辽宁省营口市2013年中考数学试卷(解析版)
- 格式:doc
- 大小:473.50 KB
- 文档页数:21
2022年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.(3分)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.2.(3分)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)下列计算正确的是()A.a6÷a2=a3B.(a2)4=a8C.3a3﹣a3=3D.a2+4a2=5a4 4.(3分)如图,直线DE∥FG,Rt△ABC的顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为()A.55°B.25°C.65°D.75°5.(3分)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为()A.m<4B.m>﹣4C.m≤4D.m≥﹣46.(3分)分式方程=的解是()A.x=2B.x=﹣6C.x=6D.x=﹣27.(3分)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x﹣150x=240×12C.240x+150x=240×12D.240x﹣150x=150×128.(3分)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.49.(3分)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC 交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 10.(3分)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B 落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为()A.﹣2B.﹣1C.D.二、填空题(每小题3分,共18分)11.(3分)﹣2的相反数是.12.(3分)不等式组的解集为.13.(3分)甲、乙两名学生参加学校举办的“防疫知识大赛”.两人5次成绩的平均数都是95分,方差分别是S甲2=2.5,S乙2=3,则两人成绩比较稳定的是.(填“甲”或“乙”)14.(3分)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是.(写出一个即可)15.(3分)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.16.(3分)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.三、解答题(17小题10分,18小题10分,共20分)17.(10分)先化简,再求值:(a+1﹣)÷,其中a=+|﹣2|﹣()﹣1.18.(10分)为传承中华民族优秀传统文化,提高学生文化素养,学校举办“经典诵读”比赛,比赛题目分为“诗词之风”“散文之韵”“小说之趣”“戏剧之雅”四组(依次记为A,B,C,D).小雨和莉莉两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小雨抽到A组题目的概率是;(2)请用列表法或画树状图的方法,求小雨和莉莉两名同学抽到相同题目的概率.四、解答题(19小题10分,20小题10分,共20分)19.(10分)某校为了了解疫情期间学生居家锻炼时长的情况,随机抽取了部分学生,就居家一周的锻炼时长进行了统计调查,根据调查结果,将居家锻炼时长分为A,B,C,D 四个组别.学生居家锻炼时长分组表组别A B C Dt(小时)0≤t<22≤t<44≤t<6t≥6下面两幅图为不完整的统计图.请根据图表中的信息解答下列问题:(1)此次共抽取名学生;(2)补全条形统计图,并求扇形统计图中A组所在扇形的圆心角的度数;(3)若全校有1000名学生,请根据抽样调查结果,估计D组(居家锻炼时长不少于6小时)的人数.20.(10分)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x >0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.五、解答题(21小题10分,22小题12分,共22分)21.(10分)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处,在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比),求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)22.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.六、解答题(本题满分12分)23.(12分)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?七、解答题(本题满分14分)24.(14分)如图1,在正方形ABCD中,点M为CD边上一点,过点M作MN⊥CD且DM =MN,连接DN,BM,CN,点P,Q分别为BM,CN的中点,连接PQ.(1)证明:CM=2PQ;(2)将图1中的△DMN绕正方形ABCD的顶点D顺时针旋转α(0°<α<360°).①(1)中的结论是否成立?若成立,请结合图2写出证明过程;若不成立,请说明理由;②若AB=10,DM=2,在△DMN绕点D旋转的过程中,当B,M,N三点共线时,请直接写出线段PQ的长.八、解答题(本题满分14分)25.(14分)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.(1)求抛物线和直线AB的解析式;(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.2022年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.(3分)在,0,﹣1,2这四个实数中,最大的数是()A.0B.﹣1C.2D.【分析】根据实数的大小比较法则即可得出答案.【解答】解:∵﹣1<0<<2,∴最大的数是2;故选:C.【点评】此题考查了实数的大小比较,熟练掌握正数大于0,负数小于0,正数大于一切负数.2.(3分)如图是由五个相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:B.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.(3分)下列计算正确的是()A.a6÷a2=a3B.(a2)4=a8C.3a3﹣a3=3D.a2+4a2=5a4【分析】选项A根据同底数幂的除法法则判断即可,同底数幂的除法法则:底数不变,指数相减;选项B根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘;选项C、D根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【解答】解:A.a6÷a2=a4,故本选项不合题意;B.(a2)4=a8,故本选项符合题意;C.3a3﹣a3=2a3,故本选项不合题意;D.a2+4a2=5a2,故本选项不合题意;故选:B.【点评】本题考查了合并同类项,同底数幂的除法以及幂的乘方,掌握相关运算法则是解答本题的关键.4.(3分)如图,直线DE∥FG,Rt△ABC的顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为()A.55°B.25°C.65°D.75°【分析】由平行线的性质可得∠CBE=∠BCF=25°,再由直角三角形得∠ABC=90°,从而可求∠ABE的度数.【解答】解:∵DE∥FG,∠BCF=25°,∴∠CBE=∠BCF=25°,∵∠ABC=90°,∴∠ABE=∠ABC﹣∠CBE=65°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.5.(3分)关于x的一元二次方程x2+4x﹣m=0有两个实数根,则实数m的取值范围为()A.m<4B.m>﹣4C.m≤4D.m≥﹣4【分析】根据根的判别式和已知条件得出Δ=42﹣4×1×(﹣m)≥0,再求出m的范围即可.【解答】解:∵关于x的一元二次方程x2+4x﹣m=0有两个实数根,∴Δ=42﹣4×1×(﹣m)=16+4m≥0,解得:m≥﹣4,故选:D.【点评】本题考查了根的判别式,能熟记根的判别式内容是解此题的关键,注意:已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2﹣4ac>0时,方程有两个不相等的实数解;当b'2﹣4ac=0时,方程有两个相等的实数解;当b2﹣4ac<0时,方程没有实数解.6.(3分)分式方程=的解是()A.x=2B.x=﹣6C.x=6D.x=﹣2【分析】方程两边都乘x(x﹣2)得出3(x﹣2)=2x,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得:x=6,检验:当x=6时,x(x﹣2)≠0,所以x=6是原方程的解,即原方程的解是x=6,故选:C.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.7.(3分)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x﹣150x=240×12C.240x+150x=240×12D.240x﹣150x=150×12【分析】利用路程=速度×时间,结合x天快马比慢马多走的路程为慢马12天走的路程,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:240x﹣150x=150×12.故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.(3分)如图,点A,B,C,D在⊙O上,AC⊥BC,AC=4,∠ADC=30°,则BC的长为()A.4B.8C.4D.4【分析】连接AB,可得△ABC是直角三角形,利用圆周角定理可得∠ABC=∠ADC=30°,在Rt△ABC中,AC=4,利用三角函数可求出BC的长.【解答】解:连接AB,如图所示,∵AC⊥BC,∴∠ACB=90°.∵∠ADC=30°,∴∠ABC=∠ADC=30°.∴在Rt△ABC中,tan∠ABC=,∴BC=.∵AC=4,∴BC==4.故选:A.【点评】本题考查了圆周角定理,掌握“同弧所对的圆周角相等”是解题的关键.9.(3分)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC 交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD【分析】根据已知条件AB=AC,∠A=36°,可得△ABC是底角为72°的等腰三角形,再根据尺规作图可得BD平分∠ABC,再根据等腰三角形的性质对各选项进行判断即可.【解答】解:在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∵∠A=36°,∴∠ABC=∠C=(180°﹣36°)=72°.∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴∠ABD=∠A.∴AD=BD.故选项B正确;∵∠BDC=∠A+∠ABD=72°.∴∠C=∠BDC.∴BD=BC.故选项A正确;∵∠BDC=72°,∴∠ADB=108°.故选项C正确;在△BCD与△ACB中,∵∠CBD=∠A=36°,∠C为公共角.∴△BCD∽△ACB.∴.∴BC2=AC•CD.∵BC=BD=AD,AC=AD+CD.∴AD2=(AD+CD)•CD.整理得,CD2﹣AD•CD﹣AD2=0.解得,CD=AD.∴CD≠AD.故选项D错误.故选:D.【点评】本题考查了顶角为36°的等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.10.(3分)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B 落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为()A.﹣2B.﹣1C.D.【分析】设AE=x,BM=a,在Rt△AME中,可得(1﹣a)2+x2=a2①,由sin∠AME=sin∠DEC,有=,即得EC==BC,而∠BCF=∠DEC=∠AME,知cos∠BCF =cos∠AME,可得=,即a=1﹣2x②,把②代入①可解得AE=﹣2.【解答】解:设AE=x,BM=a,∵CD=1=AB,∴AM=1﹣a,∵△BCM沿直线CM折叠,使点B落在AD边上的点E处,∴ME=BM=a,∠MEC=∠MBC=90°,BC=EC,在Rt△AME中,AM2+AE2=ME2,∴(1﹣a)2+x2=a2①,∵∠AME=90°﹣∠AEM=∠DEC,∴sin∠AME=sin∠DEC,∴=,即=,∴EC=,∴BC=,∵∠BCF=∠DEC=∠AME,∴cos∠BCF=cos∠AME,∴=,即=,化简变形得:a=1﹣2x②,把②代入①得:(1﹣1+2x)2+x2=(1﹣2x)2,解得x=﹣2或x=﹣﹣2(舍去),∴AE=﹣2,故选:A.方法二:∵BC=CE,∠EDC=∠CFB=90°,∠DEC=∠BCF,∴△EDC≌△CFB(AAS),∴DE=CF=2,∴CE====BC=AD,∴AE=AD﹣DE=﹣2,故选:A.【点评】本题考查矩形中的翻折问题,涉及锐角三角函数,勾股定理等知识,解题的关键是掌握翻折的性质,能熟练应用勾股定理及三角函数列方程解决问题.二、填空题(每小题3分,共18分)11.(3分)﹣2的相反数是2.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.12.(3分)不等式组的解集为1<x<8.【分析】分别解两个不等式得到x>1和x<8,然后大小小大中间找确定不等式组的解集.【解答】解:,解①得x>1,解②得x<8,所以不等式组的解集为1<x<8.故答案为:1<x<8.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.13.(3分)甲、乙两名学生参加学校举办的“防疫知识大赛”.两人5次成绩的平均数都是95分,方差分别是S甲2=2.5,S乙2=3,则两人成绩比较稳定的是甲.(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵两人5次成绩的平均数都是95分,方差分别是S甲2=2.5,S乙2=3,∴,∴成绩比较稳定的是甲;故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是AB=AD(答案不唯一).(写出一个即可)【分析】由平移的性质得AB∥DE,AB=DE,则四边形ABED是平行四边形,再由菱形的判定即可得出结论.【解答】解:这个条件可以是AB=AD,理由如下:由平移的性质得:AB∥DE,AB=DE,∴四边形ABED是平行四边形,又∵AB=AD,∴平行四边形ABED是菱形,故答案为:AB=AD(答案不唯一).【点评】本题考查了菱形的判定、平行四边形的判定与性质以及平移的性质等知识,熟练掌握菱形的判定和平移的性质是解题的关键.15.(3分)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=30度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.【点评】本题考查了正多边形与圆,根据tan∠ACF===得出∠ACF=30°是解题的关键.16.(3分)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【分析】根据题意以及函数图像可得出△AED∽△APQ,则点Q在AD上运动时,△APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时x=3,则AD =2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,结合面积公式,分别表示出相关线段可得y与x之间的函数解析式,最后代入求解即可.【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,在Rt△APF中,AP=x,∠P AF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.【点评】本题考查了动点问题的函数图像,注意分类讨论,求出各段函数的函数关系式是解答本题的关键.三、解答题(17小题10分,18小题10分,共20分)17.(10分)先化简,再求值:(a+1﹣)÷,其中a=+|﹣2|﹣()﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解,则约分得到原式=,然后根据算术平方根的定义、绝对值和负整数指数幂的意义计算出a的值,最后把a的值代入计算即可.【解答】解:原式=•=•=•=•=,∵a=+|﹣2|﹣()﹣1=3+2﹣2=3,∴原式==.【点评】本题考查分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的运算.18.(10分)为传承中华民族优秀传统文化,提高学生文化素养,学校举办“经典诵读”比赛,比赛题目分为“诗词之风”“散文之韵”“小说之趣”“戏剧之雅”四组(依次记为A,B,C,D).小雨和莉莉两名同学参加比赛,其中一名同学从四组题目中随机抽取一组,然后放回,另一名同学再随机抽取一组.(1)小雨抽到A组题目的概率是;(2)请用列表法或画树状图的方法,求小雨和莉莉两名同学抽到相同题目的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中小雨和莉莉两名同学抽到相同题目的结果有4种,再由概率公式求解即可.【解答】解:(1)小雨抽到A组题目的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中小雨和莉莉两名同学抽到相同题目的结果有4种,∴小雨和莉莉两名同学抽到相同题目的概率为=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(19小题10分,20小题10分,共20分)19.(10分)某校为了了解疫情期间学生居家锻炼时长的情况,随机抽取了部分学生,就居家一周的锻炼时长进行了统计调查,根据调查结果,将居家锻炼时长分为A,B,C,D 四个组别.学生居家锻炼时长分组表组别A B C Dt(小时)0≤t<22≤t<44≤t<6t≥6下面两幅图为不完整的统计图.请根据图表中的信息解答下列问题:(1)此次共抽取50名学生;(2)补全条形统计图,并求扇形统计图中A组所在扇形的圆心角的度数;(3)若全校有1000名学生,请根据抽样调查结果,估计D组(居家锻炼时长不少于6小时)的人数.【分析】(1)由C组有20人,占40%,可求得接受问卷调查的人数;(2)由(1)可求得B组的人数,继而补全条形统计图;用360°乘A组所占比例可得扇形统计图中A组所在扇形的圆心角的度数;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)20÷40%=50(人),即此次共抽取50名学生;故答案为:50;(2)B组的人数为:50﹣5﹣20﹣10=15(人),补全条形统计图如下:扇形统计图中A组所在扇形的圆心角的度数为:360°×=36°;(3)1000×=200(人),答:估计全校D组(居家锻炼时长不少于6小时)的人数为200人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(10分)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x >0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.【分析】(1)把点B(2,6)代入反比例函数的关系式可求出k的值,利用相似三角形的性质可求出A的坐标,进而得出点C坐标;(2)利用勾股定理求出OA、AC的长即可.【解答】解:把点B(2,6)代入反比例函数y=得,k=2×6=12;如图,过点A、B分别作y轴的垂线,垂足为D、E,则OE=6,BE=2,∵BE⊥CD,AD⊥CD,∴AD∥BE,又∵B为AC的中点.∴AD=2BE=4,CE=DE,把x=4代入反比例函数y=得,y=12÷4=3,∴点A(4,3),即OD=3,∴DE=OE﹣OD=6﹣3=3=CE,∴OC=9,即点C(0,9),答:k=12,C(0,9);(2)在Rt△AOD中,OA===5,在Rt△ADC中,AC===2,∴△AOC的周长为:2+5+9=2+14.【点评】本题考查反比例函数图象上点的坐标特征,直角三角形的边角关系以及相似三角形的性质,掌握勾股定理,反比例函数图象上点的坐标特征以及相似三角形的性质是正确解答的前提.五、解答题(21小题10分,22小题12分,共22分)21.(10分)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58°,沿着山坡向上走75米到达B处,在B处测得大楼顶部M的仰角是22°,已知斜坡AB的坡度i=3:4(坡度是指坡面的铅直高度与水平宽度的比),求大楼MN的高度.(图中的点A,B,M,N,C均在同一平面内,N,A,C在同一水平线上,参考数据:tan22°≈0.4,tan58°≈1.6)【分析】过点B作BE⊥AC,垂足为E,过点B作BD⊥MN,垂足为D,则BE=DN,DB=NE,根据已知可设BE=3a米,则AE=4a米,从而在Rt△ABE中,利用勾股定理可求出AE,BE的长,然后设NA=x米,在Rt△ANM中,利用锐角三角函数的定义求出MN的长,从而求出MD,DB的长,最后在Rt△MDB中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:过点B作BE⊥AC,垂足为E,过点B作BD⊥MN,垂足为D,则BE=DN,DB=NE,∵斜坡AB的坡度i=3:4,∴=,∴设BE=3a米,则AE=4a米,在Rt△ABE中,AB===5a(米),∵AB=75米,∴5a=75,∴a=15,∴DN=BE=45米,AE=60米,设NA=x米,∴BD=NE=AN+AE=(x+60)米,在Rt△ANM中,∠NAM=58°,∴MN=AN•tan58°≈1.6x(米),∴DM=MN﹣DN=(1.6x﹣45)米,在Rt△MDB中,∠MBD=22°,∴tan22°==≈0.4,解得:x=57.5,经检验:x=57.5是原方程的根,∴MN=1.6x=92(米),∴大楼MN的高度约为92米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.(12分)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.【点评】本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.六、解答题(本题满分12分)23.(12分)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?【分析】(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元得,可解得A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据两款纪念册每天销售总数不变,可得B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',待定系数法可得y=﹣2x+124,即可得B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,则w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,根据二次函数性质可得答案.【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据题意得:,解得,答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,∵两款纪念册每天销售总数不变,∴B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',根据表格可得:,解得,∴y=﹣2x+124,当y=80﹣2m时,x=22+m,即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,∵﹣4<0,∴m=6时,w取最大值,最大值为1264元,此时A款纪念册售价为32﹣m=32﹣6=26(元),答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.【点评】本题考查二元一次方程组和二次函数的应用,解题的关键是理解题意,列出方程组和函数关系式.七、解答题(本题满分14分)24.(14分)如图1,在正方形ABCD中,点M为CD边上一点,过点M作MN⊥CD且DM =MN,连接DN,BM,CN,点P,Q分别为BM,CN的中点,连接PQ.(1)证明:CM=2PQ;(2)将图1中的△DMN绕正方形ABCD的顶点D顺时针旋转α(0°<α<360°).①(1)中的结论是否成立?若成立,请结合图2写出证明过程;若不成立,请说明理由;②若AB=10,DM=2,在△DMN绕点D旋转的过程中,当B,M,N三点共线时,请直接写出线段PQ的长.【分析】(1)如图1中,连接NP,延长NP交CB于点J.证明△PMN≌PBJ(ASA),推出MN=NJ,再证明CM=CJ,利用三角形中位线定理证明即可;(2)①成立.如图2中,延长NM交BC的延长线于点R,交CD于点K,连接NP,延长NP到T,使得PT=PN,连接CT,BT.证明△PMN≌△PBT(SAS),推出MN=BT,∠PMN=∠PBT,再证明△CDM≌△CBT(SAS),推出CM=CT,可得结论.②分两种情形:如图3﹣1中,当点N在BM的延长线上时,连接BD,取BD的中点O,连接OM,OC,过点B作BR⊥CM于点R.如图3﹣2中,证明D,M,C,B四点共圆,。
2013年辽宁省鞍山市中考数学试卷一.选择题(共8小题,每小题2分,满分16分)1.(2013鞍山)3﹣1等于()A.3 B.﹣C.﹣3 D.故选D.点评:此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.(2013鞍山)一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.6故选C.3.(2013鞍山)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°故选C.4.(2013鞍山)要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2故选D.5.(2013鞍山)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°故选A.6.(2013鞍山)已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根故选:C.7.(2013鞍山)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁故选B.8.(2013鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个故选B.二.填空题(共8小题,每小题2分,满分16分)9.(2013鞍山)分解因式:m2﹣10m= .故答案为:m(m﹣10).10.(2013鞍山)如图,∠A+∠B+∠C+∠D= 度.故答案为:360.11.(2013鞍山)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.故答案为:四.12.(2013鞍山)若方程组,则3(x+y)﹣(3x﹣5y)的值是.故答案为:24.13.(2013鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.(2013鞍山)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.考点:代数式求值.专题:应用题.分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.解答:解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.点评:依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.15.(2013鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.考点:二元一次方程组的应用.分析:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可的方程:x+y=220,又知两棒未露出水面的长度相等,又可得方程x=y,把两个方程联立,组成方程组,解方程组可得较长的铁棒的长度,用较长的铁棒的长度×可以求出木桶中水的深度.解答:解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可列x+y=220,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为120×=80(cm).故答案为:80.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,找出合适的等量关系,列出方程组.16.(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.分析:利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.解答:解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.点评:本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.三.计算题(共2小题,每小题6分,满分12分)17.(2013鞍山)先化简,再求值:,其中x=.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为后解答.解答:解:原式=÷(﹣)﹣1=÷﹣1=•﹣1=﹣1.当x=时,原式=﹣1,=﹣1=﹣1.点评:本题考查了分式的化简求值,能正确进行因式分解是解题的关键.18.(2013鞍山)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:(1)利用待定系数法求得y与x之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.四.应用题(共2小题,每小题6分,满分12分)19.(2013鞍山)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可解答:解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(2013鞍山)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)考点:解直角三角形的应用-坡度坡角问题.分析:在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD﹣AB即可求出滑板加长的长度.解答:解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.点评:本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.五.应用题(共2小题,每小题6分,满分12分)21.(2013鞍山)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.22.(2013鞍山)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.考点:平行四边形的判定;全等三角形的判定.专题:证明题.分析:(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.解答:证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).点评:此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.六.应用题(共2小题,每小题6分,满分12分)23.(2013鞍山)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,AO=,求OD的长度.考点:切线的性质;勾股定理.专题:计算题.分析:(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD的长.解答:解:(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,解得:OD=1.点评:此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(2013鞍山)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.考点:反比例函数综合题.专题:计算题;数形结合.分析:(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.点评:本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.七.应用题(满分10分)25.(2013鞍山)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?考点:正方形的性质;全等三角形的判定与性质.专题:证明题;探究型.分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD 成立.解答:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(3分)(2)解:GE=BE+GD成立.(4分)理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.(7分)∴GE=DF+GD=BE+GD.(8分)点评:本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.八.应用题(满分10分)26.(2013鞍山)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.考点:二次函数综合题.分析:(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c 的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a(x﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.解答:解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).点评:此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.第11 页共11 页。
2014年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分)1、2的值等于 ( ) A 、2 B 、-2 C 、2 D 、22、函数31+-=x y 中,自变量x 的取值围是 ( )A 、1>xB 、1≥xC 、1≤xD 、1≠x3、方程0312=--xx 的解为 ( ) A 、2=x B 、2-=x C 、3=x D 、3-=x4、已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是 ( ) A 、4,15 B 、3,15 C 、4,16 D 、3,165、下列说法中正确的是 ( ) A 、两直线被第三条直线所截得的同位角相等 B 、两直线被第三条直线所截得的同旁角互补C 、两平行线被第三条直线所截得的同位角的平分线互相垂直D 、两平行线被第三条直线所截得的同旁角的平分线互相垂直20. 已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( )A 、30cm 2B 、30πcm 2C 、15cm 2D 、15πcm 27、如图,A 、B 、C 是⊙O 上的三点,且∠ABC=70°,则∠AOC 的度数是 ( ) A 、35°B 、140°C 、70°D 、70°或140°8、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD=1,BC=4,则△AOD 与△BOC 的面 积比等于 ( ) A 、21 B 、41C 、81D 、1611、如图,平行四边形ABCD 中,AB :BC=3:2,∠DAB=60°,E 在AB 上,且AE :EB=1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于( ) A 、3:4 B 、3:52 C 、13:62 D 、32:1310、已知点A (0,0),B (0,4),C (3,t +4),D (3,t ). 记N (t )为□ABCD 部(不含边界)整 点第7题图第8题图第9题图的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为 ( )A 、6,7B 、7,8C 、6,7,8D 、6,8,9二、填空题(本大题共8小题,每小题2分,共16分) 11、分解因式:2x 2-4x =。
2013年全国中考数学试题分类解析汇编专题21:二次函数的图象和性质一、选择题1. (2012重庆市4分)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。
下列结论中,正确的是【 】A .0abc >B .0a b +=C .20b c >+D .42a c b +< 【答案】D 。
【考点】二次函数图象与系数的关系。
【分析】A 、∵二次函数的图象开口向上,∴a >0。
∵二次函数的图象与y 轴交于负半轴,∴c <0。
∵二次函数的图象对称轴在y 轴左侧,∴﹣2b a<0。
∴b >0。
∴0abc <。
故本选项错误。
B 、∵二次函数的图象对称轴:122b x a=-=-,∴a b =,0a b >+。
故本选项错误。
C 、从图象可知,当0x =时,20y a b c b c <=++=+。
故本选项错误。
D 、∵二次函数的图象对称轴为12x =-,与x 轴的一个交点的取值范围为x 1>1, ∴二次函数的图象与x 轴的另一个交点的取值范围为x 2<﹣2。
∴当2x =-时,420y a b c <=-+,即42a c <b +。
故本选项正确。
故选D 。
2. (2012浙江衢州3分)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 1 【答案】A 。
【考点】二次函数图象上点的坐标特征。
【分析】根据x 1、x 2、x 3与对称轴的大小关系,判断y 1、y 2、y 3的大小关系:∵二次函数2115y x 7x 22=--+,∴此函数的对称轴为:b 7x===712a22----⎛⎫⨯- ⎪⎝⎭。
∵7-<0<x 1<x 2<x 3,三点都在对称轴右侧,a <0, ∴对称轴右侧y 随x 的增大而减小。
2013年辽宁省丹东市中考数学试题及参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.25-的相反数是( ) A .52- B .52 C .25 D .25- 2.一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是( )A .追B .逐C .梦D .想3.丹东地区人口约为245万,245万用科学记数法表示正确的是( )A .245×104B .2.45×106C .24.5×105D .2.45×1074.如图,在△ABC 中AB 的垂直平分线交AB 于点D ,交线段BC 于点E .BC=6,AC=5,则△ACE 的周长是( )A .14B .13C .12D .115.不等式组3213x x -⎧⎨-⎩>≤的解集在数轴上表示正确的是( ) A . B . C . D .6.顺次连接等腰梯形各边中点所得到的四边形一定是( )A .正方形B .菱形C .矩形D .等腰梯形7.李东同学参加校团委组织的演讲赛,共21名选手参赛,预赛成绩各不相同,按成绩取前10名的选手参加复赛,李东在知道自己成绩的情况下,要判断自己能否进入复赛,还需要知道这21名选手成绩的( )A .平均数B .方差C .众数D .中位数8.如图,矩形ABCD 中,AB=3cm ,BC=4cmP ,Q 两点同时从点C 出发,点P 沿从C →D →A 方向运动,速度为2cm/s ;点Q 沿从C →B 的方向运动速度为1cm/s ,当运动时间为t (0≤t ≤3.5)时,设△PCQ的面积为y(cm2)(当P,Q两点未开始运动时,△PCQ的面积为0).则y(cm2)和t (s)的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,共24分)9.分解因式:a3b-9ab= .10.某奥运射击冠军射击一次,命中靶心.这个事件是(填“必然”、“不可能”或“不确定”)事件.11.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.12.如图,直线AC∥BD,AE平分∠BAC交直线BD于点E,若∠1=64°,则∠AED= °.13.双曲线kyx=和直线y=x+1交于点(-2,m),则双曲线的表达式为.14.如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为.15.观察下列数据:54-,79,916-,1125,…它们是按一定规律排列的,依照此规律,第19个数据是.16.如图,在平面直角坐标系中,点A(-6,0),点B(0,P在第二象限内,若以点P、B、O为顶点的三角形与△AOB相似(不包括全等的情况),则点P的坐标为.三、解答题(每小题8分,共16分)17.(8分)计算:222cos 45|3|3-⎛⎫+︒+ ⎪⎝⎭. 18.(8分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC 和△A 1B 1C 1在平面直角坐标系中位置如图所示.(1)△ABC 与△A 1B 1C 1关于某条直线m 对称,画出对称轴m .(2)画出△A 1B 1C 1绕原点O 顺时针旋转90°所得的△A 2B 2C 2.此时点A 2的坐标为 .求出点A 1旋转到点A 2的路径长.(结果保留根号)四、(每小题10分,共20分)19.(10分)丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.(10分)为帮助雅安地震灾区人们重建家园,某中学学生积极捐献.已知高中部捐款总额为7200元,初中部捐款总额为6000元,高中部人数比初中部人数多80人,而且初中部和高中部人均捐款恰好相等.求该校学生总数是多少人.五、(每小题10分,共20分)21.(10分)现有三张不透明的卡片A,B,C,他们背面完全一样,正面分别画有圆、长方形和等腰三角形,将三张卡片背面朝上,洗匀后放在桌子上.(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率为.(2)从中随机抽取一张卡片,放回后洗匀,在随机抽取一张卡片.请用列表法或画树状图的方法,求两次抽取的卡片正面图形都是中心对称图形的概率.22.(10分)如图,CD是⊙O的直径,OB⊥CD交⊙O于点B,连接CB,AB是⊙O的弦,AB交CD于点E,F是CD的延长线上一点且AF=EF.(1)判断AF和⊙O的位置关系并说明理由(2)若∠ABC=60°,BC=1cm,求阴影部分的面积.(结果保留根号)六、(每小题10分,共20分)23.(10分)如图,新城区新建了三个商业城A,B,C,其中C在A的正东方向,在A处测得B 在A的南偏东52°的方向,在C处测得B在C的南偏东26°的方向,已知A和B的距离是1000m.现有甲、乙两个工程对修建道路,甲修建一条从A到C的笔直道路AC,乙修建一条从B到直线AC 最近的道路BD.求甲、乙修建的道路各是多长.(结果精确到1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)24.(10分)有甲、乙两军舰在南海执行任务.它们分别从A ,B 两处沿直线同时匀速前往C 处,最终到达C 处(A ,B ,C ,三处顺次在同一直线上).设甲、乙两军舰行驶x (h )后,与B 处相距的距离分别是y 1(海里)和y 2(海里),y 1,y 2与x 的函数关系如图所示(1)①在0≤x ≤5的时间段内,y 2与x 之间的函数关系式为 .②在0≤x ≤0.5的时间段内,y 1与x 之间的函数关系式为(2)A ,C 两处之间的距离是 海里.(3)若两军舰的距离不超过5海里是互相望到,当0.5≤x ≤3时.求甲、乙两军舰可以互相望到时x 的取值范围.七、(本题12分)25.(12分)已知四边形ABCD 是正方形(1)如图1.点M 在边BA 的延长线上,点N 在边BC 上,且AM=CN ,连接MN ,DM ,DN ,判断△DMN 的形状(直接写出答案).(2)如图2,当店N 在边AB 上,点N 在边BC 的延长线上,AM=CN ,连接MN ,取线段MN 的中点G ,连接DG ,DM ,判断线段DG 和线段MG 的关系并说明理由.(3)如图3,当点M 在边AB 的延长线上,点N 在边BC 的延长线上,AM=CN ,连接MN ,DM ,DN ,点G 是线段MN 的中点,连接BG ,DG ,连接GC 并延长交BD 于点H ,若∠AMN=75°,判断线段GH 和线段BD 的关系并说明理由.八、(本题14分)26.(14分)如图1.已知抛物线212y x bx c =-++与x 轴分别交于A ,B 两点,与y 轴交于点C ,A 点坐标为(-2,0),B 的坐标为(4,0).直线l 过B ,C 两点.点P 是线段BC 上的一个动点(点P 不与B ,C 两点重合).在点P 运动过程中,始终有一条过点P 且和y 轴平行的直线也随之运动,该直线与抛物线的交点为M ,与x 轴的交点为N .(1)①求出抛物线的函数表达式;②直接写出直线l 的函数表达式;(2)若直线MN把△OBC的面积分成1:3的两部分,求出此时点P的坐标.(3)如图2,①连接BM,CM,设△MBC的面积是S,在点P的运动过程中,S是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.②当△MBC的面积最大时,直线MN上另有一动点E,在坐标平面内是否存在点F,使以点A,P,E,F为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.参考答案与解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.25-的相反数是()A.52-B.52C.25D.25-【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答过程】解:25-的相反数是25,故选:C.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是()A.追B.逐C.梦D.想【知识考点】展开图折叠成几何体.【思路分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答过程】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“追”.故选:A.【总结归纳】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.丹东地区人口约为245万,245万用科学记数法表示正确的是()A.245×104B.2.45×106C.24.5×105D.2.45×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:245万=2450000=2.45×106,故选B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE 的周长是()A.14 B.13 C.12 D.11【知识考点】线段垂直平分线的性质.【思路分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=6,AC=5代入计算即可.【解答过程】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:D.【总结归纳】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.5.不等式组3213xx-⎧⎨-⎩>≤的解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】先解出各个不等式,确定不等式的解集,找出在数轴上正确表示解集的一项.【解答过程】解:3213xx-⎧⎨-⎩>①≤②,解①得,x>-3,解②得,x≤2,∴不等式的解集为:-3<x≤2,故选:C.【总结归纳】本题考查的是解一元一次不等式组和在数轴上表示不等式的解集,正确解出不等式确定不等式组的解集是解题的关键,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.顺次连接等腰梯形各边中点所得到的四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【知识考点】中点四边形.【思路分析】根据等腰梯形的对角线相等和三角形中位线定理,所得四边形的各边都相等,所以判定为菱形.【解答过程】解:如图所示,根据三角形中位线定理,EF=GH=12BD,FG=EH=12AC,∵ABCD为等腰梯形,∴AC=BD,∴EF=GH=FG=EH,∴EFGH为菱形.故选:B.【总结归纳】此题考查了菱形的判定方法、等腰梯形的性质、三角形中位线定理等知识点,掌握菱形的判别方法:①定义;②四边相等;③对角线互相垂直平分是解题的关键.7.李东同学参加校团委组织的演讲赛,共21名选手参赛,预赛成绩各不相同,按成绩取前10名的选手参加复赛,李东在知道自己成绩的情况下,要判断自己能否进入复赛,还需要知道这21名选手成绩的()A.平均数B.方差C.众数D.中位数【知识考点】统计量的选择.【思路分析】21人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前10名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答过程】解:由于总共有21个人,且他们的分数互不相同,第11的成绩是中位数,要判断是否进入前10名,故应知道中位数的多少.故选:D .【总结归纳】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.8.如图,矩形ABCD 中,AB=3cm ,BC=4cmP ,Q 两点同时从点C 出发,点P 沿从C →D →A 方向运动,速度为2cm/s ;点Q 沿从C →B 的方向运动速度为1cm/s ,当运动时间为t (0≤t ≤3.5)时,设△PCQ 的面积为y (cm 2)(当P ,Q 两点未开始运动时,△PCQ 的面积为0).则y (cm 2)和t (s )的函数关系的图象大致是( )A .B .C .D .【知识考点】动点问题的函数图象.【思路分析】分两种情况分析,当P 、Q 分别在CD 边和BC 边上运动时,(0<t≤1.5);当P 、Q 分别在AD 边和BC 边上运动时,(1.5<t≤3.5);分别求出函数解析式,即可解答.【解答过程】解:∵矩形ABCD 中,AB=3cm ,BC=4cm ,∴CD=3,∴点P 在CD 上运动的时间为:3÷2=1.5(秒),当P 、Q 分别在CD 边和BC 边上运动时,(0<t≤1.5),如图1,CP=2t ,CQ=t , ∴211222PCQ S PC CQ t t t =⨯=⨯⨯=; 当P 、Q 分别在AD 边和BC 边上运动时,(1.5<t≤3.5),如图2,过点P作PE⊥BC于点E,则PE=AB=3,CQ=t,∴113 1.522PCQS CQ PE t t =⨯=⨯⨯=,由以上可得:当0<t≤1.5时,则y(cm2)和t(s)的函数关系的图象为抛物线的一部分;当1.5<t≤3.5时,则y(cm2)和t(s)的函数关系的图象为直线,所以C选项符合题意.故选:C.【总结归纳】本题考查了函数与矩形相结合的问题,解决本题的关键是根据运动情况进行分类讨论,求出△PCQ面积的表达式,根据解析式确定图象.二、填空题(每小题3分,共24分)9.分解因式:a3b-9ab= .【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式ab,然后再利用平方差公式继续分解,即可求得答案.【解答过程】解:a3b-9ab=a(a2-9)=ab(a+3)(a-3).故答案为:ab(a+3)(a-3).【总结归纳】本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解因式,注意分解要彻底.10.某奥运射击冠军射击一次,命中靶心.这个事件是(填“必然”、“不可能”或“不确定”)事件.【知识考点】随机事件.【思路分析】根据必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答.【解答过程】解:某奥运射击冠军射击一次,命中靶心,这个事件是不确定事件;故答案为:不确定.【总结归纳】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120cm,宽为80cm,如果十字绣中央长方形图案的面积为6000cm2,则花边宽为.【知识考点】一元二次方程的应用.【思路分析】根据题意表示出中央长方形图案的长与宽,进而利用面积为6000cm2,进而求出即可.【解答过程】解:设花边宽为x,根据题意可得:(120-2x)(80-2x)=6000解得:x1=10,x2=90(不符合题意,舍去).所以,花边的宽为10cm.故答案为:10cm.【总结归纳】此题主要考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12.如图,直线AC∥BD,AE平分∠BAC交直线BD于点E,若∠1=64°,则∠AED= °.【知识考点】平行线的性质.【思路分析】由邻补角定义求出∠BAC的度数,再根据AE为角平分线求出∠CAE的度数,由直线AC与BD平行,得到同旁内角互补,求出所求角的度数即可.【解答过程】解:∵∠1+∠BAC=180°,∠1=64°,∴∠BAC=116°,∵AE平分∠BAC,∴∠BAE=∠CAE=58°,∵AC∥BD,∴∠CAE+∠AED=180°,∴∠AED=122°,故答案为:122【总结归纳】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.双曲线kyx=和直线y=x+1交于点(-2,m),则双曲线的表达式为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】先由一次函数的解析式确定点的坐标,再把点的坐标代入反比例函数的解析式即可.【解答过程】解:把点(-2,m)代入y=x+1得:m=-2+1=-1,∴点(-2,-1),把点(-2,-1)代入kyx=得,k=2,∴双曲线的表达式为2yx =.故答案为:2yx =.【总结归纳】本题考查了由函数的解析式确定点的坐标,待定系数法确定函数的解析式,注意知识的综合运用.14.如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为.【知识考点】含30度角的直角三角形;平行四边形的性质;矩形的性质;梯形. 【思路分析】根据矩形ABCD 的面积是▱FBCE 面积的2倍,得出CH=12AB ,再由三角函数即可求出∠E 的度数,解直角三角函数求得EH 的值,进而求得FH 的值,然后根据梯形的面积公式即可求得.【解答过程】解:∵四边形ABCD 是矩形, ∴DC ⊥BC ,∵▱FBCE 中,EF ∥BC , ∴DC ⊥EF ,根据题意得:AB=CD=BF=CE ,AD=BC=EF ,▱FBCE 面积=BC•CH=12BC•AB , ∴CH=12AB , ∵CE=BF=AB ,∴CH=12CE , ∴1sin 2CH E CE ==,∴∠E=30°,∴EH=cos30°•CE=202=,∴FH=EF-HE=30-∴四边形FBCH 的面积=12(FH+BC )•CH=()(213030103002cm -+⨯=-,故答案为:(2300cm -.【总结归纳】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键. 15.观察下列数据:54-,79,916-,1125,…它们是按一定规律排列的,依照此规律,第19个数据是 .【知识考点】规律型:数字的变化类.【思路分析】首先判断出每个数的正负,然后根据每个数的分子分别是5、7、9、11、…,判断出第n 个数的分子是多少;最后根据每个数的分母分别是4、9、16、25、…,判断出第n 个数的分母是多少,进而判断出这组数的第n 个数是多少,再把n=19代入,求出第19个数数据为多少即可.【解答过程】解:∵这组数分别是负数、正数、负数、正数、…,∴这组数的第n个数的正负即(-1)n的正负;∵5=2×1+3,7=2×2+3,9=2×3+3,11=2×4+3,∴第n个数的分子是:2n+3;∵4=(1+1)2,9=(2+1)2,16=(3+1)2,25=(4+1)2,∴第n个数的分母是:(n+1)2;∴这组数的第n个数是:∴第19个数据是:.故答案为:.【总结归纳】此题主要考查了探寻数列规律问题,注意观察总结规律,并能正确的应用规律,解答此题的关键是求出这组数的第n个数是多少.16.如图,在平面直角坐标系中,点A(-6,0),点B(0,P在第二象限内,若以点P、B、O为顶点的三角形与△AOB相似(不包括全等的情况),则点P的坐标为.【知识考点】坐标与图形性质;相似三角形的判定.【思路分析】由三角函数可求出∠A=30°,∠ABO=60°,作OP1⊥AB于P1,作P1C⊥y轴,过点B 作BP2⊥y轴交OP1于P2,作∠ABO的平分线BD,过点O作OP3⊥BD于P3,过P3作P3E⊥x轴于E,如图,根据有两组角对应相等的两个三角形相似可判断△BP1O∽△BOA,△P2OB∽△BAO,△P3OB ∽△OBA,然后分别确定P1、P2、P3的坐标.【解答过程】解:∵点A(-6,0),点B(0,),∴OA=6,OB=,∴,∴∠A=30°,∴∠ABO=60°,作OP1⊥AB于P1,作P1C⊥y轴,过点B作BP2⊥y轴交OP1于P2,作∠ABO的平分线BD,过点O作OP3⊥BD于P3,过P3作P3E⊥x轴于E,如图,∵∠BP1O=∠BOA=90°,∠P1BO=∠OBA,∴△BP1O∽△BOA,在Rt△OBP1中,∵sin∠OBP1=,∴OP1=sin60°=3,在Rt△OP1C中,∵∠P1OC=30°,∴,∴P1点的坐标为;∵∠P2OB=∠A=30°,∴△P2OB∽△BAO,在Rt△OP2B中,∵∠P2OB=30°,∴,∴P2点的坐标为(-2,);∵∠P3BO=∠A=30°,∴△P3OB∽△OBA,在Rt△OP3B中,∵∠P3BO=30°,∴,∴∠P3OE=30°,在Rt△P3OE中,,∴P3点的坐标为;综上所述,满足条件的P点坐标为.故答案为.【总结归纳】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了坐标与图形性质、含30度的直角三角形三边的关系.根据题意画出几何图形是解题的关键. 三、解答题(每小题8分,共16分)17.(8分)计算:222cos 45|3|3-⎛⎫+︒+ ⎪⎝⎭.【知识考点】实数的运算;负整数指数幂;特殊角的三角函数值.【思路分析】首先根据算术平方根、负整数指数幂的运算方法,以及45°的三角函数值,还有绝对值的求法计算,然后根据加法交换律和加法结合律,求出算式=的值是多少即可.【解答过程】解:原式92342=+⨯+- 934=+-154=【总结归纳】(1)此题主要考查了算术平方根的含义以及求法,以及绝对值的含义和求法,要熟练掌握.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)(a≠0,p 为正整数);(2)计算负整数指数幂时,一定要根据负整数指数幂的意义计算;(3)当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°等特殊角的三角函数值. 18.(8分)如图,每个小方格都是边长为1个单位长度的正方形,△ABC 和△A 1B 1C 1在平面直角坐标系中位置如图所示.(1)△ABC 与△A 1B 1C 1关于某条直线m 对称,画出对称轴m .(2)画出△A 1B 1C 1绕原点O 顺时针旋转90°所得的△A 2B 2C 2.此时点A 2的坐标为 .求出点A 1旋转到点A 2的路径长.(结果保留根号)【知识考点】弧长的计算;作图-轴对称变换;作图-旋转变换.【思路分析】(1)直接利用轴对称图形的性质结合网格得出对称轴m;(2)利用旋转的性质得出对应点位置进而得出答案,再利用弧长公式求出点A1旋转到点A2的路径长.【解答过程】解:(1)如图所示:直线m即为所求;(2)如图所示:△A2B2C2,即为所求,点A2的坐标为:(1,4),点A1旋转到点A2的路径长为:.故答案为:.【总结归纳】此题主要考查了轴对称变换以及旋转变换、弧长公式等知识,根据题意得出对应点位置是解题关键.四、(每小题10分,共20分)19.(10分)丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答过程】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(10分)为帮助雅安地震灾区人们重建家园,某中学学生积极捐献.已知高中部捐款总额为7200元,初中部捐款总额为6000元,高中部人数比初中部人数多80人,而且初中部和高中部人均捐款恰好相等.求该校学生总数是多少人.【知识考点】分式方程的应用.【思路分析】设该校初中部有x人,则高中部有(x+80)人,根据初中部和高中部人均捐款恰好相等列出方程,求出方程的解即可得到结果.【解答过程】解:设该校初中部有x人,则高中部有(x+80)人,根据题意得:,去分母得:7200x=6000x+480000,解得:x=400,经检验x=400是分式方程的解,且符合题意,∴x+80=400+80=480(人),480+400=880(人),则该校学生总数是880人.【总结归纳】此题考查了分式方程的应用,找出题中等量关系“初中部和高中部人均捐款恰好相等”是解本题的关键.五、(每小题10分,共20分)21.(10分)现有三张不透明的卡片A,B,C,他们背面完全一样,正面分别画有圆、长方形和等腰三角形,将三张卡片背面朝上,洗匀后放在桌子上.(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率为.(2)从中随机抽取一张卡片,放回后洗匀,在随机抽取一张卡片.请用列表法或画树状图的方法,求两次抽取的卡片正面图形都是中心对称图形的概率.【知识考点】中心对称图形;概率公式;列表法与树状图法.【思路分析】(1)由中心对称图形的定义可知:A,B卡片,由此可求出其概率;(2)画出树形图即可求出两次抽取的卡片正面图形都是中心对称图形的概率.【解答过程】解:(1)从中随机抽取一张卡片,正面的图形是中心对称图形的概率23 ,故答案为:23;(2)画树形图得:总共有6种结果,即使中心对称又是轴对称图形的结果有4种,∴所求概率为49.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)如图,CD是⊙O的直径,OB⊥CD交⊙O于点B,连接CB,AB是⊙O的弦,AB交CD于点E,F是CD的延长线上一点且AF=EF.(1)判断AF和⊙O的位置关系并说明理由(2)若∠ABC=60°,BC=1cm,求阴影部分的面积.(结果保留根号)【知识考点】切线的判定;扇形面积的计算.【思路分析】(1)连结OA,如图,由AF=AE得∠FAE=∠FEA,再利用对顶角相等和∠OBA=∠OAB可得∠OAB+∠FEA=90°,即∠OAF=90°,则OA⊥AF,然后根据切线的判定定理可判断AF 为⊙O的切线;(2)先判断△OBC为等腰直角三角形得到OB= ,再利用圆周角定理得到∠AOC=2∠ABC=120°,则∠AOF=180°-∠AOC=60°,接着根据正切定义计算AF= ,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S△OAF-S扇形AOD进行计算.【解答过程】解:(1)AF和⊙O相切.理由如下:连结OA,如图,∵AF=AE,∴∠FAE=∠FEA,∵∠FEA=∠OEB,∴∠FAE=∠OEB,∵OB⊥CD,∴∠BOE=90°,∴∠OBE+∠OEB=90°,而OB=OA,∴∠OBA=∠OAB,∴∠OAB+∠FEA=90°,即∠OAF=90°,∴OA⊥AF,∴AF为⊙O的切线;(2)∵OB⊥CD,而OB=OC,∴△OBC为等腰直角三角形,∴OB= ,∵∠AOC=2∠ABC=2×60°=120°,∴∠AOF=180°-∠AOC=60°,在Rt△OAF中,∵tan∠AOF= ,∴AF= ,∴S阴影部分=S△OAF-S扇形AOD【总结归纳】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.六、(每小题10分,共20分)23.(10分)如图,新城区新建了三个商业城A,B,C,其中C在A的正东方向,在A处测得B 在A的南偏东52°的方向,在C处测得B在C的南偏东26°的方向,已知A和B的距离是1000m.现有甲、乙两个工程对修建道路,甲修建一条从A到C的笔直道路AC,乙修建一条从B到直线AC 最近的道路BD.求甲、乙修建的道路各是多长.(结果精确到1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)。
2020年辽宁省营口市初中毕业生毕业升学考试数学试卷考试时间:120分钟试卷满分:150分第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣6的绝对值是()A.6 B.﹣6 C.D.﹣2.如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是()A.B.C.D.3.下列计算正确的是()A.x2•x3=x6B.xy2﹣xy2=xy2C.(x+y)2=x2+y2D.(2xy2)2=4xy44.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠GEB的度数为()A.66°B.56°C.68°D.58°5.反比例函数y=(x<0)的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ABC中,DE∥AB,且=,则的值为()A.B.C.D.7.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°8.一元二次方程x2﹣5x+6=0的解为()A.x1=2,x2=﹣3 B.x1=﹣2,x2=3C.x1=﹣2,x2=﹣3 D.x1=2,x2=39.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 80 100 200 400 1000 “射中九环以上”的次数18 68 82 168 327 823“射中九环以上”的频率0.90 0.85 0.82 0.84 0.82 0.82(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90 B.0.82 C.0.85 D.0.8410.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=,则k的值为()A.3 B.C.2 D.1第二部分(主观题)二、填空題(每小题3分,共24分)11.ax2﹣2axy+ay2=.12.长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为.13.(3+)(3﹣)=.14.从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S甲2=3.83,S乙2=2.71,S丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是.15.一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为.17.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.18.如图,∠MON=60°,点A 1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为.19.(10分)先化简,再求值:(﹣x)÷,请在0≤x≤2的范围内选一个合适的整数代入求值.20.(10分)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.四、解答题(21小题12分,22小题12分,共24分)21.(12分)“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”“B.有必要”“C.无所谓”“D.没有必要”四类.并根据调查结果绘制了图1和图2两幅统计图(均不完整),请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为;(3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”认为“A.很有必要”的学生人数.22.(12分)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:≈1.73)23.(12分)如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tanA=,AD=2,求BO的长.24.(12分)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?六、解答题(本题满分14分)25.(14分)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.七、解答题(本题满分14分)26.(14分)在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.答案与解析第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣6的绝对值是()A.6 B.﹣6 C.D.﹣【知识考点】绝对值.【思路分析】根据负数的绝对值是它的相反数,可得负数的绝对值.【解答过程】解:|﹣6|=6,故选:A.【总结归纳】本题考查了绝对值,负数的绝对值是它的相反数.2.如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,所有的看到的棱都应表现在俯视图中.【解答过程】解:从上面看易得俯视图:故选:C.【总结归纳】本题考查了三视图的知识,解决问题的关键是掌握俯视图是从物体的上面看所得到的视图.3.下列计算正确的是()A.x2•x3=x6B.xy2﹣xy2=xy2C.(x+y)2=x2+y2D.(2xy2)2=4xy4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路分析】根据完全平方公式,同底数幂的乘法、合并同类项、积的乘方的运算法则分别进行计算后,可得到正确答案.【解答过程】解:A、x2•x3=x5,原计算错误,故此选项不符合题意;B、xy2﹣xy2=xy2,原计算正确,故此选项符合题意;C、(x+y)2=x2+2xy+y2,原计算错误,故此选项不符合题意;D、(2xy2)2=4xy4,原计算错误,故此选项不符合题意.故选:B.【总结归纳】此题主要考查了完全平方公式,同底数幂的乘法、合并同类项、积的乘方的运算法则,解题的关键是牢固掌握各个运算法则和公式,不要混淆.4.如图,AB∥CD,∠EFD=64°,∠FEB的角平分线EG交CD于点G,则∠GEB的度数为()A.66°B.56°C.68°D.58°【知识考点】平行线的性质.【思路分析】根据平行线的性质求得∠BEF,再根据角平分线的定义求得∠GEB.【解答过程】解:∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠BEF=180°﹣64°=116°;∵EG平分∠BEF,∴∠GEB=58°.故选:D.【总结归纳】本题考查了平行线的性质以及角平分线的定义的运用,解答本题时注意:两直线平行,同旁内角互补.5.反比例函数y=(x<0)的图象位于()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】反比例函数的图象;反比例函数的性质.【思路分析】根据题目中的函数解析式和x的取值范围,可以解答本题.【解答过程】解:∵反比例函数y=(x<0)中,k=1>0,∴该函数图象在第三象限,故选:C.【总结归纳】本题考查反比例函数的性质和图象,解答本题的关键是明确题意,利用反比例函数的性质解答.6.如图,在△ABC中,DE∥AB,且=,则的值为()A.B.C.D.【知识考点】平行线分线段成比例.【思路分析】平行于三角形一边的直线截其他两边所得的对应线段成比例,据此可得结论.【解答过程】解:∵DE∥AB,∴==,∴的值为,故选:A.【总结归纳】本题主要考查了平行线分线段成比例定理,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.7.如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110°B.130°C.140°D.160°【知识考点】圆周角定理.【思路分析】连接BC,如图,利用圆周角定理得到∠ACB=90°,则∠B=50°,然后利用圆的内接四边形的性质求∠ADC的度数.【解答过程】解:如图,连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣40°=50°,∵∠B+∠ADC=180°,∴∠ADC=180°﹣50°=130°.故选:B.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8.一元二次方程x2﹣5x+6=0的解为()A.x1=2,x2=﹣3 B.x1=﹣2,x2=3 C.x1=﹣2,x2=﹣3 D.x1=2,x2=3 【知识考点】解一元二次方程﹣因式分解法.【思路分析】利用因式分解法解方程.【解答过程】解:(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,所以x1=2,x2=3.故选:D.【总结归纳】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.9.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 80 100 200 400 1000 “射中九环以上”的次数18 68 82 168 327 823“射中九环以上”的频率0.90 0.85 0.82 0.84 0.82 0.82(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90 B.0.82 C.0.85 D.0.84【知识考点】方差;利用频率估计概率.【思路分析】根据大量的实验结果稳定在0.82左右即可得出结论.【解答过程】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.【总结归纳】本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.10.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=,则k的值为()A.3 B.C.2 D.1【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰直角三角形.【思路分析】根据题意设B(m,m),则A(m,0),C(,),D(m,m),然后根据S=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,得到(+)•(m﹣m)=,即可求得k=△COD=2.【解答过程】解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,∵S△COD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=,∴(AD+CE)•AE=,即(+)•(m﹣m)=,∴=1,∴k==2,故选:C.【总结归纳】本题考查了反比例函数图象上点的坐标特征和反比例函数系数k的几何意义,根据S△COD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,得到关于m的方程是解题的关键.第二部分(主观题)二、填空題(每小题3分,共24分)11.ax2﹣2axy+ay2=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式a,再利用完全平方公式分解因式即可.【解答过程】解:ax2﹣2axy+ay2=a(x2﹣2xy+y2)=a(x﹣y)2.故答案为:a(x﹣y)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.12.长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】根据科学记数法的表示方法:a×10n,可得答案.【解答过程】解:将1800000用科学记数法表示为1.8×106,故答案为:1.8×106.【总结归纳】本题考查了科学记数法,科学记数法的表示方法:a×10n,确定n的值是解题关键,n是整数数位减1.13.(3+)(3﹣)=.【知识考点】平方差公式;二次根式的混合运算.【思路分析】直接利用平方差公式计算得出答案.【解答过程】解:原式=(3)2﹣()2=18﹣6=12.故答案为:12.【总结归纳】此题主要考查了二次根式的混合运算,正确运用乘法公式是解题关键.14.从甲、乙、丙三人中选拔一人参加职业技能大赛,经过几轮初赛选拔,他们的平均成绩都是87.9分,方差分别是S甲2=3.83,S乙2=2.71,S丙2=1.52.若选取成绩稳定的一人参加比赛,你认为适合参加比赛的选手是.【知识考点】方差.【思路分析】再平均数相等的前提下,方差越小成绩越稳定,据此求解可得.【解答过程】解:∵平均成绩都是87.9分,S甲2=3.83,S乙2=2.71,S丙2=1.52,∴S丙2<S乙2<S甲2,∴丙选手的成绩更加稳定,∴适合参加比赛的选手是丙,故答案为:丙.【总结归纳】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15.一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.【知识考点】圆锥的计算.【思路分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答过程】解:∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的侧面积为:πrl=π×3×5=15π,故答案为:15π【总结归纳】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.16.如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为.【知识考点】菱形的性质.【思路分析】根据菱形的面积等于对角线之积的一半可得答案.【解答过程】解:∵OA=1,OB=2,∴AC=2,BD=4,∴菱形ABCD的面积为×2×4=4.故答案为:4.【总结归纳】此题主要考查了菱形的性质,关键是掌握菱形面积=ab(a、b是两条对角线的长度).17.如图,△ABC为等边三角形,边长为6,AD⊥BC,垂足为点D,点E和点F分别是线段AD 和AB上的两个动点,连接CE,EF,则CE+EF的最小值为.【知识考点】等边三角形的性质;轴对称﹣最短路线问题.【思路分析】过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,根据等边三角形的性质得到BF=AB=6=3,根据勾股定理即可得到结论.【解答过程】解:过C作CF⊥AB交AD于E,则此时,CE+EF的值最小,且CE+EF的最小值=CF,∵△ABC为等边三角形,边长为6,∴BF=AB=6=3,∴CF===3,∴CE+EF的最小值为3,故答案为:3.【总结归纳】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形.18.如图,∠MON=60°,点A1在射线ON上,且OA1=1,过点A1作A1B1⊥ON交射线OM于点B1,在射线ON上截取A1A2,使得A1A2=A1B1;过点A2作A2B2⊥ON交射线OM于点B2,在射线ON上截取A2A3,使得A2A3=A2B2;…;按照此规律进行下去,则A2020B2020长为.【知识考点】规律型:图形的变化类;含30度角的直角三角形.【思路分析】解直角三角形求出A1B1,A2B2,A3B3,…,探究规律利用规律即可解决问题.【解答过程】解:在Rt△OA1B1中,∵∠OA1B1=90°,∠MON=60°,OA1=1,∴A1B1=A1A2=OA1•tan60°=,∵A1B1∥A2B2,∴=,∴=,∴A2B2=(1+),同法可得,A3B3=(1+)2,…由此规律可知,A2020B2020=(1+)2019,故答案为(1+)2019.【总结归纳】本题考查解直角三角形,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(19小题10分,20小题10分,共20分)19.(10分)先化简,再求值:(﹣x)÷,请在0≤x≤2的范围内选一个合适的整数代入求值.【知识考点】分式的化简求值;一元一次不等式组的整数解.【思路分析】先去括号、化除法为乘法进行化简,然后根据分式有意义的条件取x的值,代入求值即可.【解答过程】解:原式=•=•=﹣2﹣x.∵x≠1,x≠2,∴在0≤x≤2的范围内的整数选x=0.当x=0时,原式=﹣2﹣0=﹣2.【总结归纳】此题主要考查了分式的化简求值,关于化简求值,近年来出现了一种开放型问题,题目中给定几个数字,要考虑分母有意义的条件,不要盲目代入.20.(10分)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.【知识考点】概率公式;列表法与树状图法.【思路分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【解答过程】解:(1)李老师被分配到“洗手监督岗”的概率=;故答案为:;(2)画树状图为:共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.四、解答题(21小题12分,22小题12分,共24分)21.(12分)“生活垃圾分类”逐渐成为社会生活新风尚,某学校为了了解学生对“生活垃圾分类”的看法,随机调查了200名学生(每名学生必须选择且只能选择一类看法),调查结果分为“A.很有必要”“B.有必要”“C.无所谓”“D.没有必要”四类.并根据调查结果绘制了图1和图2两幅统计图(均不完整),请根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为;(3)该校共有2500名学生,根据调查结果估计该校对“生活垃圾分类”认为“A.很有必要”的学生人数.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据扇形统计图中的数据,可以计算出A组的人数,然后再根据条形统计图中的数据,即可得到C组的人数,然后即可将条形统计图补充完整;(2)根据条形统计图中D组的人数,可以计算出扇形统计图中“D.没有必要”所在扇形的圆心角度数;(3)根据扇形统计图中A组所占的百分比,即可计算出该校对“生活垃圾分类”认为“A.很有必要”的学生人数.【解答过程】解:(1)A组学生有:200×30%=60(人),C组学生有:200﹣60﹣80﹣10=50(人),补全的条形统计图,如右图所示;(2)扇形统计图中“D.没有必要”所在扇形的圆心角度数为:360°×=18°,故答案为:18°;(3)2500×30%=750(人),答:该校对“生活垃圾分类”认为“A.很有必要”的学生有750人.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(12分)如图,海中有一个小岛A,它周围10海里内有暗礁,渔船跟踪鱼群由东向西航行,在B点测得小岛A在北偏西60°方向上,航行12海里到达C点,这时测得小岛A在北偏西30°方向上,如果渔船不改变方向继续向西航行,有没有触礁的危险?并说明理由.(参考数据:≈1.73)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】作高AN,由题意可得∠ABE=60°,∠ACD=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=12,在在Rt△ANC中,利用直角三角形的边角关系,求出AN与10海里比较即可.【解答过程】解:没有触礁的危险;理由:如图,过点A作AN⊥BC交BC的延长线于点N,由题意得,∠ABE=60°,∠ACD=30°,∴∠ACN=60°,∠ABN=30°,∴∠ABC=∠BAC=30°,∴BC=AC=12,在Rt△ANC中,AN=AC•cos60°=12×=6,∵AN=6≈10.38>10,∴没有危险.【总结归纳】考查直角三角形的边角关系及其应用,构造直角三角形是常用的方法,掌握直角三角形的边角关系是正确计算的前提.五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tanA=,AD=2,求BO的长.【知识考点】角平分线的性质;垂径定理;圆周角定理;切线的判定与性质;解直角三角形.【思路分析】(1)过O作OH⊥AB于H,根据角平分线的性质得到OH=OC,根据切线的判定定理即可得到结论;(2)设⊙O的半径为3x,则OH=OD=OC=3x,在解直角三角形即可得到结论.【解答过程】(1)证明:过O作OH⊥AB于H,∵∠ACB=90°,∴OC⊥BC,∵BO为△ABC的角平分线,OH⊥AB,∴OH=OC,即OH为⊙O的半径,∵OH⊥AB,∴AB为⊙O的切线;(2)解:设⊙O的半径为3x,则OH=OD=OC=3x,在Rt△AOH中,∵tanA=,∴=,∴=,∴AH=4x,∴AO===5x,∵AD=2,∴AO=OD+AD=3x+2,∴3x+2=5x,∴x=1,∴OA=3x+2=5,OH=OD=OC=3x=3,∴AC=OA+OC=5+3=8,在Rt△ABC中,∵tanA=,∴BC=AC•tanA=8×=6,∴OB===3.【总结归纳】本题考查了平行的判定和性质,角平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.24.(12分)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?【知识考点】二次函数的应用.【思路分析】(1)销售单价为x(元),销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),则为降低了多少个0.5元,再乘以20即为多售出的瓶数,然后加上80即可得出每天的销售量y;(2)设每天的销售利润为w元,根据利润等于每天的销售量乘以每瓶的利润,列出w关于x的函数关系式,将其写成顶点式,按照二次函数的性质可得答案.【解答过程】解:(1)由题意得:y=80+20×,∴y=﹣40x+880;(2)设每天的销售利润为w元,则有:w=(﹣40x+880)(x﹣16)=﹣40(x﹣19)2+360,∵a=﹣40<0,∴二次函数图象开口向下,∴当x=19时,w有最大值,最大值为360元.答:当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元.【总结归纳】本题考查了一次函数和二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.六、解答题(本题满分14分)25.(14分)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.【知识考点】相似形综合题.【思路分析】(1)证明△EAB≌△FAD(AAS),由全等三角形的性质得出AF=AE;(2)证明△ABE∽△ADF,由相似三角形的性质得出,则可得出结论;(3)①如图1,当点F在DA上时,证得△GDF∽△GBA,得出,求出AG=.由△ABE∽△ADF可得出=,求出AE=.则可得出答案;②如图2,当点F在DC的延长线上时,同理可求出EG的长.【解答过程】解:(1)AE=AF.∵AD=AB,四边形ABCD矩形,∴四边形ABCD是正方形,∴∠BAD=90°,∵AF⊥AE,∴∠EAF=90°,∴∠EAB=∠FAD,∴△EAB≌△FAD(AAS),∴AF=AE;故答案为:AF=AE.(2)AF=kAE.证明:∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ADF=90°,∴∠FAD+∠FAB=90°,∵AF⊥AE,∴∠EAF=90°,∴∠EAB+∠FAB=90°,∴∠EAB=∠FAD,∵∠ABE+∠ABC=180°,∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,∴∠ABE=∠ADF.∴△ABE∽△ADF,∴,∵AD=kAB,∴,∴,∴AF=kAE.(3)解:①如图1,当点F在DA上时,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AD=2AB=4,∴AB=2,∴CD=2,∵CF=1,∴DF=CD﹣CF=2﹣1=1.在Rt△ADF中,∠ADF=90°,∴AF===,∵DF∥AB,∴∠GDF=∠GBA,∠GFD=∠GAB,∴△GDF∽△GBA,∴,∵AF=GF+AG,∴AG=.∵△ABE∽△ADF,∴=,∴AE==.在Rt△EAG中,∠EAG=90°,∴EG===,②如图2,当点F在DC的延长线上时,DF=CD+CF=2+1=3,在Rt△ADF中,∠ADF=90°,∴AF===5.∵DF∥AB,∵∠GAB=∠GFD,∠GBA=∠GDF,∴△AGB∽△FGD,∴=,∵GF+AG=AF=5,∴AG=2,∵△ABE∽△ADF,∴,∴AE=,在Rt△EAG中,∠EAG=90°,∴EG===.综上所述,EG的长为或.【总结归纳】本题是相似形综合题,考查了全等三角形的判定与性质,正方形的性质,矩形的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.七、解答题(本题满分14分)26.(14分)在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.【知识考点】二次函数综合题.【思路分析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),即可求解;(2)①分点P(P′)在点C的右侧、点P在点C的左侧两种情况,分别求解即可;②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR=NR,列出等式即可求解.【解答过程】解:(1)y=ax2+bx﹣3=a(x+3)(x﹣1),解得:a=1,故抛物线的表达式为:y=x2+2x﹣3①;(2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),由点C、D的坐标知,直线CD的表达式为:y=x﹣3;tan∠BCO=,则cos∠BCO=;①当点P(P′)在点C的右侧时,∵∠PAB=∠BCO,故P′B∥y轴,则点P′(1,﹣2);当点P在点C的左侧时,设直线PB交y轴于点H,过点H作HN⊥BC于点N,∵∠PAB=∠BCO,∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH×=,解得:CH=,则OH=3﹣CH=,故点H(0,﹣),由点B、H的坐标得,直线BH的表达式为:y=x﹣②,联立①②并解得:,故点P的坐标为(1,﹣2)或(﹣5,﹣8);②∵∠PAB=∠BCO,而tan∠BCO=,故设直线AP的表达式为:y=x+s,将点A的坐标代入上式并解得:s=1,故直线AP的表达式为:y=x+1,联立①③并解得:,故点N(,);设△AMN的外接圆为圆R,当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,∴∠RMH=∠GAR,。
2013年沈阳市中考数学(满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c的顶点是(-,4ac-b4a2),对称轴是直线x=-.一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题3分,共24分)1.(2013沈阳,1,3分)2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为A.1.96×108B. 19.6×108C. 1.96×1010D. 19.6×1010【答案】C2.(2013沈阳,2,3分)右图是一个几何体的三视图,这个几何体的名称是A.圆柱体B.三棱柱C.球体D.圆锥体【答案】A3.(2013沈阳,3,3分)下面的计算一定正确的是A.b3+b3=2b6B.(-3pq)2=-9p2q2C.5y3·3y5=15y8D.b9÷b3=b3【答案】C4.(2013沈阳,4,3分)如果m=7-1,那么m的取值范围是A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【答案】B5.(2013沈阳,5,3分)下列事件中,是不可能事件的是A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【答案】D6.(2013沈阳,6,3分)计算2x-1+31-x的结果是A.1x-1B.11-xC.5x-1D.51-x【答案】B7.(2013沈阳,7,3分)在同一平面直角坐标系中,函数y=x-1与函数y=1x的图象可能是b 2ab 2a主视图左视图俯视图A .B .C .D .【答案】C 8.( 2013沈阳,8,3分)如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD=4,BC=8,BD :DC=5:3,则DE 的长等于A .203 B .154 C .163 D .174【答案】B二、填空题(每小题4分,满分32分.)9. (2013沈阳,9,4分)分解因式:3a 2+6a +3= . 【答案】3(a+1)2 10.( 2013沈阳,10,4分)一组数据2,4,x ,-1的平均数为3,则x 的值是 . 【答案】7 11.( 2013沈阳,11,4分)在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 . 【答案】(3,-2) 12.( 2013沈阳,12,4分)若关于x 的一元二次方程x 2+4x+a=0有两个不相等的实数根,则a 的取值范围是 . 【答案】a <4 13.( 2013沈阳,13,4分)如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=-1时,代数式2ax 3+3bx+4的值是 . 【答案】3 14.( 2013沈阳,14,4分)如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .【答案】13yxO y xOy xOyxOBADCEBAC OD15.(2013沈阳,15,4分)有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212……请你观察它们的构成规律,用你发现的规律写出第8个等式为 . 【答案】82+92+722=732 16.(2013沈阳,16,4分)已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 . 【答案】1,7三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.(2013沈阳,17,8分)计算: (12)-2-6sin30°+(-2)0+|2-8|.【答案】22-6×21+1+22-2=22 18.(2013沈阳,18,8分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B(一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题: (1)本次调查的人数为 人;(2)图①中,a = ,C 等级所占的圆心角的度数为 度; (3)请直接在答题卡中补全条形统计图. 【答案】(1)200; (2) 35,126 (3)19. (2013沈阳,19,10分)如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,,AD 与BE 交于点F ,连接CF.60 - 40 -20 - 80 -204664ABC D O人数(人) 等级C:a %D:32%B:23%A:10%图①图②60 - 40 - 20 - 80 - 204664ABC D O人数(人) 等级图②70(1)求证:BF=2AE; (2)若CD=2,求AD 的长.【答案】(1)证明:∵AD ⊥BC, ∠BAD=45°, ∵∠ABD=∠BAD=45°. ∵AD=BD ,∵AD ⊥BC, BE ⊥AC, ∵∠CAD+∠ACD=90°, ∠CBE +∠ACD=90°, ∵∠CAD=∠CBE.又∵∠CDA=∠BDF=90°, ∵△ADC ≌△BDF. ∵AC=BF.∵AB=BC,BE ⊥AC, ∵AE=EC 即AC=2AE, ∵BF=2AE;(2)解:∵△ADC ≌△BDF ∵DF=CD=2,∵在Rt △CDF 中,CF=2=+22CD DF , ∵BE ⊥AC, AE=EC, ∵AF=FC=2, ∵AD=AF+DF=2+2.四、(每小题10分,共20分)20.(2013沈阳,20,10分)在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,2,2+6.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数; 卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.【答案】(1)31(2)画树状图得:BAFE由树状图可知,共有6种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的实数之差为有理数的结果有两种,因此,两次抽取的卡片上的实数之差为有理数的概率是31=62. 五、(本题10分)21.(2013沈阳,21,10分)身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF 代表建筑物,兵兵位于建筑物上方的树枝点B 处,风筝挂在建筑物上方的树枝点G 处(点G 在FE 的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G 与建筑物顶点D 及风筝线在手中的点A 在同一条直线上,点A 距地面的高度AB=1.4米,风筝线与水平线夹角为37°. (1)求风筝距地面的高度GF ;(2)在建筑物后面有长5米的梯子MN ,梯脚M 在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝? (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)过点A 作AP ⊥GP 于P ,由题意得AP=BF=12,AB=PF=14,∠GAP=37° 在Rt △PAG 中,tan ∠GAP=APGP, ∴GP=AP·tan37°≈12×0.75=9, ∴GF=GP+PF=9+1.4=10.4.答:风筝距地面的高度为10.4米. (2)由题意可知MN=5,MF=3,∴在Rt △MNF 中,NF=4=22MF MN -, ∵10.4-5-1.65=3.75<4开 始3+6+6 3+6 3MFCBA 37°DE NG∴能触到挂在树上的风筝.22.(2013沈阳,22,10分)如图,OC 平分∵MON ,点A 在射线OC 上,以点A 为圆心,半径为2的∵A 与OM 相切于点B ,连接BA 并延长交∵A 于点D ,交ON 于点E. (1)求证:ON 是∵A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)【答案】(1)证明:过点A 作AF ⊥ON 于F. ∵∵A 与OM 相切于点B , ∵AB ⊥OM,∵OC 平分∵MON , ∵AF=AB=2,∵ON 是∵A 的切线;(2) ∵∠MON=60°,AB ⊥OM, ∵∠OEB=30°, ∵AF ⊥ON, ∵∠FAE=60°在Rt △AEF 中,tan ∠FAE=AFFE, ∵EF=AF·tan60°=32,∵S 阴=S △AEF -S 扇形ADF =21AF·EF-36060πAF 2=32-32π 六、(本题12分)23.(2013沈阳,23,12分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的正比例函数关系满足图∵中的图象,每个无人售票窗口售出的车票数y 2(张)与售票时间x (小时)的函数关系满足图∵中的图象.(1)图∵中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为 ,其中自变量x 的取值范围是 ;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图∵中图象的后半段一次函数的表达式.O BAMCDEN【答案】(1)y=60x 2,0≤x ≤23(2)上午9点y 1=80,y 2=60. 设需要开放x 个普通售票窗口. 依题意得80x+60×5≥1450, x ≥1483. ∵x 为整数,∴x 取15.答:至少需要开放15个普通售票窗口.、 (3)设y 1= k 1x ,把(1,80)代入得80= k 1 ∴y 1= 80x.当x=2时,y 1= 160, 上午10点,y 2= y 1=160,由(1)得当x=23时,y 2=135, ∴图②中一次函数过点(23,135)、(2,160)设一次函数表达式为y 2= k 2x+b,23k 2+b=135,2k 2+b=160, 解得:k 2=50,b=60,∴一次函数表达式为y 2= 50x+60. 七、(本题12分)24.(2013沈阳,24,12分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图∵,在∵ABC 中,CD 是AB 边上的中线,那么∵ACD 和∵BCD 是“友好三角形”,并且S ∵ACD =S ∵BCD . 应用:如图∵,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O. (1) 求证:∵AOB 和∵AOE 是“友好三角形”;(2) 连接OD ,若∵AOE 和∵DOE 是“友好三角形”,求四边形CDOF 的面积.探究:在∵ABC 中,∵A=30°,AB=4, 点D 在线段AB 上,连接CD ,∵ACD 和∵BCD 是“友好三角形”,将∵ACD沿CD 所在直线翻折,得到∵A′CD ,若∵A′CD 与∵ABC 重合部分的面积等于∵ABC 面积的41,请直接写出∵ABC的面积.80160 -240 -y 1(张) x (小时)O 1 2 3 60 120 -180 -y 2(张) x (小时)O1 23240 - 图①图②【答案】(1)证明:∵ 四边形ABCD 为矩形, ∵AD ∥BC,∵∵EAO=∵BFO,又∵∵AOE=∵FOB,AE=BF , ∵∵AOE ≌∵FOB , ∵EO=BO.∵∵AOB 和∵AOE 是“友好三角形”.(2)∵∵AOE 和∵DOE 是“友好三角形”, ∵S ∵AOE =S ∵DOE ,AE=ED=21AD=3. ∵∵AOB 和∵AOE 是“友好三角形” ∵S ∵AOB =S ∵AOE∵∵AOE ≌∵FOB , ∵S ∵AOE =S ∵FOB , ∵S ∵AOD =S ∵ABF ,∵S 四边形CDOF =S 矩形ABCD -2S ∵ABF =4×6-2×21×4×3=12. 探究:2或32. 八、(本题14分)25.(2013沈阳,25,14分)如图,在平面直角坐标系中,抛物线y=c bx x ++5282经过点A (23,0)和点B (1,22),与x 轴的另一个交点C.(1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∵BAD=∵DAC ,求点D 的坐标; (3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE. ①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 上的一个动点,且点M 与点B 不重合,当∵BMF=31∵MFO 时,请直接写出线段BM 的长.CA DB A BCF OE D图①图②【答案】(1)将A (23,0)、B (1,22)代入y=c bx x ++5282得,0=+23+49×528c b ,22=++528c b ,得b=-,28c=5242. ∵y=2528x -28x+5242. (2)当∵BAD=∵DAC 时,BD ∥x 轴. ∵B (1,22),∵当y=22时,22=2528x -28x+5242, 解得:x 1=1,x 2=4 ∵D(4, 22).(3)①四边形OAEB 是平行四边形. 理由如下:抛物线的对称轴是x=25, ∵BE=25-1=23, ∵B (23,0),∵OA=BE=23,又∵BE ∥OA∵四边形OAEB 是平行四边形.∵21或25. yxO A C BF。
2013年辽宁省鞍山市中考数学试题及参考答案与解析一、选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.3﹣1等于()A.3 B.13-C.﹣3 D.132.一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.63.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°4x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2D.x≤25.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°6.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题3分,满分24分)9.分解因式:m2﹣10m= .10.如图,∠A+∠B+∠C+∠D= 度.11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.12.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)﹣(3x﹣5y)的值是.13.△ABC中,∠C=90°,AB=8,cosA=34,则BC的长.14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.15.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)先化简,再求值:21112x x x x x ⎛⎫++÷-- ⎪⎝⎭,其中1x =. 18.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系.(1)试求y 与x 之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?19.(10分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜. (1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况. (2)请判断该游戏对双方是否公平?并说明理由.20.(10分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. 求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)21.(10分)如图,已知线段a 及∠O ,只用直尺和圆规,求做△ABC ,使BC=a ,∠B=∠O ,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)22.(10分)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF=CE ,DF=BE ,DF ∥BE . 求证:(1)△AFD ≌△CEB ; (2)四边形ABCD 是平行四边形.23.(10分)如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,OC ⊥OB ,连接AB 交OC 于点D . (1)AC 与CD 相等吗?问什么?(2)若AC=2,OD 的长度.24.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数myx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.25.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.(14分)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.参考答案与解析一、选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.3﹣1等于()A.3 B.13C.﹣3 D.13【知识考点】负整数指数幂.【思路分析】根据负整数指数幂:a﹣p=1pa(a≠0,p为正整数),进行运算即可.【解答过程】解:3﹣1=13.故选D.【总结归纳】此题考查了负整数指数幂,属于基础题,关键是掌握负整数指数幂的运算法则.2.一组数据2,4,5,5,6的众数是()A.2 B.4 C.5 D.6【知识考点】众数.【思路分析】根据众数的定义解答即可.【解答过程】解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.【总结归纳】此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.3.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°【知识考点】平行线的性质;三角形内角和定理.【思路分析】先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.【解答过程】解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.故选C.【总结归纳】本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.4x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2D.x≤2【知识考点】二次根式有意义的条件.【思路分析】根据被开方数大于等于0列式计算即可得解.【解答过程】解:根据题意得,2﹣x≥0,解得x≤2.故选D.【总结归纳】本题考查的知识点为:二次根式的被开方数是非负数.5.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°【知识考点】圆周角定理.【思路分析】直接根据圆周角定理进行解答即可.【解答过程】解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.【总结归纳】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根【知识考点】解一元二次方程-直接开平方法.【思路分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答过程】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【总结归纳】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁【知识考点】方差.【思路分析】根据方差的定义,方差越小数据越稳定.【解答过程】解:因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选B.【总结归纳】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个【知识考点】二次函数图象与系数的关系.【思路分析】由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c <0.【解答过程】解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.【总结归纳】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题3分,满分24分)9.分解因式:m2﹣10m= .【知识考点】因式分解-提公因式法.【思路分析】直接提取公因式m即可.【解答过程】解:m2﹣10m=m(m﹣10),故答案为:m(m﹣10).【总结归纳】此题主要考查了提公因式法分解因式,关键是找准公因式.10.如图,∠A+∠B+∠C+∠D= 度.【知识考点】多边形内角与外角.【思路分析】根据四边形内角和等于360°即可求解.【解答过程】解:由四边形内角和等于360°,可得∠A+∠B+∠C+∠D=360度.故答案为:360.【总结归纳】考查了四边形内角和等于360°的基础知识.11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.【知识考点】一次函数图象与系数的关系.【思路分析】先根据函数的增减性判断出k的符号,再根据一次函数的图象与系数的关系进行解答即可.【解答过程】解:∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.【总结归纳】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时,函数的图象经过一、二、三象限.12.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)﹣(3x﹣5y)的值是.【知识考点】解二元一次方程组.【思路分析】把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.【解答过程】解:∵7353 x yx y+=⎧⎨-=-⎩,∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.故答案为:24.【总结归纳】本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.13.△ABC中,∠C=90°,AB=8,cosA=34,则BC的长.【知识考点】锐角三角函数的定义;勾股定理.【思路分析】首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.【解答过程】解:如图,∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.【总结归纳】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是.【知识考点】代数式求值.【思路分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答过程】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【总结归纳】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.15.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为220cm,此时木桶中水的深度是cm.【知识考点】二元一次方程组的应用.【思路分析】设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可的方程:x+y=220,又知两棒未露出水面的长度相等,又可得方程x=y,把两个方程联立,组成方程组,解方程组可得较长的铁棒的长度,用较长的铁棒的长度×可以求出木桶中水的深度.【解答过程】解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可列x+y=220,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为120×=80(cm).故答案为:80.【总结归纳】此题主要考查了二元一次方程组的应用,关键是弄清题意,找出合适的等量关系,列出方程组.16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.【知识考点】三角形中位线定理;勾股定理.【思路分析】利用勾股定理列式求出BC 的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD ,EF=GH=BC ,然后代入数据进行计算即可得解. 【解答过程】解:∵BD ⊥CD ,BD=4,CD=3, ∴BC===5,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点, ∴EH=FG=AD ,EF=GH=BC ,∴四边形EFGH 的周长=EH+GH+FG+EF=AD+BC , 又∵AD=6,∴四边形EFGH 的周长=6+5=11. 故答案为:11.【总结归纳】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.(8分)先化简,再求值:21112x x x x x ⎛⎫++÷-- ⎪⎝⎭,其中1x =. 【知识考点】分式的化简求值.【思路分析】将括号内的部分通分后相减,再将除法转化为后解答. 【解答过程】解:原式=÷(﹣)﹣1=÷﹣1=•﹣1=﹣1.当x=时,原式=﹣1=﹣1=﹣1.【总结归纳】本题考查了分式的化简求值,能正确进行因式分解是解题的关键.18.(8分)某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系.(1)试求y 与x 之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少? 【知识考点】二次函数的应用.【思路分析】(1)利用待定系数法求得y 与x 之间的一次函数关系式;(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.【解答过程】解:(1)由题意,可设y=kx+b,把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.【总结归纳】本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.19.(10分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.【知识考点】游戏公平性;列表法与树状图法.【思路分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【解答过程】解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.【总结归纳】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:=1.414,=1.732,=2.449)【知识考点】解直角三角形的应用-坡度坡角问题.【思路分析】在Rt△ABC中,根据AB=5米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD﹣AB即可求出滑板加长的长度.【解答过程】解:在Rt△ABC中,∵AB=5,∠ABC=45°,∴AC=ABsin45°=5×=,在Rt△ADC中,∠ADC=30°,∴AD==5=5×1.414=7.07,AD﹣AB=7.07﹣5=2.07(米).答:改善后滑滑板会加长2.07米.【总结归纳】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.21.(10分)如图,已知线段a及∠O,只用直尺和圆规,求做△ABC,使BC=a,∠B=∠O,∠C=2∠B (在指定作图区域作图,保留作图痕迹,不写作法)【知识考点】作图—复杂作图.【思路分析】先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.【解答过程】解:如图所示:.【总结归纳】本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.22.(10分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【知识考点】平行四边形的判定;全等三角形的判定.【思路分析】(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.【解答过程】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【总结归纳】此题主要考查了全等三角形的判定和平行四边形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.平行四边形的判定,一组对边平行且相等的四边形是平行四边形.23.(10分)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,OD的长度.【知识考点】切线的性质;勾股定理.【思路分析】(1)AC=CD,理由为:由AC为圆的切线,利用切线的性质得到∠OAC为直角,再由OC与OB垂直,得到∠BOC为直角,由OA=OB,利用等边对等角得到一对角相等,再利用对顶角相等及等角的余角相等得到一对角相等,利用等角对等边即可得证;(2)由ODC=OD+DC,DC=AC,表示出OC,在直角三角形OAC中,利用勾股定理即可求出OD 的长.【解答过程】解:(1)AC=CD,理由为:∵OA=OB,∴∠OAB=∠B,∵直线AC为圆O的切线,∴∠OAC=∠OAB+∠DAC=90°,∵OB⊥OC,∴∠BOC=90°,∴∠ODB+∠B=90°,∵∠ODB=∠CDA,∴∠CDA+∠B=90°,∴∠DAC=∠CDA,则AC=CD;(2)在Rt△OAC中,AC=CD=2,AO=,OC=OD+DC=OD+2,根据勾股定理得:OC2=AC2+AO2,即(OD+2)2=22+()2,解得:OD=1.【总结归纳】此题考查了切线的性质,勾股定理,等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(10分)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数myx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.【知识考点】反比例函数综合题.【思路分析】(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.【解答过程】解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.【总结归纳】本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.25.(12分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【知识考点】正方形的性质;全等三角形的判定与性质.【思路分析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.【解答过程】(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(3分)(2)解:GE=BE+GD成立.(4分)理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,(5分)∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,(6分)又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.(7分)∴GE=DF+GD=BE+GD.(8分)【总结归纳】本题主要考查证两条线段相等往往转化为证明这两条线段所在三角形全等的思想,在第二问中也是考查了通过全等找出和GE相等的线段,从而证出关系是不是成立.26.(14分)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.【知识考点】二次函数综合题.【思路分析】(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a(x ﹣2)2,进而求出即可;(2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可.【解答过程】解:(1)∵y=0.5x+2交x轴于点A,∴0=0.5x+2,∴x=﹣4,与y轴交于点B,∵x=0,∴y=2∴B点坐标为:(0,2),∴A(﹣4,0),B(0,2),∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2∴可设二次函数y=a(x﹣2)2,把B(0,2)代入得:a=0.5∴二次函数的解析式:y=0.5x2﹣2x+2;(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,∴=,得:OP1=1,∴P1(1,0),(Ⅱ)作P2D⊥BD,连接BP2,将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),则AD=,当D为直角顶点时∵∠DAP2=∠BAO,∠BOA=∠ADP2,∴△ABO∽△AP2D,∴=,=,解得:AP2=11.25,则OP2=11.25﹣4=7.25,故P2点坐标为(7.25,0);(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)则由Rt△OBP3∽Rt△EP3D得:,∴,∵方程无解,∴点P3不存在,∴点P的坐标为:P1(1,0)和P2(7.25,0).【总结归纳】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.。
2013年红河州哈尼族彝族自治州初中学业水平考试数学试题一、选择题(本大题共8个小题,每小题只有一个选项符合题目要求,每小题3分,满分24分) 1.12-的倒数是(A )A .2-B .2C .12-D .12【答案】A2.右图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球【答案】B3.下列运算正确的是(D )A .2a a a +=B .632a a a ÷= C .0( 3.14)0π-= D.=【答案】D4.不等式组3x x <⎧⎨⎩≥1的解集在数轴上表示为 (C )【答案】CABCD主视图俯视图左视图5.B)A.3-B.3C.9-C.9【答案】B6.如图,AB∥CD,∠D =∠E =35°,则∠B的度数为(C)A.60°B.65°C.70°D.75°【答案】C7.在平面直角坐标系中,已知点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是(C)A.(-1,2)B.(1,-2)C.(1,2)D.(2,1)【答案】C8.如图,AB是⊙O的直径,点C在⊙O上,弦BD平分ABC∠,则下列结论错误的是(D)A.AD DC=B.AD DC= C.ADB ACB∠=∠D.DAB CBA∠=∠【答案】DABA CDE二、填空题(本大题共6个小题,每小题3分,满分18分)9.红河州总人口位居全省16个地州市的第四位,约有450万人,把近似数4 500 000用科学记数法表示为 . 【答案】64.510⨯10.分解因式:29ax a -= . 【答案】()()33a x x +-11.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 . 【答案】 100 12.在函数11y x =-中,自变量x 的取值范围是 . 【答案】1x ≠13.已知扇形的半径是30cm ,圆心角是60,则该扇形的弧长为 cm (结果保留π). 【答案】 10 π14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有 个实心圆.【答案】 42三、解答题(本大题共9个小题,满分58分)……(1) (2) (3)BACD E15.解方程212xx x +=+. 【答案】解:方程两边同时乘以(2)x x +得:22(2)(2)x x x x +++=. 22242x x x x +++=.1x =-.检验:把1x =-代入(2)0x x +≠. ………………………………4分 ∴1x =-是原方程的解. ………………………………5分16.如图,D 是△ABC 的边AB 上一点,E 是AC 的中点,过点C 作//CF AB ,交DE 的延长线于点F .求证:AD = CF . 【答案】证明:∵E 是AC 的中点,∴AE = CE . ………………………1分 ∵CF ∥AB ,∴∠A =∠ECF , ∠ADE =∠F . ………………………………3分 在△ADE 与△CFE 中,,,,ADE F A ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CFE (AAS ). ……………………………4分 ∴AD CF =. ……………………………5分17.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:=100%⨯售价-进价利润率进价)【答案】解:设这件外衣的标价为x 元,依题意得: ……………………………1分0.820020010%x -=⨯. ……………………………3分0.820200x =+.0.8220x =.275x =. ……………………………5分答:这件外衣的标价为275元. ……………………………6分 18.今年植树节,东方红中学组织师生开展植树造林活动,为了了解全校800名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求抽样的50名学生植树数量的平均数;(3)根据抽样数据,估计该校800名学生的植树数量. 【答案】解:(1)统计表和条形统计图补充如下:…………………………………………………………3分植树数量(棵)植树数量(棵)(2)抽样的50名学生植树的平均数是:354205156104.650x ⨯+⨯+⨯+⨯==(棵).……………………5分 (3)∵样本数据的平均数是4.6,∴估计该校800名学生参加这次植树活动的总体平均数是4.6棵. 于是4.6×800 =3 680(棵),∴估计该校800名学生植树约为3 680棵. ……………………………7分19.今年“五·一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果; (2)求抽奖人员获奖的概率. 【答案】解:(1)列表法表示如下:或树形图:……………………………………………………………………4分(2)由表格或树形图可知,抽奖所有可能出现的结果共有12种,这些结果出现的可能性相等,其中有一个小球标号为“1”的有6种, 所以抽奖人员的获奖概率为61122p ==. …………………………7分 20.如图,某山顶上建有手机信号中转塔AB ,在地面D 处测得塔尖的仰角60ADC ∠=,塔底的仰角45BDC ∠=,点D 距塔AB 的距离DC 为100米,求手机信号中转塔AB 的高度(结果保留根号).【答案】解:由题意可知,△ACD 与△BCD 都是直角三角形.在Rt △BCD 中, ∵∠BDC = 45°,∴BC = CD = 100.在Rt △ACD 中,∵∠ADC = 60°,CD = 100, ∴tan60ACCD=, 即100AC= 1234211332443开 始D6045∴AC = …………………………4分 ∴AB AC BC =-1)=. …………………………5分答:手机信号中转塔的高度为1)米. …………………………6分21.(2013云南红河州,21,6分)如图,正比例函数1y x =的图象与反比例函数2ky x=(0k ≠)的图象相交于A 、B 两点,点A 的纵坐标为2. (1)求反比例函数的解析式;(2)求出点B 的坐标,并根据函数图象,写出当12y y >时,自变量x 的取值范围. 【答案】解:(1)设A 点的坐标为(m ,2)2m =,所以点A 的坐标为(2,2). ∴224k =⨯=.∴反比例函数的解析式为:24y x=.…………………………3分 (2)当12y y =时,4x x=. 解得2x =±.∴点B 的坐标为(-2,-2).或者由反比例函数、正比例函数图象的对称性得点B 的坐标为(-2,-2). 由图象可知,当12y y >时,自变量x 的取值范围是:20x -<<或2x >.……………………………………………………………………6分22.(2013云南红河州,22,7分)如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E .(1)判断四边形ACED 的形状,并说明理由; (2)若BD = 8cm ,求线段BE 的长.BACDE【答案】解:(1)四边形ACED 是平行四边形. ………………………………1分理由如下:∵四边形ABCD 是正方形, ∴AD ∥BC ,即AD ∥CE . ∵DE ∥AC ,∴四边形ACED 是平行四边形. ………………………………3分 (2)由(1)知,BC = AD = CE = CD , 在Rt △BCD 中, 令BC CD x ==,则2228x x +=. ………………………………5分解得1x =2x =-.∴2)BE x cm ==. ………………………………7分23.(2013云南红河州,23,9分)如图,抛物线24y x =-+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E .(1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标;(3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.【答案】解:(1)在24y x =-+中,当y =0时,即240x -+=,解得2x =±.当0x =时,即04y =+,解得4y =.所以点A 、B 、C 的坐标依次是A (-2,0)、 B (2,0)、C (0,4).设直线BC 的解析式为y kx b =+(0k ≠),则204k b b +=⎧⎨=⎩,解得24k b =-⎧⎨=⎩. 所以直线BC 的解析式为24y x =-+. ………………………………3分 (2)∵点E 在直线BC 上,∴设点E 的坐标为(, 24)x x -+,则△ODE 的面积S 可表示为:221(24)2(1)12S x x x x x =-+=-+=--+. ∴当1x =时,△ODE 的面积有最大值1.此时,242142x -+=-⨯+=,∴点E 的坐标为(1,2). …………………5分 (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为2(, 4)x x -+,02x <<.因为△OAC 与△OPD 都是直角三角形,分两种情况: ①当△PDO ∽△COA 时,PD ODCO AO=, 2442x x-+=,解得11x,21x =(不符合题意,舍去).当1x =时,21)42y =-+=. 此时,点P的坐标为2).②当△PDO ∽△AOC 时,PD OD AO CO=, 2424x x -+=,解得3x =,4x =(不符合题意,舍去).当x =24y =-+此时,点P的坐标为. 综上可得,满足条件的点P 有两个:112)P,2P . ………………………9分 (注:本卷中所有解答题,若有其它方法得出正确结论的,请参照评分标准给分)。
辽宁省营口市2013年中考数学试卷
一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)
1.(3分)(2013•营口)﹣5的绝对值是()
A.﹣5 B.±5 C.D.5
考点:绝对值
分析:根据负数的绝对值等于它的相反数求解即可.
解答:解:﹣5的绝对值是5,
即|﹣5|=5.
故选D.
点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.(3分)(2013•营口)据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为()
A.5.475×1011B.5.475×1010C.0.5475×1011D.5475×108
考点:科学记数法—表示较大的数.
专题:计算题.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将54 750 000 000用科学记数法表示为5.475×1010.
故选B.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(3分)(2013•营口)如图,下列水平放置的几何体中,主视图是三角形的是()A.B.C .D.
考点:简单几何体的三视图.
分析:找到从正面看所得到的图形是三角形即可.
解答:解:A、主视图为长方形,故本选项错误;
B、主视图为三角形,故本选项错误;
C、主视图为长方形,故本选项错误;
D、主视图为长方形,故本选项错误.
故选B.
点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
4.(3分)(2013•营口)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.
考点:中心对称图形;轴对称图形.
分析:根据轴对称图形与中心对称图形的概念求解.
解答:解:A、是轴对称图形,是中心对称图形.故此选项正确;
B、是轴对称图形,不是中心对称图形.故此选项错误;
C、是轴对称图形,不是中心对称图形.故此选项错误;
D、是轴对称图形,不是中心对称图形.故此选项错误.
故选A.
点评:此题主要考查了中心对称图形与轴对称图形的概念:
轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5.(3分)(2013•营口)某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()
A.50元,20元B.50元,40元C.50元,50元D.55元,50元
考点:众数;中位数.
分析:根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
解答:解:50出现了3次,出现的次数最多,
则众数是50;
把这组数据从小到大排列为:20,25,30,50,50,50,55,
最中间的数是50,
则中位数是50.
故选C.
点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).
6.(3分)(2013•营口)不等式组的解集在数轴上表示正确的是()A.B.C.D.
考点:在数轴上表示不等式的解集;解一元一次不等式组.
专题:存在型.
分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
解答:
解:,由①得,x≥﹣2;由②得,x<1,
故此不等式组的解集为:﹣2≤x<1.
在数轴上表示为:
故选C.
点评:本题考查的是在数轴上表示不等式组的解集,熟知解不等式组的加减消元法和代入消元法是解答此题的关键.
7.(3分)(2013•营口)炎炎夏日,甲安装队为A小区安装60台空调,乙安装队为B小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()
A.B.C.D.
考点:由实际问题抽象出分式方程.
分析:关键描述语为:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,根据所用时间相同列出分式方程即可.
解答:解:设乙队每天安装x台,则甲队每天安装x+2台,
由题意得,甲队用的时间为:,
乙队用的时间为:,
则方程为:=.
故选D.
点评:本题考查了由实际问题抽象出分式方程,找到相应的等量关系是解决问题的关键,注意工作时间=工作总量÷工作效率.
8.(3分)(2013•营口)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到()
A.点C处B.点D处C.点B处D.点A处。