2016年高考数学理试题分类汇编圆锥曲线
- 格式:doc
- 大小:1.28 MB
- 文档页数:13
2012-2016全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2=>的焦C x py p:2(0)点为F,准线为l,A CB D两点.∈.已知以F为圆心,FA为半径的圆F交l于,(Ⅰ)若90∠=︒,ABDBFD∆的面积为p的值及圆F的方程.(Ⅱ)若,,A B F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到,m n距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22++=,圆M x y:(1)1 22-+=,动圆P与M外切并且与圆N内切,圆心P的轨迹为曲线C.:(1)9N x y(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于,A B两点,当圆P的半径最长时,求||AB.3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆的焦点,直线AF ,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A于,C D 两点,过B 作AC 的平行线交AD 于点E . (I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.2012-2016全国卷圆锥曲线解答题(参考答案)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点. (Ⅰ)若90BFD ∠=︒,ABD ∆的面积为p 的值及圆F 的方程. (Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.【解析】(Ⅰ)由对称性知BFD ∆是等腰直角三角形,斜边||2BD p =, 点A 到准线l的距离||||d FA FB ===,由1||2ABD S BD d ∆=⨯⨯=2p =.∴圆F 的方程为22(1)8x y +-=.(Ⅱ)由对称性设2000(,)(0)2x A x x p>,则(0,)2p F .由点,A B 关于点F 对称得200(,)2x B x p p --,从而2022x pp p -=-,所以2203x p =.因此3,)2pA,直线3:2p pp m y x -=+,即02x +=. 又22122x py y x p =⇔=,求导得'x y p ==,即x =,从而切点)6pP .又直线:6p n y x -=,即0x -=. 故坐标原点到直线,m n距离的比值为23p =.【考点分析】本小题主要考查直线、圆、抛物线等基础知识,涉及到简单的面积和点到直线的距离等基本计算问题,考查推理论证能力、运算求解能力.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .【解析】由已知得圆M 的圆心为(1,0)M -,半径11r =,圆N 的圆心为(1,0)N ,半径23r =.设动圆P 的圆心为(,)P x y ,半径为R .(Ⅰ)因为圆P 与圆M 外切且与圆N 内切,所以1212||||()()4PM PN R r r R r r +=++-=+=,且4||MN >. 由椭圆的定义可知,曲线C 是以,M N 为左,右焦点,长半轴长为23的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点(,)P x y ,由于||||222PM PN R -=-≤,所以2R ≤. 当且仅当圆P 的圆心为(2,0)时,2R =.∴当圆P 的半径最长时,其方程为22(2)4x y -+=. 当l 的倾斜角为90︒时,l 与y 轴重合,可得||3AB =当l 的倾斜角不为90︒时,由1r R ≠知l 不平行x 轴.设l 与x 轴的交点为Q , 则1||||QP RQM r =,可求得(4,0)Q -, ∴设:(4)l y k x =+,由l 与圆M 211k =+,解得24k =±. 当24k =时,将224y x =+代入221(2)43x y x +=≠- 整理得27880x x +-=. (*)设1122(,),(,)A x y B x y ,则12,x x 是(*)方程的两根.所以1287x x +=-,1287x x =-.1218|||7AB x x ∴=-==.当4k =-时,由对称性知18||7AB =.综上,||AB =或18||7AB =. 【考点分析】本小题主要考查直线、圆、椭圆等基础知识,考查推理论证能力、运算求解能力和方程思想.3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b +=>>,F 是椭圆的焦点,直线AF,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【解析】(Ⅰ)设(),0F c,由条件知2c =,得c =又2c a =,所以2a =,2221b a c =-=,故E 的方程2214x y +=.(Ⅱ)由题意知直线l 的斜率存在,设直线l 的斜率为k ,方程为2y kx =-, 联立直线与椭圆方程:22142x y y kx ⎧+=⎪⎨⎪=-⎩,化简得:22(14k )16120x kx +-+=.∵216(43)0k ∆=->,∴234k >. 设1122(,),(,)P x y Q x y ,则1212221612,1414k x x x x k k+=⋅=++,∴12PQ x -且坐标原点O 到直线l 的距离为d =.因此OPQS ∆==,令0)t t =>,则244,044OPQ t S t t t t∆==>++. ∵44t t+≥,当且仅当4t t =,即2t =时,等号成立,∴1OPQ S ∆≤.故当2t =,2=,k =±OPQ ∆的面积最大.此时,直线l 的方程为22y x =±-. 【考点分析】本小题主要考查直线、椭圆、函数和不等式等基础知识,考查推理论证能力、运算求解能力、创新意识和方程思想.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【解析】(Ⅰ)由题设可得),()M a N a -或(),)M a N a -.又=2xy ',故24x y =在x =在点)a 处的切线方程为y a x -=-0y a --=.24x y x ==-在处的导数值为在点()a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点P .证明如下:设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k .将y kx a =+代入C 的方程,消去y 整理得2440x kx a --=, 则12,x x 是该方程的两根. 故12124,4.x x k x x a +==- 从而1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==. 当b a =-时,有120k k +=,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠. 所以点(0,)P a -符合题意.【考点分析】本小题主要考查直线、抛物线和导数的几何意义等基础知识,考查推理论证能力、运算求解能力和方程思想.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(0,1)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E . (I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.【解析】(I)因为AD AC =,EB AC ∥, 故EBD ACD ADC ∠=∠=∠.所以EB ED =, 故EA EB EA ED AD +=+=又圆A 标准方程为()22116x y ++=,从而4AD =,所以4EA EB +=. 由题设得()()1,0,1,0,2A B AB -=,由椭圆的定义可得点E 的轨迹方程为22143x y +=,(0y ≠); (II)(法一)当l 与x 轴不垂直时,设()():10l y k x k =-≠,()()1122,,,M x y N x y由()221143y k x x y ⎧=-⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=. 则2122843k x x k +=+,212241243k x x k -=+g所以()212212143k MN x k +=-=+.过点()1,0B 且与l 垂直的直线()1:1m y x k =--,A 到m,所以PQ ==. 故四边形MPNQ的面积为12S MN PQ == 当l 与x 轴不垂直时,四边形MPNQ的面积的取值范围为( 当l 与x 轴垂直时,其方程为1x =,3MN =,8PQ = 四边形MPNQ 的面积12.综上,四边形MPNQ的面积的取值范围为⎡⎣.(法二)221:143x y C +=;设:1l x my =+, 因为PQ l ⊥,设():1PQ y m x =--,联立1l C 与椭圆221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=;则()22121|||34M N m MN y y m +=-==+;圆心A 到PQ 距离|11|m d ---==所以||PQ ===,()2212111||||2234MPNQ m S MN PQ m +∴=⋅=⋅+⎡==⎣.【考点分析】主要考查直线与圆的位置关系、椭圆的定义、韦达定理、弦长公式等解析几何常用知识,考查推理论证能力、运算求解能力和方程思想.。
直线与圆锥曲线一、选择题1. (辽宁卷理)3.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .742. (全国大纲卷理)(10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45-3. (全国新课标理)(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )35. (山东卷理)8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -= 6. (陕西理)2.设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =- B .28y x = C .24y x =- D .24y x =7. (四川理)10.在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为 (A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-8. (浙江理)8.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a = C .212b =D .22b =9. (安徽理)(2)双曲线8222=-y x 的实轴长是(A )2 (B ) 22 (C ) 4 (D )4210. (福建理)7.设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2 D .2332或 11. (湖北理)4.将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n ≥312. (湖南理)5.设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4B .3C .2D .1二、填空题1. (北京理)14.曲线C 是平面内与两个定点F1(-1,0)和F¬2(1,0)的距离的积等于常数)1(2>a a 的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点;② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积大于21a 2。
2016年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2016全国Ⅰ文)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )(A )13 (B )12 (C )23 (D )34【答案】B【解析】试题分析:如图,由题意得在椭圆中,11OF c,OB b,OD 2b b 42===⨯= 在Rt OFB ∆中,|OF ||OB||BF ||OD |⨯=⨯,且222a b c =+,代入解得22a 4c =,所以椭圆得离心率得1e 2=,故选B.考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.(2016全国Ⅰ理)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 ( )(A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.x3.(2016全国Ⅰ理)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=DE|=则C 的焦点到准线的距离为 ( )(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.4.(2016全国Ⅱ文) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )2 【答案】D考点: 抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.5.(2016全国Ⅱ理)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A (B )32(C (D )2【答案】A考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).6.(2016全国Ⅲ文、理)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴..过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .7.(2016四川文)抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)【答案】D【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.8. (2016四川理)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为 (A(B )23(C(D )1 【答案】C【解析】试题分析:设()()22,2,,P pt pt M x y (不妨设0t >),则22,2.2p FP pt pt ⎛⎫=-⎪⎝⎭由已知得13FM FP =,22,2362,3p p p x t pt y ⎧-=-⎪⎪∴⎨⎪=⎪⎩, 22,332,3p p x t pt y ⎧=+⎪⎪∴⎨⎪=⎪⎩,22112122OM t k t t t ∴==≤=++,()max 2OM k ∴=,故选C. 考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P 的坐标,利用向量法求出点M 的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k 斜率用参数t 表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值.9.(2016天津文)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( ) (A )1422=-y x (B )1422=-y x (C )15320322=-y x (D )12035322=-y x【答案】A【解析】试题分析:由题意得2212,11241b x yc a b a =⇒==⇒-=,选A.考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).10.(2016天津理)已知双曲线2224=1x yb-(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为()(A)22443=1yx-(B)22344=1yx-(C)2224=1x yb-(D)2224=11x y-【答案】D考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).11.(2016浙江理)已知椭圆C1:22xm+y2=1(m>1)与双曲线C2:22xn–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1【答案】A考点:1、椭圆的简单几何性质;2、双曲线的简单几何性质.【易错点睛】计算椭圆1C 的焦点时,要注意222c a b =-;计算双曲线2C 的焦点时,要注意222c a b =+.否则很容易出现错误.二、填空1。
阶段性综合检测(四)解析几何初步圆锥曲线方程时间120分钟满分150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·晋中一模)已知直线的倾斜角的余弦值是12,则此直线的斜率是()A.3B.- 3C.32D.±3解析:设倾斜角为α,则cosα=12,sinα=1-cos2α=32,∴斜率k=tanα=sinαcosα= 3.答案:A2.(2015·于都一模)已知过A(-1,a),B(a,8)两点的直线与直线2x-y+1=0平行,则a的值是()A.5 B.2C.-10 D.17解析:依题意得k AB=8-aa+1=2,解得a=2.答案:B3.(2015·丰台一模)过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4解析:方法一:设圆心C的坐标为(a,b),半径为r.∵圆心C在直线x+y-2=0上,∴b=2-a.∵|CA |2=|CB |2,∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2, ∴a =1,b =1,∴r =2,∴圆C 的方程为(x -1)2+(y -1)2=4. 方法二:∵k AB =1+1-1-1=-1且AB 的中点为(0,0), ∴AB 的垂直平分线方程为y =x . 由⎩⎨⎧y =x x +y -2=0可得圆心坐标为(1,1), ∴半径r =(1-1)2+(1+1)2=2, 故所求圆的方程为(x -1)2+(y -1)2=4. 答案:C4.(2015·白山联考)当a 为任意实数时,直线(a -1)x -y +a +1=0恒过点C ,则以C 为圆心,半径为5的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:把直线方程化为(-x -y +1)+a (x +1)=0, 令⎩⎨⎧ -x -y +1=0,x +1=0,得⎩⎨⎧x =-1,y =2, ∴直线过定点C (-1,2),∴圆C 的方程为(x +1)2+(y -2)2=5,化为一般式为x 2+y 2+2x -4y =0. 答案:C5.(2015·北京房山区一模)过点M (1,2)的直线l 与圆C :(x -2)2+y 2=9交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为( )A .x =1B .y =1C .x -2y +3=0D .x -y +1=0解析:若∠ACB 最小,则CM ⊥l ,可知C (2,0), ∴k CM =2-01-2=-2,∴直线l 的斜率为k =12,∴直线l 的方程为y -2=12(x -1),即x -2y +3=0答案:C6.(2015·诸城一中月考)已知a>b>0,e1,e2分别为圆锥曲线x2a2+y2b2=1和x2a2-y2b2=1的离心率,则lg e1+lg e2的值() A.大于0且小于1 B.大于1 C.小于0 D.等于0解析:可知e1=1-(ba)2,e2=1+(ba)2,∴lg e1+lg e2=lg(e1e2)=lg(1-b2a2)·(1+b2a2),∵(1-b2a2)(1+b2a2)<[(1-b2a2)+(1+b2a2)2]=1,∴lg e1+lg e2<lg1=0. 答案:C7.(2015·山东实验中学诊断)抛物线y2=8x的焦点到双曲线x212-y24=1的渐近线的距离为()A.1 B. 3C.33 D.36解析:抛物线的焦点为F(2,0),渐近线方程为y=±33x,即3x±3y=0,故焦点F到双曲线渐近线的距离为d=233+9=1.答案:A8.(2015·许昌模拟)已知抛物线x2=43y的准线过双曲线x2m2-y2=-1的焦点,则双曲线的离心率为()A.324 B.3104C. 3D.3 3解析:易知抛物线的准线方程为y =-3,双曲线x 2m 2-y 2=-1的焦点坐标为(0,±m 2+1),∴m 2+1=3=c 2,∴c =3,∴双曲线的离心率为e =31= 3.答案:C9.(2015·贺兰一中期末)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1 B.x 2132-y 252=1 C.x 232-y 242=1D.x 2132-y 2122=1解析:对于椭圆C 1,a =13,c =5,曲线C 2为双曲线,c =5,a =4,b =3,故其标准方程为x 242-y 232=1.答案:A10.(2015·兰州模拟)已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于( )A .24B .36C .48D .96解析:∵双曲线C :x 29-y 216=1中,a =3,b =4,c =5, ∴F 1(-5,0),F 2(5,0). ∵|PF 2|=|F 1F 2|,∴|PF 1|=2a +|PF 2|=6+10=16.作PF 1边上的高AF 2,则|AF 1|=8,∴|AF 2|=6,答案:C11.(2015·孝感一中期末)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5D.92解析:利用抛物线的定义,连接点(0,2)和抛物线的焦点F (12,0)交抛物线于点P ,则点P 使所求距离最小,其最小值为(0-12)2+(2-0)2=172.答案:A12.(2015·莱芜期末)点P 到点A (12,0),B (a,2)及到直线x =-12的距离都相等,如果这样的点恰好只有一个,那么a 的值是( )A.12 B.32 C.12或32D .-12或12解析:∵点P 到点A (12,0)与到定直线x =-12的距离相等,∴点P 在以A 为焦点,以直线x =-12为准线的抛物线上,同时在线段AB 的垂直平分线上,结合图形可知适合条件的点B 的坐标为(-12,2)和(12,2),故a =-12或12. 答案:D第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答,第22题~第24题为选考题,考生根据要求做答。
高二数学专题学案圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国I卷)(20)(本小题满分12分)设圆x2 + y2 + 2x—15 = 0的圆心为4直线l过点B (1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E.(I)证明|EA| + |EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.x2 y22、(2015全国I卷)(14)一个圆经过椭圆7十一二1的三个顶点,且圆心在乂轴上,则该圆的标准方程16 4为。
3、(2014全国I卷)20.(本小题满分12分)已知点A(0,-2),椭圆E:上+ y2= 1(a > b > 0)的离心率为3,,F是椭圆a2 b2 2的焦点,直线AF的斜率为233,O为坐标原点.(I)求E的方程;(II)设过点A的直线l与E相交于P, Q两点,当A OPQ的面积最大时,求l的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系g中,椭圆C::喙=1(a>b>°)的离心率是浮,抛物线E3x=2'的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点6,记^PFG的面积为S j ^PDM的面积为S2,求S-的最大值及取得最大值2时点P的坐标.八- x 2 Y 2 一,,〜5、(2015山东卷)(20)(本小题满分13分)平面直角坐标系xOy中,已知椭圆C :— + ) =1(a > b > 0)a 2 b2的离心率为*,左、右焦点分别是F , F ,以F 为圆心,以3为半径的圆与以F 为圆心,以1为半径的 2 1212圆相交,交点在椭圆C 上. (I )求椭圆C 的方程;x 2 y 2(H )设椭圆E :江+而二1,P 为椭圆C 上的任意一点,过点P的直线厂"m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国I 卷)(5)已知方禾m 2+n--就工=1表示双曲线,且该双曲线两焦点间的距离为4,则n的i )求|OQ | | OP |的值;(ii )求A ABQ 面积最大值.取值范围是(2、(2015全国I 卷)(5)已知M (x 0 丫0)是双曲线C : --W= 1上的一点,F 1、F 2是C 上的两个焦点,若西 • MF 2 <0,则y 0的取值范围是(2J3(D )(一二33、(2014全国I 卷)4.已知F 是双曲线C : x 2 - my 2 = 3m (m > 0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A . <3B .3C . <3mD . 3mx 2 y 24、(2016山东卷)(13)已知双曲线E_,: ---= 1 (a >0, b >0),若矩形ABCD 的四个顶点在E 上, 1a 2b 2AB , CD 的中点为E 的两个焦点,且21AB |=3|BC |,则E 的离心率是.x 2 y 25、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线C : 一--—= 1(a > 0,b > 0)的渐近线与抛物线1a 2 b2C : x 2 = 2py (p > 0)交于点O , A , B ,若A OAB 的垂心为C 的焦点,则C 的离心率为. 2 21x 2 y 2 x 2 y 26、(2014山东卷)(10)已知a > b ,椭圆C 的方程为—+ -- = 1 ,双曲线C 的方程为——^- = 1, C1 a2 b 2 2 a 2 b 2 1与C 的离心率之积为二,则C 的渐近线方程为()222(A ) x 土 <2y = 0 (B ) J2x 土 y = 0 (C ) x 土2y = 0 (D ) 2x 土 y = 0圆锥曲线部分高考试题汇编(抛物线部分)(A )(-1,3)(B )(-1八”)(C )(0,3)(D )(0,\与)2<2 (C )(-—— 32<31、(2016全国I卷)(10)以抛物线C的顶点为圆心的圆交C于A, B两点,交C的准线于D, E两点.已知| AB | = 4";2 , | DEI= 2d5,则C的焦点到准线的距离为()(A)2 (B)4 (C)6 (D)82、(2015全国I卷)(20)(本小题满分12分)x2在直角坐标系xoy中,曲线C:y =—与直线y = kx + a(a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(II)y轴上是否存在点R使得当k变动时,总有N OPM =Z OPN ?说明理由。
2016年全国各地高考数学试题及解答分类汇编大全(12圆锥曲线与方程)一、选择题1.(2016全国Ⅰ文)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()(A )13(B )12(C )23(D )34【答案】B【解析】试题分析:如图,由题意得在椭圆中,11OFc,OBb,OD2b b 42在Rt OFB 中,|OF ||OB||BF ||OD |,且222abc ,代入解得22a4c ,所以椭圆得离心率得1e2,故选 B. 考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求 e .2.(2016全国Ⅰ理)已知方程222213x y mnmn表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()(A )1,3(B )1,3(C )0,3(D )0,3【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.yxOB FD3.(2016全国Ⅰ理)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为( )(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.4.(2016全国Ⅱ文)设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=()(A)12(B)1 (C)32(D)2【答案】D考点:抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y=kx(0)k,当0k时,在(,0),(0,)上是减函数,当0k时,在(,0),(0,)上是增函数.5.(2016全国Ⅱ理)已知12,F F 是双曲线2222:1x y E ab的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin3MF F ,则E 的离心率为()(A )2(B )32(C )3(D )2【答案】A考点:双曲线的性质.离心率.【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中a ,b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).6.(2016全国Ⅲ文、理)已知O 为坐标原点,F 是椭圆C :22221(0)x y a bab的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PFx 轴..过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .7.(2016四川文)抛物线24yx 的焦点坐标是()(A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)【答案】D【解析】试题分析:由题意,24yx 的焦点坐标为(1,0),故选 D.考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.8.(2016四川理)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)ypx 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为(A )33(B )23(C )22(D )1【答案】C【解析】试题分析:设22,2,,P pt pt M x y (不妨设0t ),则22,2.2p FP ptpt 由已知得13FMFP ,22,2362,3ppp xtpty ,22,332,3p p x tpt y,2211212121222OMtk ttt,max22OMk ,故选 C.考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P 的坐标,利用向量法求出点M 的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k 斜率用参数t 表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值.9.(2016天津文)已知双曲线)0,0(12222ba by ax 的焦距为52,且双曲线的一条渐近线与直线02yx 垂直,则双曲线的方程为()(A )1422yx(B )1422yx(C )15320322y x(D )12035322yx 【答案】A【解析】试题分析:由题意得2215,2,11241b xyc a b a,选A.考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.。
考点36 曲线与方程、圆锥曲线的综合应用一、解答题1.(2016年全国卷Ⅰ高考理科·T20)设圆x 2+y 2+2x-15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合, l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程.(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【试题解析】(1)圆A 整理为(x +1)2+y 2=16,点A 坐标为(-1,0),如图,∵BE ∥AC ,则∠ACB =∠EBD ,由|AC|=|AD|,则∠ADC =∠ACD , ∴∠EBD =∠EDB ,则|EB|=|ED|,∴|AE|+|EB|=|AE|+|ED|=|AD|=4.所以E 的轨迹为一个椭圆,方程为2x 4+2y 3=1(y ≠0);(2)C 1: 2x 4 +2y 3=1;设l :x =my +1,因为PQ ⊥l ,设PQ :y =-m (x-1),联立l 与椭圆C 1,22x my 1,x y 1,43⎧=+⎪⎨+=⎪⎩得(3m 2+4)y 2+6my-9=0; 则|MN|=M -y N |=3m 4+=()2212m13m 4++;圆心A 到PQ 距离d =,所以|PQ|=22=,∴S MPNQ =12|MN|·|PQ|=12·()2212m 13m 4+⋅+==24[12,8. 2.(2016年全国卷Ⅰ高考文科·T20)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H. (1)求OH ON.(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【试题解析】(1)由已知得M (0,t ),P 2t ,t 2p ⎛⎫ ⎪⎝⎭,又N 为M 关于点P 的对称点,故N 2t ,t p ⎛⎫⎪⎝⎭,故直线ON 的方程为y =p t x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=22t p ,因此H 22t ,2t p ⎛⎫⎪⎝⎭,所以N 为OH 的中点,即OH ON=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y-t =p2tx ,即x =2t p (y-t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.3.(2016年全国卷Ⅲ·理科·T20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ.(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【试题解析】(1)由题意可知F 1,02⎛⎫⎪⎝⎭,设l 1:y =a ,l 2:y =b 且ab ≠0,A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭P 1,a 2⎛⎫-⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭,R 1a b ,22⎛⎫+- ⎪⎝⎭, 记过A ,B 两点的直线方程为l ,由点A ,B 可得直线方程为2x-(a +b )y +ab =0, 因为点F 在线段AB 上,所以ab +1=0, 记直线AR 的斜率为k 1,直线FQ 的斜率为k 2, 所以k 1=2a b1a -+,k 2=b 1122--=-b ,又因为ab +1=0, 所以k 1=22a b a b 1aba a 1a a abb ---====-+-,所以k 1=k 2,即AR ∥FQ.(2)设直线AB 与x 轴的交点为D ()1x ,0, 所以S △ABF =1111a b FD a b x 222-=--, 又S △PQF =a b 2-,所以由题意可得S △PQF =2S △ABF 即:a b 2- =2×12·11x 2a b ⋅--, 解得x 1=0(舍)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2y a b x 1=+-(x ≠1).而21a b y =+,所以y 2=x-1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1.4.(2016年全国卷Ⅲ·文科·T20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ.(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【试题解析】(1)由题意知F 1,02⎛⎫⎪⎝⎭.设l 1:y =a ,l 2:y =b ,且ab ≠0,则A 2a ,a 2⎛⎫ ⎪⎝⎭,B 2b ,b 2⎛⎫ ⎪⎝⎭,P 1,a 2⎛⎫- ⎪⎝⎭,Q 1,b 2⎛⎫- ⎪⎝⎭, R 1a b ,22⎛⎫+-⎪⎝⎭. 记过A ,B 两点的直线方程为l ,则l 的直线方程为2x-(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0. 记直线AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=222a b a b 1ab====-b=k aa 1a a ab ---+-.所以AR ∥FQ.(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =1111b a FD b a x 222-=--,S △PQF =a b 2-. 由题设可得2×1a b 11b a x 222---=.所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2ya b x 1=+-(x ≠1).而a b 2+=y ,所以y 2=x-1(x ≠1).当AB 与x 轴垂直时,E 与D (1,0)重合,所以,所求轨迹方程为y 2=x-1.5.(2016年四川高考文科·T20)已知椭圆E : 2222x y a b+=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P 1 3,2⎫⎪⎭在椭圆E 上.(1)求椭圆E 的方程.(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA|·|MB|=|MC|·|MD|.【解题指南】(1)利用点在椭圆上,列出方程,解出b 的值,从而得到椭圆的标准方程.(2)利用椭圆的几何性质,数形结合,利用根与系数的关系,进行计算.【试题解析】(1)由已知,a =2b ,又椭圆2222x y a b +=1(a >b >0)过点P 1 3,2⎫⎪⎭,故221344b b+=1,解得b 2=1,所以椭圆的方程为2x 4+y 2=1.(2)设直线l 的方程为y =12x +m ()m 0≠,A ()11x ,y ,B ()22x ,y ,由方程组22x y 1,41y x m,2⎧+=⎪⎪⎨⎪=+⎪⎩得x 2+2mx +2m 2-2=0,①方程①的判别式为Δ=4()22m -,由Δ>0,即2-m 2>0,解得-m<由①得x 1+x 2=-2m ,x 1x 2=2m 2-2,所以M 点坐标为m m,2⎛⎫- ⎪⎝⎭,直线OM 的方程为y =-12x ,由22x y 1,41y x,2⎧+=⎪⎪⎨⎪=-⎪⎩得C ⎛ ⎝⎭,D -⎝⎭, 所以MC MD ⋅=((()25m m 2m 4-+⋅+=-, 所以21MA MB AB 4⋅= =()()2212121x x y y 4⎡--⎤+⎢⎥⎣⎦ =()()222121255x x 4x x 4m 42m 21616⎡⎤⎡⎤+-=--⎢⎥⎣⎦⎣⎦ =54(2-m 2),所以MC MD MA MB ⋅=⋅.6.(2016年江苏高考T22)(本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线l :x-y-2=0,抛物线C :y 2=2px (p >0). (1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q. ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.【解题指南】(1)求出直线与x 轴的交点坐标可得p 的值.(2)利用对称知识及PQ 的中点坐标构造关于y 的一元二次方程,利用判别式大于零求解. 【试题解析】(1)因为l :x-y-2=0,所以l 与x 轴的交点坐标为(2,0), 即抛物线的焦点为(2,0),所以p 2=2,所以y 2=8x.(2)①设点P (x 1,y 1),Q (x 2,y 2),则211222y 2px y 2px ⎧=⎪⎨=⎪⎩⇒211222y x ,2p y x ,2p ⎧=⎪⎪⎨⎪=⎪⎩则 k PQ =12221212y y 2p=y y y y 2p 2p-+-,又因为P ,Q 关于直线l 对称, 所以k PQ =-1,即y 1+y 2=-2p , 所以12y y 2+=-p ,又因为P ,Q 的中点一定在直线l 上, 所以1212x x y y =22+++2=2-p ,所以线段PQ 的中点坐标为(2-p ,-p ). ① 为中点坐标为(2-p ,-p ),12221212y y 2p,y y x x 42p,2p ⎧+=-⎪⎨++==-⎪⎩即1222212y y 2p,y y 8p 4p ,⎧+=-⎪⎨+=-⎪⎩ 所以12212y y 2p,y y 4p 4p,⎧+=-⎪⎨=-⎪⎩即方程y 2+2py +4p 2-4p =0有两个不等实根. 所以Δ>0,(2p )2-4(4p 2-4p )>0⇒p ∈40,3⎛⎫ ⎪⎝⎭.。
2016~2018高考圆锥曲线(全国卷)1.(2016全国一)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是(A )(1-,3)(B )(1-,3)(C )(0,3)(D )(0,3)2.(D ,E (A )23.(合,l A 交于P ,4.(1MF 与213(A (B )32(C (D )25.(2016全国二)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.6.(2016全国三)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于7.(l 1,l 28.(2017A 、B 两点,直线A .16 9.(2017A ,圆A 与双曲线10.(2017⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.11.(2017全国二)若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A.2312.(2017全国二)已知F是抛物线C:28y x=的焦点,M是C上一点,FM的延长线交y轴于点N,若M为FN的中点,则FN=_____________.13.(2017全国二)设O为坐标原点,动点M在椭圆22:1xC y+=上,过M作x轴的垂满足2NP NM=.的轨迹方程;(21PQ=,证明:过点C的左焦点14.(21 3y=A15.(A16.(为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,2-),求直线l与圆M的方程.17.(2018全国一)设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C交于M,N两点,则FM FN⋅=A .5B .6C .7D .819.(2018全国一)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32 B .3 C . D .420.(21.(2018全国二)双曲线的离心率为,则其渐近线方程为A. C. D.22.(2018全国二)已知,是椭圆的左,右焦点,是的左顶点,点且斜率为的直线上,为等腰三角形,,则的离心率为A.B.C.D.23.(2018.(1)求的方程; (2)求过点,且与的准线相切的圆的方程.24.(2018全国三)设12,F F 是双曲线C:22221x y a b-=(a >O ,b >0)的左、右焦点,O 是坐标原点,过2F 作C 的一条渐近线的垂线,垂足为P ,若1PF ,则C 的离心率为()225.(2018全国三)已知点M(-1,1)和抛物线C:24y x=,过C的焦点且斜率为k的直线与C交于A,B两点,若∠AMB=90。
(1)求菜地内的分界线C的方程
S面积是
(2)菜农从蔬菜运量估计出
1
坐标为1的点,请计算以EH为一边、另一边过点一个更接近于S面积的经验值
:的两个焦点与短轴的一个端点是直角三角形
(3)求菜地内的分界线C的方程
S面积是
(4)菜农从蔬菜运量估计出
1
坐标为1的点,请计算以EH为一边、另一边过点
S面积的经验值
一个更接近于
1
:的两个焦点与短轴的一个端点是直角三角形
=【试题解析】(I)设直线y kx
.
、(2016江苏省高考)
如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214x y x +--(4) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(5) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程;
(x。