导体的电荷为q ,则由高斯定理可求得内外 导体间的电场同心导体间的电压球形电容器的电容εa b 同轴线 ()2πl E eρρρερ=1()d d 2πb b la a U E e ρρρρρερ=⋅=⎰⎰ln(/)2πl b a ρε=12π(F/m)ln(/)l C U b a ρε==a bεo 4π4πr r 22qqD e ,E er rε==0011d ()4π4πba q qb aU E r a b abεε-==-=⋅⎰4πab q C U b aε==-当 时,∞→b 04πC aε=孤立导体球的电容5、电感例3.3.3b ,空气填充。
1、如图1-1,平板电容器间由两种媒质完全填充,厚度分别为1d 和2d ,介电常数分别为1ε和2ε,电导率分别为1σ和2σ,当外加电压0U 时,求分界面上的自由电荷密度。
解:设电容器极之间的电流密度为J ,则: 2211E E J σσ==11σJ E = ,22σJ E = 于是+=101σJd U 22σJd 即:22110σσd d U J +=分界面上的自由面电荷密度为:J E E n D n D s )1122(112212σεσεεερ-=-=-=)1122(σεσε-=22110σσd d U +2、一个截面如图2-1所示的长槽,向y 方向无限延伸,两则的电位是零,槽内∞→y ,0→ϕ,底部的电位为:0)0,(U x =ϕ。
求槽内的电位。
解:由于在0=x 和a x =两个边界的电位为零,故在x 方向选取周期解,且仅仅取正弦函数,即:)(sin an n k x n k n X π==在y 方向,区域包含无穷远处,故选取指数函数,在∞→y 时,电位趋于零,所以选取y n k e nY -= 由基本解的叠加构成电位的表示式为:∑∞=-=1sin n a y n e a x n n C ππϕ待定系数由0=y 的边界条件确定。
在电位表示式,令0=y ,得:∑∞==1sin 0n a x n n C U π⎰-==a n n aUdx a x n U a n C 0)cos 1(0sin 02πππ 当n 为奇数时, πn U n C4=,当n 为偶数时,00=C 。
最后,电位的解为:a y n e n a x n n U πππϕ-∑∞==5,3,1sin 043、在两导体平板(0=z 和d z =)之间的空气中传输的电磁波,其电场强度矢量)cos()sin(0x x k t z dE y e E -=ωπ其中x k 为常数。
试求:(1)磁场强度矢量H 。
(2)两导体表面上的面电流密度s J 。
电磁场与电磁波易考简答题归纳1、什么是均匀平面电磁波?答:平面波是指波阵面为平面的电磁波。
均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→H 的方向、振幅和相位不变的平面波。
2、电磁波有哪三种极化情况?简述其区别。
答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差 90或 270;(3)椭圆极化,振幅相位任意。
3、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。
答:002222=+∇=+∇→→→→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。
意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。
电场和磁场的分量由媒质决定。
4、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。
答:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρεμμεE H t H E tE J H )4(0)3()2()1(物理意义:A 、第一方程:时变电磁场中的安培环路定律。
物理意义:磁场是由电流和时变的电场激励的。
B 、第二方程:法拉第电磁感应定律。
物理意义:说明了时变的磁场激励电场的这一事实。
C 、第三方程:时变电场的磁通连续性方程。
物理意义:说明了磁场是一个旋涡场。
D 、第四方程:高斯定律。
物理意义:时变电磁场中的发散电场分量是由电荷激励的。
5、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。
答:(1)微分形式(2) 积分形式 物理意义:同第4题。
6、写出达朗贝尔方程,即非齐次波动方程,简述其意义。
答:→→→-=∂∂-∇J t A A μμε222,ερμε-=∂Φ∂-Φ∇→→222t物理意义:→J 激励→A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。
电磁场与电磁波计算题
可以提供一些例子,来帮助你进行电磁场与电磁波的计算题。
1. 查询一个电荷为2μC,距离为3m的点电荷产生的电场强度值。
根据库仑定律,电场强度E与该电荷q和距离r的关系为:
E = k*q/r^2
其中,k为电磁场常数(通常取9×10^9 N·m^2/C^2)。
代入已知数据可得:
E = (9×10^9 N·m^2/C^2) * (2×10^-6 C)/(3 m)^2 = 2×10^4 N/C。
2. 计算一个电流为5A,在距离2m处,产生的矩形线圈的磁场强度。
根据比奥-萨伐尔定律,矩形线圈的磁场强度B与电流I、线圈的匝数N和距离r的关系为:
B = (μ0 * I * N) / (2 * π * r)
其中,μ0为真空磁导率(μ0 = 4π×10^-7 T·m/A)。
代入已知数据可得:
B = (4π×10^-7 T·m/A) * (5 A) * (1 匝) / (2 * π * 2 m) = 1×10^-6 T。
3. 计算一个电磁波的频率,如果它的波长是3m。
电磁波速度c与频率f和波长λ的关系为:
c = f * λ
其中,c为光速(通常取3×10^8 m/s)。
代入已知数据可得:
f = c / λ = (3×10^8 m/s) / (3 m) = 10^8 Hz。