超松弛迭代法及其松弛因子的选取
- 格式:pdf
- 大小:670.84 KB
- 文档页数:22
线性代数方程组的数值解法讨论解线性方程组的方法,主要分为直接方法和迭代方法两种。
直接法是在没有舍入误差的假设下能在预定的运算次数内求得精确解。
而实际上,原始数据的误差和运算的舍入误差是不可以避免的,实际上获得的也是近似解。
迭代法是构造一定的递推格式,产生逼近精确解的序列。
对于高阶方程组,如一些偏微分方程数值求解中出现的方程组,采用直接法计算代价比较高,迭代法则简单又实用,因此比较受工程人员青睐。
小组成员本着工程应用,讨论将学习的理论知识转变为matlab 代码。
讨论的成果也以各种代码的形式在下面展现。
1 Jacobi 迭代法使用Jacobi 迭代法,首先必须给定初始值,其计算过程可以用以下步骤描述: 步骤1 输入系数矩阵A ,常熟向量b ,初值(0)x ,误差限ε,正整数N ,令1k =.步骤2 (0)11ni i ij jj ii j i x b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,(0)j x 代表(0)x 的第j 个分量。
步骤3 计算11ni i ij j j ii j i y b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,判断1max i i i n x y ε≤≤-<,如果是,则结束迭代,转入步骤5;否则,转入步骤4。
步骤4 判断k N =?如果是,则输出失败标志;否则,置1k k =+,i i x y ⇐,1,2,,i n =,转入步骤2。
步骤5 输出12,,n y y y 。
雅可比迭代代码function [x,k]=Fjacobi(A,b,x0,tol)% jacobi 迭代法 计算线性方程组% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300次给出警告 D=diag(diag(A)); L=-tril(A,-1);U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tol x0=x;x=B*x0+f; k=k+1;if(k>=max1)disp('迭代超过300次,方程组可能不收敛'); return; end%[k x'] %显示每一步迭代的结果 End2 高斯赛德尔迭代由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量(1)k i x +时,用最新分量11()k x +,12()k x +…(1)1k i x +-代替旧分量)1(k x ', )2(k x …)3(k x 就得到高斯赛德尔迭代格式,其数学表达式为:1(1)(1)()111(1,2,,)i n k k k ii ij j ij j j j i ii xb a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑具体形式如下:()()()(1)()()()11221331111(1)(1)()()22112332222(1)(1)(1)(1)(1)112233,11111k k k k n n k k k k n n k k k k k n n n n n n n n nnx a x a x a x b a x a x a x a x b a x a x a x a x a x b a ++++++++--=----+=----+⋯⋯⋯⋯⋯⋯=-----+矩阵形式表示为:()(1)1(1)()(0,1,2,,),k k k k n +-+=++=x D Lx Ux b将(1)(1)()(0,1,2,,)k k k k n ++=++=Dx Lx Ux b 移项整理得: (1)1()1()()(0,1,2,,))k k x D L Ux D L b k n +--=-+-=记11(),()--=-=-M D L U g D L b ,则(1)()k k x x +=+M g高斯塞德尔迭代function [x,k]=Fgseid(A,b,x0,tol)%高斯-塞德尔迭代法 计算线性方程组 % tol 为误差容限max1= 300; %默认最高迭代300次D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f;k=1; while norm(x-x0)>=tol x0=x;x=G*x0+f; k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛'); return; end% [k,x'] %显示每一步迭代结果 End3 超松弛迭代法在工程中最常遇到的问题便是线性代数方程组的求解,而线性代数方程组的求解一般可以分为两类,一类是直接法(精确法),包括克莱姆法则方法、LD 分解法等,另一类是迭代法(近似法),包括雅克比迭代法、高斯迭代法、超松弛迭代法等。
超松弛迭代法中松弛因子ω的选取方法一、超松弛迭代算法基本概念超松弛迭代法简称为SOR(Successive Over -- Relaxation)法,是求解线性代数方程组的一种迭代加速方法,它是在高斯--塞德尔迭代法的基础上进行加速的,将前一步的结果x k i )(与高斯--塞德尔迭代方法的迭代值x k i )1(+适当的加权平均,期望获得更好的近似值x k i )1(+。
其迭代公式如下:x k i )1(+=(1--ω)x k i )(+a iiw (b i --x a k j i j ij )1(11+-=∑--x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…(1.1)SOR 法中ω的取值对迭代公式的收敛速度影响很大,它的好坏直接影响到加速的快慢。
为了保证迭代过程的收敛,必须要求0<ω<2,超松弛法取1<ω<2。
但是在1和2之间仍然有很多的取值,究竟如何取值没有同意的规定。
经过多次的实验、分析与研究提出了ω选取的几种方法。
二、松弛因子ω的选取方法1、逐步实验法将ω的取值区间(1,2)进行M 等分,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M ,通过公式1.1依次对同一精度要求求出迭代次数k 的值,在求的同时比较出最少的迭代次数k ,并将此次ω的值保留,这样就得到了1+1/M ,1+2/M ,……,1+(M--1)/M 中最优的ω值,算法步骤如下:第一步:给定M 的值第二步:对于,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M 按照公式 x k i )1(+=(1--ω)x k i )(+a iiw (b i ---x a k j i j ij )1(11+-=∑---x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…根据给定的精度要求迭代,求出迭代次数k 的值。
数值分析课程设计-- 松弛迭代法中松弛因子安徽建筑大学数值分析设计报告书题目松弛迭代法中松弛因子院系数理系专业信息与计算科学班级信息②班学号 12207210220 姓名穆海山时间 2013-12-10~2013-12-23指导教师刘华勇题目:选用Jacobi 迭代法、Gauss-Seidel 迭代法和超松弛迭代法求解下面的方程组(考虑n 等于150)123216186186186186186n n n x x x x x x --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=10.522.522.522.522.521⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦考虑初值的变化和松弛因子ω的变化收敛效果的影响;对上述方程组还可以采用哪些方法求解?选择其中一些方法编程上机求解上述方程组,说明最适合的是什么方法;将计算结果进行比较分析,谈谈你对这些方法的看法。
一、摘要本课程设计用matlab 就线性方程组数值方法,Jacobi 迭代法,Gauss-Seidel 迭代法,超松弛法对所设计的问题进行求解,并编写程序在Matlab 中实现,在文章中对各种迭代法进行了收敛性分析。
接着用几种不同方法对线性方程组进行求解及结果分析,最后对此次课程设计进行了总结。
关键词:线性方程组,迭代,Matlab ,结果分析二、设计目的用熟悉的计算机语言编程上机求解线性方程组。
三、理论基础对方程组 Ax b = 做等价变换 x Gx g =+ 如:令 A M N =-,则11()Ax b M N x b Mx Nx b x M Nx M b --=⇒-=⇒=+⇒=+则,我们可以构造序列 (1)() k k x G x g +=+ 若 ()*k x x →* **x G x g Ax b ⇒=+⇒= 同时:(1)()()**(*)k k k x x Gx Gx G x x +-=-=-1(0)(*)k G x x +==-所以,序列收敛0k G ⇔→,与初值的选取无关1122(,,,)nn D diag a a a =设则转化为矩阵形式(1)()1()()k k k x x D b Ax +-=+-(1)()1()1k k k x x D Ax D b +--=-+(1)1()1()k k x D D A x D b +--=-+ (1)令2112000000n n a L a a ⎛⎫ ⎪- ⎪= ⎪⎪--⎝⎭1212000000n n a a a U --⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭A D L U =-- 或者 D A L U -=+故迭代过程(1)化为(1)1()1()k k x D D A x D b +--=-+ (1)1()1()k k x D L U x D b +--=++ A D L U =-- 11(),,J B D L U f D b --=+=令于是D A L U -=+1111()() , J B D L U D D A I D A f D b----=+=-=-=或者:(1)()k k J x B x f+=+(2)(0,1,2,)k =等价线性方程组为J x B x f=+Ax b =称(2)式为解线性方程组(1)的Jacobi 迭代法(J 法)J B Jacobi 为迭代法的迭代矩阵迭代矩阵 考虑迭代式(2)(1)()k k J x B x f+=+ (0,1,2,)k =即(1)1()1()k k x D L U x D b +--=++ (1)()()k k k Dx Lx Ux b +=++(,)L 注意到的形式下三角不含对角线将上式改为 (1)(1)()k k k DxLx Ux b ++=++ (3) (1)()()k k D L x Ux b +-=+D L -当可逆时 (1)1()1()()k k xD L Ux D L b +--=-+- 11(),(),G G B D L U f D L b --=-=-设得(1)()k k G Gx B x f +=+(4)(0,1,2,)k =超松弛迭代记 ()(1)()k k k x xx +∆=-则 (1)()()k k k xx x +=+∆ 可以看作在前一步上加一个修正量。
超松弛迭代法课程设计一、课程目标知识目标:1. 学生能理解超松弛迭代法的概念,掌握其基本原理和应用场景。
2. 学生能够运用超松弛迭代法解决线性方程组问题,并理解其收敛性。
3. 学生能了解超松弛迭代法在工程和科学计算中的重要性。
技能目标:1. 学生能够独立进行超松弛迭代法的计算步骤,包括设定松弛因子、构造迭代矩阵等。
2. 学生能够运用数学软件(如MATLAB)实现超松弛迭代法的算法,并进行简单的程序调试。
3. 学生通过实际案例分析,培养运用超松弛迭代法解决实际问题的能力。
情感态度价值观目标:1. 学生通过学习超松弛迭代法,培养对科学计算和数学建模的兴趣,增强对数学学科的学习信心。
2. 学生在小组讨论和合作中,学会尊重他人意见,培养团队协作精神。
3. 学生能够认识到超松弛迭代法在科技发展中的重要作用,增强科技创新意识和社会责任感。
课程性质:本课程为高中数学选修课,以培养学生解决实际问题能力和数学思维能力为目标。
学生特点:学生具备一定的线性代数基础,具有较强的逻辑思维能力和动手操作能力。
教学要求:教师应注重理论与实践相结合,引导学生通过实际案例掌握超松弛迭代法的应用。
同时,注重培养学生的团队协作能力和创新意识。
在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。
通过课堂讲解、上机实践和小组讨论等多种教学方式,提高学生的学习效果。
二、教学内容1. 引言:介绍超松弛迭代法的背景和在实际问题中的应用,激发学生学习兴趣。
相关教材章节:第二章第四节“迭代法及其应用”。
2. 基本概念:讲解超松弛迭代法的基本原理,包括迭代格式、松弛因子选取等。
相关教材章节:第二章第四节“超松弛迭代法”。
3. 算法实现:详细讲解超松弛迭代法的计算步骤,并通过实例进行演示。
相关教材章节:第二章第四节“超松弛迭代法的计算步骤”。
4. 实践应用:分析实际案例,让学生动手实践,运用超松弛迭代法解决线性方程组问题。
相关教材章节:第二章第五节“迭代法解决实际问题”。
《计算方法》实验报告(二)实验名称:SOR迭代法松弛因子的选取班级:数学1402班姓名:高艺萌学号:14404210一、实验目的通过本实验学习线性方程组的SOR迭代解法以及SOR迭代法的编程与应用。
对比分析不同条件下的超松弛因子的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的不同取值会对方程组的解产生的影响。
培养编程与上机调试能力。
二、实验题目用逐次超松弛(SOR)迭代法求解方程组,其中(1)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;(2)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;三、实验原理1.逐次超松弛迭代法可以看作Gauss-Seidel迭代法的加速,2.SOR迭代计算格式其中,w叫松弛因子,当w>1时叫超松弛,0<w<1时叫低松弛,w=1时就是Gauss-Seidel迭代法。
3.利用SOR迭代算法进行求解。
4.算法原理:SOR迭代法%masor.mfunction x=masor(A,b,omega,x0,ep,N)n=length(b);if nargin<6,N=500;endif nargin<5,ep=1e-6;endif nargin<4,x0=zeros(n,1);endif nargin<3,omega=1.5;endx=zeros(n,1);k=0;while k<Nfor i=1:nif i==1 x1(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);else if i==n x1(n)=(b(n)-A(n,1:n-1)*x(n:n-1)/A(n,n);else x1(i)=(b(i)-A(i,1;i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(i,i); endendx(i)=(1-omega)*x0(i)+omega*x1(i); endif norm(x0-x,inf)<ep,break;endk=k+1;x0=x; endif k==N Warning; enddisp([’k=’,num2str(k)])运行程序四、实验内容根据实验题目,分别对问题一,问题二进行求解。
数值分析⼤作业超松弛迭代法如何选取最佳松弛因⼦超松弛迭代法如何选取最佳松弛因⼦船建学院B1301095 wj⼀、课题背景逐次超松弛迭代法是Gauss-Seidel⽅法的⼀种加速⽅法,是解⼤型稀疏矩阵⽅程组的有效⽅法之⼀,它具有计算公式简单,程序设计容易,占⽤计算机内存较少等优点,但需要选择好的加速因⼦(即最佳松弛因⼦)。
最佳松弛因⼦ω的确定是数值代数中的⼀个理论难题,对于不同的矩阵,其最佳松弛因⼦往往相差很⼤,没有统⼀的计算公式来确定ω。
由于对称正定矩阵sor⽅法收敛的充分必要条件为w在0到2之间,故利⽤对称正定矩阵⼀定收敛的性质,本⽂提供⼀种针对于系数矩阵为对称正定矩阵时,如何选取合适的最佳松弛因⼦的⽅法。
⼆、课题研究流程图三、SOR迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR迭代法,它是在GS法基础上为提⾼收敛速度,采⽤加权平均⽽得到的新算法,设解⽅程的GS法记为(1)再由与加权平均得这⾥ω>0称为松弛参数,将(1)式代⼊则得(2)称为SOR迭代法,[WTBX]ω>0称为松弛因⼦,当ω=1时(2)式即为GS法,将(2)式写成矩阵形式,则得即于是得SOR迭代的矩阵表⽰(3)四、Matlab程序%sor法确定对称正定矩阵的最佳松弛因⼦w%clc;clear;n=100;%矩阵的阶数%for num=1:100X=diag(rand(n,1));U=orth(rand(n,n)-0.5);a=U'*X*U;%以上是利⽤随机对⾓矩阵和随机正交矩阵,产⽣随机的对称正定矩阵,正交变化不改变特征值%L=zeros(n,n);U=zeros(n,n);%分配L和U的内存空间%step=0.02;%定义w的计算精度%for k=1:(2/step) %由于对称正定矩阵sor⽅法收敛的充分必要条件为w在0到2之间%w=(k-1)*step;for i=1:n %⼀个总的for循环给三个矩阵赋值D-L-U=A,%for j=1:i-1L(i,j)=-a(i,j);%L矩阵的赋值%endfor j=i+1:nU(i,j)=-a(i,j);%U矩阵的赋值%endD(i,i)=a(i,i);%D矩阵的赋值%endH=inv(D-w*L)*((1-w)*D+w*U);%sor⽅法的核⼼,H矩阵为迭代矩阵%p(k)=max(abs(eig(H)));%利⽤此函数求矩阵的谱半径%endk_min=find(p==min(p));%find函数寻找不同的w中谱半径的最⼩值,即寻找收敛最快的w%w_min(num)=(k_min-1)*step;%由最⼩值的序号得到最优的w%endhist(w_min,100)%对数量⾜够多的随机对称正定矩阵做频率统计,w划分100份,做出统计图%mean(w_min)%对不同矩阵的最⼩谱半径所对应的w对平均统计%五、结果对于不同阶数,计算得到的最佳收敛因⼦w不同,⼤致是随阶数增⼤⽽增⼤。
松弛因子与迭代次数的关系介绍:松弛因子是迭代法中的一个重要参数,用来控制每次迭代的步长。
迭代法是解决线性方程组的常见方法之一,在实际应用中,通过调整松弛因子可以使得迭代更快收敛或更稳定。
本文将探讨松弛因子与迭代次数的关系,并分析不同松弛因子对迭代法收敛速度的影响。
一、松弛因子的定义和作用松弛因子(relaxation factor)是在迭代法中用来调整每次迭代的步长的参数,通常用符号ω表示。
对于迭代法求解线性方程组Ax=b,其中A是系数矩阵,b是常数向量,松弛因子ω用于计算每次迭代的解向量x:x(k+1) = (1-ω)x(k) + ωD^(-1)(b - Rx(k))其中x(k)是第k次迭代的解向量,D是系数矩阵A的对角矩阵,R是A的严格下三角矩阵或严格上三角矩阵。
通过调整松弛因子的取值,可以控制每次迭代解向量的更新幅度,从而影响迭代的收敛性和速度。
二、松弛因子与迭代次数的关系1. 松弛因子小于1的情况当松弛因子ω小于1时,迭代法称为欠松弛法(under-relaxation method)。
此时,每次迭代的解向量更新比较小,迭代过程较为稳定。
在数值计算中,欠松弛法常用于处理病态问题和不可收敛问题,能够提高迭代法的稳定性和收敛性。
然而,欠松弛法由于每次迭代步长较小,收敛速度相对较慢。
因此,在求解较大规模的线性方程组时,需要进行很多次迭代才能达到收敛要求。
2. 松弛因子等于1的情况当松弛因子ω等于1时,迭代法称为正常迭代法(Gauss-Seidel method)。
此时,每次迭代的解向量更新完全由当前迭代的解向量决定,即x(k+1) = x(k)。
正常迭代法是一种简单的迭代方法,容易实现。
然而,在某些情况下,正常迭代法可能会发散或收敛速度较慢,特别是对于病态问题。
3. 松弛因子大于1的情况当松弛因子ω大于1时,迭代法称为超松弛法(over-relaxation method),也称为逐次上松法(successive overrelaxation method,SOR)。
超松弛迭代法
超松弛迭代法是一种回归模型的最优化算法,主要用于减少损失函数。
如果损失函数是凸函数,则可以使用自动对准算法来使目标函数最小,以备测试目标模型。
超松弛迭代法的技术流程如下:
1. 定义初始参数:设置参数的初始值x0。
2. 迭代:通过迭代公式X[i + 1] = (1 –λ) X[i] + λF(X[i])来更新X[i],得到新的迭代值。
3. 收敛:检查超参数δ和终止准则,查看目标函数值是否趋于收敛。
4. 调整超参数:如果目标函数值没有收敛,则可以尝试调整超参数X0和λ来降低目标函数值。
5. 返回最优化结果:将参数X[i]返回到最终收敛状态,即最优化结果。
一、介绍MATLAB(Matrix Laboratory)是一种用于数值计算和数据可视化的专业软件。
在MATLAB中,超松弛迭代法是解决线性方程组的一种有效算法。
本文将介绍MATLAB中超松弛迭代法的基本原理和实现方法,并给出一个具体的例子进行演示。
二、超松弛迭代法的基本原理超松弛迭代法是一种逐步迭代的算法,用于求解线性方程组。
它的基本原理是通过不断迭代更新方程组的解,直到达到满足精度要求的解。
超松弛迭代法的公式如下:X(k+1) = (1-w)X(k) + w*(D-L)⁻¹*(b+U*X(k))其中,X(k)代表第k次迭代的解向量,X(k+1)代表第k+1次迭代的解向量,D、L和U分别代表方程组的对角线元素、下三角元素和上三角元素构成的矩阵,b代表方程组的右端向量,w代表松弛因子。
超松弛迭代法的关键在于选择合适的松弛因子w,一般情况下,可以通过试验选取一个合适的值。
在MATLAB中,可以使用sor函数来实现超松弛迭代法。
三、MATLAB中超松弛迭代法的实现方法在MATLAB中,可以通过调用sor函数来实现超松弛迭代法。
sor 函数的语法格式如下:[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit)其中,A代表线性方程组的系数矩阵,b代表右端向量,w代表松弛因子,tol代表迭代的精度要求,maxit代表最大迭代次数,X代表迭代求解得到的解向量,flag代表迭代的结果标志,relres代表相对残差的大小,iter代表迭代次数,resvec代表迭代过程中的残差向量。
以下是一个使用sor函数求解线性方程组的示例:A = [4 -1 0 -1 0 0; -1 4 -1 0 -1 0; 0 -1 4 0 0 -1; -1 0 0 4 -1 0; 0 -1 0 -1 4 -1; 0 0 -1 0 -1 4];b = [1; 0; -1; 0; 1; 0];w = 1.25;tol = 1e-6;maxit = 100;[X,flag,relres,iter,resvec] = sor(A,b,w,tol,maxit);通过调用sor函数,可以得到方程组的解向量X,迭代的结果标志flag,相对残余resrel和迭代次数iter。