中考数学总复习第二编专题突破篇专题10解直角三角形或相似的计算与实践精讲试题
- 格式:doc
- 大小:193.50 KB
- 文档页数:5
中考数学二轮复习专题解直角三角形一、单选题1.某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°B.3.5cos29°C.3.5tan29°D.2.如图,在Rt∠ABC中,∠B=90°,AB=8,BC=6,延长BC至E,使得CE=BC,将∠ABC沿AC翻折,使点B落点D处,连接DE,则DE的长为()A.B.C.D.3.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米4.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则∠O 的半径为()A.2B.3C.4D.4-5.如图是一个2×2的方阵,其中每行、每列的两数和相等,则可以是()A.B.-1C.0D.6.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m7.如图,正方形ABCD中,内部有4个全等的正方形,小正方形的顶点E,F,G,H分别在边AB,BC,CD,AD上,则tan∠AEH=()A.B.C.D.8.四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形,若,则菱形的面积与正方形ABCD的面积之比是()A.1B.C.D.9.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.10.如图,在四边形ABCD中,,,,AC与BD交于点E,,则的值是()A.B.C.D.11.如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转,使点B落在点的位置,连接B ,过点D作DE∠ ,交的延长线于点E,则的长为()A.B.C.D.12.如图,正方形中,点、分别在边,上,与交于点.若,,则的长为()A.B.C.D.二、填空题13.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= .14.如图,在矩形ABCD中,点E是AD的中点,连接AC,EC,CD=DE,则tan∠ACE的值为.15.如图,在菱形ABCD中,AB=2,∠B是锐角,AE∠BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为。
专题十解直角三角形或相似的计算与实践一、选择题1.(2017重庆中考A卷)若△ABC~△DEF,相似比为3∶2,则对应高的比为( A)A.3∶2 B.3∶5C.9∶4 D.4∶92.(2017兰州中考)如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5 m,A,B,C三点共线),把一面镜子水平放置在平台上的点G 处,测得CG=15 m,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3 m,小明身高EF=1.6 m,则凉亭的高度AB约为( A)A.8.5 m B.9 m C.9.5 m D.10 m3.(2017滨州中考)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( A)A.2+ 3 B.2 3C.3+ 3 D.3 3(第3题图)(第4题图)4.(2017眉山中考)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则可求得井深为( B) A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(2017通辽中考)志远要在报纸上刊登广告,一块10 cm×5 cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( C) A.540元B.1 080元C.1 620元D.1 800元6.(2017绥化中考)如图,△A′B′C′是△ABC在以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为(A)A.2∶3 B.3∶2C.4∶5 D.4∶9(第6题图)(第7题图)7.(2017湖州中考)如图,已知在Rt △ABC 中,∠C =90°,AC =BC ,AB =6,点P 是Rt △ABC 的重心,则点P 到AB 所在直线的距离等于( A )A .1B . 2C .32D .28.(2017四市中考)如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( B )A .603海里B .602海里C .303海里D .302海里(第8题图)(第9题图)9.(2017长沙中考)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点C ,D 重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,△CHG 的周长为n ,则nm的值为( B ) A .22 B .12C .5-12D .随H 点位置的变化而变化 二、填空题10.(2017宁波中考)如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB =500 m 则这名滑雪运动员的高度下降了__280__m .(参考数据:sin 34°≈0.56,cos 34°≈0.83,tan 34°≈0.67)(第10题图)(第11题图)11.(2017北京中考)如图,在△ABC 中,M ,N 分别为AC ,BC 的中点.若S △CMN =1,则S 四边形ABNM =__3__. 12.(2017广州中考)如图,Rt △ABC 中,∠C =90°,BC =15,tan A =158,则AB =__17__.(第12题图)(第13题图)13.(2017无锡中考)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__3__.14.(2017贵港中考)如图,点P 在等边△ABC 的内部,且PC =6,PA =8,PB =10,将线段PC 绕点C 顺时针旋转60°得到P′C,连接AP′,则sin ∠PAP ′的值为__35__.三、解答题15.(2017宜宾中考)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A ,又在河的另一岸边取两点B ,C 测得∠α=30°,∠β=45°,量得BC 长为100 m .求河的宽度.(结果保留根号)解:过点A 作AD⊥BC 于点D , ∵∠β=45°,∠ADC =90°,∴AD =DC. 设AD =DC =x m ,则tan 30°=x x +100=33,解得x =50(3+1). 答:河的宽度为50(3+1)m .16.(2017眉山中考)如图,点E 是正方形ABCD 的边BC 延长线上一点,连接DE ,过顶点B 作BF⊥DE,垂足为F ,BF 分别交AC 于H ,交DC 于G.(1)求证:BG =DE ;(2)若点G 为CD 的中点,求HGGF的值.解:(1)∵BF⊥DE,∴∠GFD =90°. ∵∠BCG =90°,∠BGC =∠DGF, ∴∠CBG =∠CDE.在△BCG 与△DCE 中,⎩⎪⎨⎪⎧∠CBG=∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA ), ∴BG =DE ;(2)设CG =1,∵G 为CD 的中点, ∴GD =CG =1.由(1)可知:△BCG≌△DCE(ASA ), ∴CG =CE =1,∴由勾股定理可知:DE =BG = 5. ∵sin ∠CDE =CE DE =GFGD ,∴GF =55. ∵AB ∥CG , ∴△ABH∽△CGH, ∴AB CG =BH HG =21, ∴BH =253,GH =53,∴HG GF =53.17.(2017盐城中考) 【探索发现】如图①,是一张直角三角形纸片,∠B =90°,小明想从中剪出一个以∠B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE ,EF 剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.【拓展应用】如图②,在△ABC 中,BC =a ,BC 边上的高AD =h ,矩形PQMN 的顶点P ,N 分别在边AB ,AC 上,顶点Q ,M 在边BC 上,则矩形PQMN 面积的最大值为________.(用含a ,h 的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积.【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50 cm ,BC =108 cm ,CD =60 cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M ,N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积. 解:【探索发现】12;【拓展应用】ah4;【灵活应用】如答图①,延长BA ,DE 交于点F ,延长BC ,ED 交于点G ,延长AE ,CD 交于点H ,取BF 中点I ,FG 的中点K.答图①由题意知四边形ABCH 是矩形, ∵AB =32,BC =40,AE =20,CD =16, ∴EH =20,DH =16, ∴AE =EH ,CD =DH. 在△AEF 和△HED 中, ∵⎩⎪⎨⎪⎧∠FAE=∠DHE,AE =EH ,∠AEF =∠HED,∴△AEF ≌△HED(ASA ), ∴AF =DH =16. 同理△CDG≌△HDE, ∴CG =HE =20, ∴BI =AB +AF 2=24.∵BI =24<32,∴中位线IK 的两端点在线段AB 和DE 上. 过点K 作KL⊥BC 于点L.由【探索发现】知矩形的最大面积为12S △FBG =12×12×BG·BF=14×(40+20)×(32+16)=720.答:该矩形的面积为720. 【实际应用】如答图②,延长BA ,CD 交于点E ,过点E 作EH⊥BC 于点H.答图②∵tan B =tan C =43,∴∠B =∠C, ∴EB =EC.∵BC =108 cm ,且EH⊥BC, ∴BH =CH =12BC =54 cm .∵tan B =EH BH =43,∴EH =43BH =43×54=72 cm ,在Rt △BHE 中,BE =EH 2+BH 2=90 cm , ∵AB =50 cm , ∴AE =40 cm , ∴BE 2=40+502=45 cm , ∴BE 的中点Q 在线段AB 上. ∵CD =60 cm , ∴ED =30 cm ,∴CE 的中点P 在线段CD 上,∴中位线PQ 的两端点在线段AB ,CD 上,1 4BC·EH=14×108×72=1 944 cm2.由【拓展应用】知,矩形PQMN的最大面积为。
最新中考数学专题复习解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为cosA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、cosA、tanA表示的是一个整体,是两条线段的比,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:Rt△ABC中,∠C=900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点二:特殊角的三角函数值例2 (2012•孝感)计算:cos245°+tan30°•sin60°=.对应训练(2012•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形对应训练3.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.考点四:解直角三角形的应用例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=米,请据此解答如下问题:(1)求该岛的周长和面积;)(2)求∠ACD的余弦值.考点:解直角三角形的应用.对应训练6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,,60千米/小时≈16.7米/秒)【聚焦山东中考】A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定5.(2012•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.6.(2012•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B、F、C在一条直线上)(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)6.考点:解直角三角形的应用.分析:(1)首先构造直角三角形△AEM,利用tan22°=AM ME,求出即可;(2)利用Rt△AME中,cos22°=MEAE,求出AE即可.【备考真题过关】一、选择题A.1 B C D.24.A考点:特殊角的三角函数值.5.(2012•乐山)如图,在Rt △ABC 中,∠C=90°,AB=2BC ,则sinB 的值为( )A .12 B C D .15.C考点:特殊角的三角函数值. 6.(2012•杭州)如图,在Rt △ABO 中,斜边AB=1.若OC ∥BA ,∠AOC=36°,则( ) A .点B 到AO 的距离为sin54° B .点B 到AO 的距离为tan36° C .点A 到OC 的距离为sin36°sin54° D .点A 到OC 的距离为cos36°sin54°6.考点:解直角三角形;点到直线的距离;平行线的性质.点评:本题考查了对解直角三角形和点到直线的距离的应用,解此题的关键是①找出点A 到OC 的距离和B 到AO 的距离,②熟练地运用锐角三角形函数的定义求出关系式,题目较好,但是一道比较容易出错的题目.7.(2012•宜昌)在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( ) A .24米 B .20米 C .16米 D .12米考点:解直角三角形的应用.8.(2012•广安)如图,某水库堤坝横断面迎水坡AB 的坡比是1BC=50m ,则应水坡面AB的长度是()A.100m B.C.150m D.8.考点:解直角三角形的应用-坡度坡角问题.1.(2012•泰安)如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()0米米2.(2012•深圳)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()23.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()0020(二、填空题9.(2012•宁夏)在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.(2012•武汉)tan60°= .11.(2012•常州)若∠a=60°,则∠a的余角为,cosa的值为.12.(2012•南京)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.(2012•广西)如图,为测量旗杆AB的高度,在与B距离为8米的C处测得旗杆顶端A 的仰角为56°,那么旗杆的高度约是12米(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题ctanα= =415.(2012•遵义)为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,,精确到个位)16.(2012•六盘水)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.17.(2012•新疆)如图,跷跷板AB的一端B碰到地面时,AB与地面的夹角为15°,且OA=OB=3m.(1)求此时另一端A离地面的距离(精确到0.1m);(2)若跷动AB,使端点A碰到地面,请画出点A运动的路线(不写画法,保留画图痕迹),并求出点A运动路线的长.(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)5.(2012•资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).6.(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.(1)求一楼于二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249.7.(2012•郴州)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:≈1.414,≈1.732)8.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)解决问题如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.×=70,AD=70,∠AD=140船赶往出事地点所需时间为=718.(2012•苏州)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请讲下面2小题的结果都精确到0.1).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?18.考点:解直角三角形的应用-坡度坡角问题.分析:(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DPA中,DP=12AD,以及PA=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=12BD=15,故:DE=DF-EF=15-1)≈11.0;(2)过点D作DP⊥AC,垂足为P.在Rt△DPA中,DP=12AD=12×30=15,PA=AD•cos30°=2×30=15 .在矩形DPGM中,MG=DP=15,,在Rt△DMH中,()≈45.6.答:建筑物GH高为45.6米.点评:此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.。
A中考相似与解直角三角形专题一、典型例题:例1:(1)(2010,甘肃)在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 米.(2)(2011浙江省)如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A . 2:5B .14:25C .16:25D . 4:21(3)(2011湖南衡阳)如图所示,河堤横断面迎水坡AB 的坡比是1堤高BC=5m ,则坡面AB 的长度是( )A .10mB .C .15mD .m(4)(2011浙江省嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36(第2题图) (第3题图) (第4题图)【课堂练习1】(1)(2011宁波市)如图1,某游乐场一山顶滑梯的高为h ,滑梯的坡角为a ,那么滑梯长l 为( ) A .h sina B . h tana C . hcosaD . h·sina(2)(2010,梧州)如图(2),在ABCD 中,E 是对角线BD 上的点,且EF ∥AB ,DE :EB=2:3, EF=4,则CD 的长为_____________。
(3)(2010年丹东市)如图(3),小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是( ) A .32+)m B .(32)m C .m D .4m 例2:(2011上海)在Rt △ABC 中,∠ACB=90°,BC=30,AB=50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM=EN ,sin ∠EMP=1213. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP=x ,BN=y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图【课堂练习2】(2010珠海)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1) 求证:△ADF ∽△DEC(2)若AB =4,AD =3,AE =3,求AF 的长.例3:(2010年东阳市)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,AE=2,ED=4.3(1)求证: ~△ADB ;(2) 求的值;(3)延长BC 至F ,连接FD ,使的面积等于,求的度数.【课堂练习3】(2011安徽)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长.(参考数据:3=1.73)二、强化训练:1、(2011山东威海)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD 的长.2、(2011四川绵阳)已知△ABC 是等腰直角三角形,∠A=90°,D 是腰AC 上的一个动点,过C 作CE 垂直于BDABE ∆tan ADB ∠BDF∆EDF∠或BD 的延长线,垂足为E,如图1. (1)若BD 是AC 的中线,如图2,求BDCE的值; (2)若BD 是∠ABC 的角平分线,如图3,求BDCE的值;(图1) (图2) (图3)3、(2011四川广安)某校初三课外活动小组,在测量树高的一次活动中,如图7所示,测得树底部中心A 到斜坡底C 的水平距离为8. 8m .在阳光下某一时刻测得1米的标杆影长为0.8m ,树影落在斜坡上的部分CD= 3.2m .已知斜坡CD 的坡比i=1,求树高AB 。
精品基础教育教学资料,仅供参考,需要可下载使用!相似三角形与解直角三角形一、知识要点概述1、比例线段的有关概念(1)前项、后项:两条线段的比a︰b中,a叫比的前项,b叫比的后项.(2)比例线段:四条线段中,如果两条线段的比等于另外两条线段的比,那么这四条线段,简称比例线段.(3)外项、内项、第四比例项:如果a︰b=c︰d,则a、d叫比例外项,b、c叫比例内项,d叫做a、b、c的第四比例项.(4)比例中项:若a︰b=b︰c,则b叫a、c的比例中项.2、比例的性质(1)比例的基本性质:如果a︰b=c︰d,则ad=bc,其逆命题也成立.推论:如果a︰b=b︰c,则b2=ac,其逆命题也成立.(2)合比性质:.(3)等比性质:.3、平行线分线段成比例定理:三条平行线截两直线,所得的对应线段成比例.推论1:平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段成比例.推论1的逆定理:如果一条直线截三角形的两边(或两边的延长线),所得到的对应线段成比例,那么这条直线平行于三角形的第三边.推论2:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.4、相似三角形的有关概念(1)相似三角形:对应角相等、对应边成比例的两个三角形是相似三角形.(2)相似比:相似三角形对应边的比.5、三角形相似的判定(1)两角对应相等,两三角形相似.(2)两边对应成比例且夹角相等,两三角形相似.(3)三边对应成比例,两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(5)直角三角形斜边上的高分成的两个直角三角形与原直角三角形相似.(6)平行于三角形一边的直线截其他两边(或两边的延长线)所得的三角形与原三角形相似.5、相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形的面积比等于相似比的平方.6、锐角三角函数在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,则,且sinA,cosA在0~1内取值.7、特殊角的三角函数值8、互为余角的三角函数关系锐角α与它的余角(90°-α)有如下关系:sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.9、同角三角函数间的关系(1)平方关系:sin2α+cos2α=1;(2)倒数关系:tanα·cotα=1;(3)商数关系:.10、锐角三角函数的增减性当角α在0°~90°间变化时,角α的正弦、正切值随角α的增大(或减小)而增大(或减小);角α的余弦、余切值随α的增大(或减小)而减小(或增大),正弦值、余弦值均介于0~1之间,即0≤sinα≤1,0≤cosα≤1.11、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,则有下列关系:(1)三边的关系:a2+b2=c2;(2)角的关系:A+B=90°;(3)边角的关系:sinA=cosB=,cosA=sinB=,tanA=cotB=,cotA=tanB=;(4)面积关系:;(5)外接圆半径:,内切圆半径:.12、应用解直角三角形知识解题的步骤(1)审题,弄清仰角、俯角、坡角等概念及题意.(2)画图并构造要求解的直角三角形,对于非直角三角形添加适当的辅助线分割成规则的几何图形.(3)选择合适的边角关系计算,确定结果.13、应用中的几个概念(1)仰角、俯角:视线与水平线所成的锐角中视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角.如图(1).(2)坡角、坡度:坡面的铅直高度h和水平宽度l的比叫做坡度i,即,坡面与水平面的夹角叫坡角α,tanα=i=.(图2)(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫方位角.如(图3)中,OA、OB、OC的方位角分别为∠DOA、∠DOB、∠DOC.(4)方向角:指北或指南方向线所成的小于90°的水平角叫方向角.如(图4)中OA、OB、OC、OD的方向角分别是:北偏东30°、南偏东45°(东南方向)、南偏西60°、北偏西60°.二、典型例题剖析例1、如图,在△ABC中,AB=24,AC=18,D在AC上,AD=12,在AB上取一点E,使得△ADE与原三角形相似,则AE的长为()A.16B.14C.16或14D.16或9分析:要使两个三角形相似,但未指明对应关系,应进行分类讨论.解:(1)如图,过D作DE//BC交AB于E(或∠ADE=∠C),则△ADE∽△ACB,此时有,∴AE=16.(2)如图,作∠ADE′=∠B,DE交AB于E′,则△ADE∽△ABC,此时有∴AE′=9.综上所述AE=16或9.答案:D例2、已知三个数1,2,,请你再添上一个数(只填一个数)使它们能构成一个比例式,则这个数是_________.解析:此题设计较为开放,结论不唯一.由于题目没有明确告知构成比例的各数顺序,所以所添的数的位置较为灵活.从1︰2=︰x可求出;从1︰2=x︰,可求出;从1︰x=︰2可求出,故此题填以上三个数中的任意一个即可.例3、如图,已知D、E分别是△ABC的AB、AC边上一点,DE//BC,且S△ADE︰S梯形DBCE=1︰3,那么AD︰AB=()A.B.C.D.分析:由S△ADE︰S梯形DBCE=1︰3知S△ADE︰S△ABC=1︰4.由DE//BC得S△ADE∽S△ABC.由相似三角形的面积比等于相似比的平方得,∴AD︰AB=,故选C.答案:C例4、已知:如图,在△ABC中,AD是角平分线,AD的垂直平分线交AD于E,交BC 的延长线于F.求证:FD2=FB·FC.分析:要证:FD2=FB·FC,可证:.由于无法找到△FDB与△FCD,所以应将FD代换,根据EF是AD的垂直平分线的条件可联想到连接FA,则FD=FA.用FA代替FD,得,由此可找到证明△FAB∽△FCA.证明:连接FA.∵EF垂直平分AD,∴FD=FA,∴∠FDA=∠FAD.∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA-∠BAD=∠FAD-∠CAD,∴∠B=∠FAC.又∵∠BFA=∠AFC,∴△FAB∽△FCA,,∴FA2=FB·FC,即FD2=FB·FC.例5、计算:分析:(1)题综合考查特殊角的三角函数值及代数式的计算.将特殊角的三角函数值代入化简,并注意分母有理化,这类题型记准数值是前提,算准结果是关键.(2)题要灵活运用同角的三角函数关系和互余的三角函数关系进行化简,要识别45°+α与45°-α是互余关系.解:例6、已知:如图,∠B=30°,∠C=45°,AB-AC=2-.求BC的长.分析:解直角三角形时,若所求的元素不在直角三角形中,则应将它转化为直角三角形中去.转化的途径有:作辅助线构造直角三角形,或找已知直角三角形中的边或角替代所要求的元素等.解:过A作AD⊥BC于D,构造直角三角形.例7、为申办2010年冬奥会,须改变哈尔滨市的交通状况,在大直街拓宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区.现在某工人站在离B点3米远的D处测得树的顶端A点的仰角为60°,树的底部B的俯角为30°.问距离B点8米远的保护物是否在危险区内?分析:解决测量问题要明确仰角、俯角、坡度、坡角等名词术语.此题要考察距离B点8米远的保护物是否在危险区内.关键的一点是要测算树AB的高度.解:过点C作CE⊥AB于E.。
考点突破:解直角三角形一、锐角三角函数的定义在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b ,正弦:sin A =∠的对边=斜边A a c ;余弦:cos A =∠的邻边=斜边A b c ;正切:tan A =∠的对边=邻边A ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.二、特殊角的三角函数值三、解直角三角形1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.2.解直角三角形的常用关系:在Rt △ABC 中,∠C =90°,则:(1)三边关系:a 2+b 2=c 2;(2)两锐角关系:∠A+∠B=90°;(3)边与角关系:sin A=cos B=ac,cos A=sin B=bc,tan A=ab;(4)sin2A+cos2A=1.3.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.四、解直角三角形的应用1.仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角.俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角.2.坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=h l.坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα.坡度越大,α角越大,坡面越陡.3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.考向一求三角函数的值(1)分清直角三角形中的斜边与直角边.(2)正确地表示出直角三角形的三边长,常设某条直角边长为k (有时也可设为1),在求三角函数值的过程中约去k .(3)正确应用勾股定理求第三边长.(4)应用锐角三角函数定义,求出三角函数值.典例12sin 45 的值为A .22B 3C 2D .1【答案】C 【解析】把sin45°=22代入原式得:原式=2×222.故选C .1.如图,在△ABC中,∠C=90°.若AB=3,BC=2,则sin A的值为A.23B.53C.55D.52考向二利用特殊角的三角函数值求值锐角三角函数值与三角形三边的长短无关,只与锐角的大小有关.典例2已知∠A为锐角,且sin A=32,那么∠A等于A.15°B.30°C.45°D.60°【答案】D【解析】∵sin A=32,∴∠A=60°.故选D.2.已知α是锐角,sinα=cos60°,则α等于A.30°B.45°C.60°D.不能确定考向三解直角三角形的应用解此类题的一般方法:(1)构造直角三角形;(2)理清直角三角形的边角关系;(3)利用特殊角的三角函数值解答问题.典例3某山的山顶B 处有一个观光塔,已知该山的山坡面与水平面的夹角∠BDC 为30°,山高BC 为100米,点E 距山脚D 处150米,在点E 处测得观光塔顶端A 的仰角为60°,则观光塔AB的高度是A .50米B .100米C .125米D .150米【答案】A【解析】如图,作EF ⊥AC 于F ,EG ⊥DC 于G ,在Rt △DEG 中,EG =12DE =75,∴BF =BC -CF =BC -CE =100-75=25,EF =tan tan30BF BFBEF =∠︒=253,∵∠AEF =60°,∴∠A =30°,∴AF =253tan 33EF A ==75,∴AB =AF -BF =50(米),故观光塔AB 的高度为50米,故选A.3.如图,某湖心岛上有一亭子A ,在亭子A 的正东方向上的湖边有一棵树B ,在这个湖心岛的湖边C 处测得亭子A 在北偏西45︒方向上,测得树B 在北偏东36︒方向上,又测得B 、C 之间的距离等于200米,求A 、B 之间的距离(结果精确到1米).1.414≈,sin360.588︒≈,cos360.809︒≈,tan360.727︒≈,cot36 1.376︒≈)1.如图,在△ABC中,若∠C=90°,则A.sin A=ac B.sin A=bcC.cos A=ab D.cos A=ba21sin45cos602︒-︒的值为A.(112+B.(112C.14D.343.在Rt ABC△中,90C∠=︒,53B∠=︒,若BC m=,则AB的长为A.cos53m︒B.cos53m⋅︒C.sin53m⋅︒D.tan53m⋅︒4.在Rt△ABC中,∠C=90°,13AC AB=,则cos A等于A .3B .13C .D .45.菱形ABCD 的对角线AC =10cm ,BD =6cm ,那么tan2B 为A .53B .54C D 6.如图是边长为1的小正方形组成的网格图,其中点A ,B ,C 均为格点,则sin ∠BAC 为A .2B .5C .5D .107.在Rt △ABC 中,∠C =90°,若AB =10,sin A =35,则斜边上的高等于A .5B .4.8C .4.6D .48.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为A .35B .34C .105D .19.如图,某水库堤坝横截面迎水坡AB 的坡度是1:,堤坝高为40m ,则迎水坡面的是A .80mB .C 40m .D .10.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2海里的点A 处.如果海轮沿正南方向航行到灯塔的正东位置B 处,海轮航行的距离AB 长是A.2海里B.2sin55︒海里C.2cos55︒海里D.2tan55︒海里11.钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB的坡度为1∶2.4,AB长为3.9米,钓竿AC与水平线的夹角是60°,其长为4.5米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B3≈1.732)A.1.732米B.1.754米C.1.766米D.1.823米12.如图,在Rt△ABC中,∠C=90°,BC=12,tan A=125,则sin B=___________.13.在△ABC中,AB5,AC5,tan∠B=12,则BC的长度为__________.14.已知相邻的两根电线杆AB与CD高度相同,且相距50mBC=.小王为测量电线杆的高度,在两根电线杆之间某一处E架起测角仪,如图所示,分别测得两根电线杆顶端的仰角为45︒、23︒,已知测角仪EF高1.5m,则电线杆的高度约为________m.(精确到0.1m,参考数据:sin230.39︒≈,cos230.92︒≈,tan230.43︒≈)15.已知:如图,在菱形ABCD中,AE⊥BC,垂足为E,对角线BD=8,tan∠CBD=1 2.(1)求边AB的长;(2)求cos∠BAE的值.16.如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强的身高为166cm,其中下半身FG=100cm,洗漱时下半身与地面成80°角(∠FGK=80°),身体前倾成125°角(∠EFG=125°),脚与洗漱台的距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强的头部点E与地面DK的距离是多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17≈1.41,结果精确到0.1cm)1.(2019•天津) 60sin 2的值等于A .1B .2C .3D .22.(2019•怀化)已知∠α为锐角,且sin α=12,则∠α=A .30°B .45°C .60°D .90°3.(2019·宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,则sin ∠BAC 的值为A .43B .34C .35D .454.(2019•广州)如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若tan ∠BAC =25,则此斜坡的水平距离AC 为A .75mB .50mC .30mD .12m5.(2019•苏州)如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为3的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是A.55.5m B.54m C.19.5m D.18m 6.(2019•广西)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)A.3.2米B.3.9米C.4.7米D.5.4米7.(2019·杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x8.(2019•甘肃)在△ABC中,∠C=90°,tan A=33,则cos B=__________.9.(2019•杭州)在直角三角形ABC中,若2AB=AC,则cos C=__________.10.(2019•天津)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.11.(2019•深圳)如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE∥AC,ED=500米,测得仰角为53°,求隧道BC长.(sin53°≈45,cos53°≈35,tan53°≈43).14.(2019•江西)图1是一台实物投影仪,图2是它的示意图,折线B–A–O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1).(1)如图2,∠ABC=70°,BC∥OE.①填空:∠BAO=__________.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC 的大小.(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)15.(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)16.(2019•贵阳)如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中OP为下水管道口直径,OB为可绕转轴O自由转动的阀门.平时阀门被管道中排出的水冲开,可排出城市污水;当河水上涨时,阀门会因河水压迫而关闭,以防河水倒灌入城中.若阀门的直径OB=OP=100cm,OA为检修时阀门开启的位置,且OA=OB.(1)直接写出阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围;(2)为了观测水位,当下水道的水冲开阀门到达OB位置时,在点A处测得俯角∠CAB=67.5°,若此时点B恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留小数点后一位)=1.41,sin67.5°=0.92,cos67.5°=0.38,tan67.5°=2.41,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)变式拓展1.【答案】A【解析】在Rt △ABC 中,∵∠C =90°,AB =3,BC =2,∴sin A =BC AB =23,故选A .2.【答案】A【解析】∵sin α=cos60°=12,∴α=30°.故选A .3.【解析】如图,过点C 作CH AB ⊥,垂足为点H ,由题意,得45ACH ∠=︒,36BCH ∠=︒,200BC =,在Rt △BHC 中,sin BH BCH BC ∠=,∴sin36200BH ︒=,∵sin360.588︒≈,∴117.6BH ≈,又cos HC BCH BC ∠=,∴cos36200HC ︒=,∵cos360.809︒≈,∴161.8HC ≈,在Rt △AHC 中,tan AH ACH HC ∠=,∵45ACH ∠=︒,∴AH HC =,∴161.8AH ≈,又AB AH BH =+,∴279.4AB ≈,∴279AB ≈(米).答:A 、B 之间的距离为279米.考点冲关1.【答案】A【解析】A 、sin A =a c,此选项正确;2.【答案】D【解析】原式11222-⨯=1–14=34,故选D.3.【答案】A【解析】如图,∵cos53°=BCAB,∴AB=cos53m︒,故选A.4.【答案】B【解析】如图所示:∵13AC AB=,∴cos A=1133ABACAB AB==.故选B.5.【答案】A【解析】如图,由题意得,AO⊥BO,AO=12AC=5cm,BO=12BD=3cm,则tan 2B =tan ∠OBA 53AO BO ==.故选A.6.【答案】D【解析】如图所示:连接BD ,交AC 于点E,由正方形的性质可得:BD ⊥AC ,故BD=,AB则sin ∠BAC=2210EB AB ==.故选D .7.【答案】B【解析】如图所示,CD ⊥AB ,CD即为斜边上的高,在Rt △ABC 中,∠C =90°,AB =10,sin A =35,∴sin A =10BC BC AB ==35,即BC =6,根据勾股定理得:AC=8,∵S △ABC =12AC •BC =12CD •AB ,∴CD =6810AC BC AB ⋅⨯==4.8,故选B .8.【答案】B【解析】∠ABC 所在的直角三角形的对边是3,邻边是4,所以,tan ∠ABC =34.故选B .9.【答案】A【解析】∵堤坝横断面迎水坡AB 的坡比是1BC AC =∵BC =40m ,∴AC m ,∴AB ,故选A .10.【答案】C 【解析】记灯塔P 的正北方向为射线PC 的方向.根据题意可知∠APC =55°,PC ∥AB ,AP =2海里.∵PC ∥AB ,∠APC =55°,∴∠PAB =55°.∵在Rt △ABP 中,AP =2海里,∠PAB =55°,∴AB =AP ·cos ∠PAB =2cos55°(海里).故选C.11.【答案】C【解析】如图,延长CA 交DB 延长线与点E ,过点A 作AF ⊥BE 于点F ,则∠CED =60°,∵AB 的坡比为1∶2.4,∴152.412AF BF ==,则设AF =5x ,BF =12x ,∵AB =3.9米,∴在直角△ABF 中,由勾股定理知,3.92=25x 2+144x 2.解得x =310.∴AF =5x =32,BF =12x =185,∴EF =33322,3tan 602sin 60332AF AF AE ====︒︒,∵∠C =∠CED =60°,∴△CDE 是等边三角形,∵AC =4.5米,∴DE =CE =AC +AE 3(米),则BD =DE ﹣EF ﹣BF 3﹣31825≈1.766(米),答:浮漂D 与河堤下端B 之间的距离为1.766米.故选C .12.【答案】513【解析】在Rt △ABC 中,∠C =90°,BC =12,tan A =125,得125BC AC =,即12125AC =,∴AC =5.由勾股定理,得AB 22AC BC +.所以sin B =513AC AB =,故答案为:513.13.【答案】5【解析】如图,过点A 作AD ⊥BC 交于D .∵1tan 2AD B BD ∠==,设AD =x ,则BD =2x ,∵AB ,∴在△ABD 中,由勾股定理得(2=x 2+(2x )2,解得,x 1=2,x 2=﹣2(不符合,舍去),∴BD =4,同理,在△ACD 中,由勾股定理得,1DC ===,∴BC =DC +BD =4+1=5,故答案为:5.14.【答案】16.5【解析】过点F 作AB 、CD 的垂线,垂足为点G 、H ,如图所示:设AG =x m ,则有DH =x m ,∵tan45tan23AG AG BC +=︒︒,∴tan23°=50x x-,解得x ≈15.0,∴AB =x +1.5=16.5.电线杆的高度约为16.5m .故答案是:16.5.15.【解析】(1)连接AC ,AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BO =12BD =4,∵Rt △BOC 中,tan ∠CBD =OC OB =12,∴OC =2,∴AB =BC(2)∵AE ⊥BC ,∴S 菱形ABCD =BC ·AE =12BD ·AC ,∵AC =2OC =4,∴=12×8×4,∴AE =855,∴BE=5,∴cos ∠ABE =BE AB 535.16.【解析】(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166,FG =100,∴EF =66,∵∠FGK =80°,∴FN =100sin80°≈98,∵∠EFG =125°,∴∠EFM=180°–125°–10°=45°,∴FM =66cos45°=≈46.53,∴MN =FN +FM ≈144.5,∴此时小强头部E 点与地面DK 相距约为144.5cm .(2)如图,过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB =48,O 为AB 中点,∴AO =BO =24,∵EM =66sin45°≈46.53,∴PH ≈46.53,∵GN =100cos80°≈17,CG =15,∴OH =24+15+17=56,OP =OH –PH =56–46.53=9.47≈9.5,∴他应向前9.5cm .直通中考1.【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A .2.【答案】A【解析】∵∠α为锐角,且sin α=12,∴∠α=30°.故选A .3.【答案】D【解析】如图,过C 作CD ⊥AB 于D ,则∠ADC =90°,∴AC .∴sin ∠BAC =CD AC =45.故选D .5.【答案】C【解析】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE=o ,18(m)3AE ∴==,18 1.519.5(m)AB ∴=+=,故选C .6.【答案】C【解析】如图,过点O 作OE ⊥AC 于点E ,延长BD 交OE 于点F ,7.【答案】D【解析】如图,过点A作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选D.∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD•cos65°=900×0.423≈381,DM=BD•sin65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.14.【解析】(1)①过点A作AG∥BC,如图1,则∠BAG=∠ABC=70°,∵BC∥OE,∴AG∥OE,∴∠GAO=∠AOE=90°,∴∠BAO=90°+70°=160°,故答案为:160;②过点A作AF⊥BC于点F,如图2,16.【解析】(1)阀门被下水道的水冲开与被河水关闭过程中∠POB的取值范围为:90°≤∠POB≤0°;(2)如图,∵∠CAB=67.5°,∴∠BAO=22.5°,∵OA=OB,∴∠BAO=∠ABO=22.5°,∴∠BOP=45°,OB,2∴PE=OP–OE≈29.5cm,答:此时下水道内水的深度约为29.5cm.。
专题十 解直角三角形或相似的计算与实践 年份 题型 考点 题号 分值 难易度 2019 选择题、解答题 方位角、三角函数10、25(2)(3)3+7=10容易题、中等题、较难题2019 选择题相似三角形判定15 2 中等题2019 选择题 方位角 9 3 容易题 命题规律纵观河北历年中考,每年都有命题,而且多与其他知识综合考查,近几年考查稍微弱一些,但感觉以后考查会侧重的,并且此专题难题较多,出题角度很广,2019年已经体现了,复习时要重视.预测2019年会延续2019年,分值和题量不变.解题策略首先夯实基础,其次加强与其他知识的综合应用,今年中考单独考查相似或三角函数的时候很少,多数把它俩作为解题工具,因此要加强综合训练.,重难点突破)锐角三角函数的实际应用【例1】(贵阳中考)在一次综合实践活动中,小明要测某地一座古塔AE 的高度.如图,已知塔基AB 的高为4 m ,他在C 处测得塔基顶端B 的仰角为30°,然后沿AC 方向走5 m 到达D 点,又测得塔顶E 的仰角为50°.(人的身高忽略不计)(1)求A ,C 的距离;(结果保留根号) (2)求塔高AE.(结果保留整数)【解析】(1)在Rt △ABC 中,利用锐角三角函数关系可得AC =ABtan ∠ACB,结合已知求出AC 的距离;(2)在Rt △ADE 中,易得AE =AD·tan ∠A DE ,结合已知求解,根据题目要求取近似值.【答案】解:(1)在Rt △ABC 中,∠ACB =30°,AB =4 m.∵tan ∠ACB =ABAC ,∴AC =AB tan ∠ACB =4tan30°=43(m).答:A ,C 的距离为4 3 m.(2)在Rt △ADE 中,∠ADE =50°, AD =(5+43)m.∵tan ∠A DE =AEAD,∴AE =AD·tan ∠ADE =(5+43)×tan50°≈14(m). 答:塔高AE 约为14 m.1.(张家界中考)如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B ,C 在同一条直线上,小明在地面D 处观测旗杆顶端B 的仰角为30°,然后他正对建筑物的方向前进了20 m 到达地面的E 处,又测得旗杆顶端B 的仰角为60°,已知建筑物的高度AC =12 m ,求旗杆AB 的高度.(结果精确到0.1 m ,参考数据:3≈1.73,2≈1.41)解:由题意得∠DBE=∠BEC-∠BDE=60°-30°=30°=∠BDE, ∴BE =DE =20.在Rt △BEC 中,BC =BE·sin60°=20×32=103(m),∴AB =BC -AC =103-12≈5.3(m). 答:旗杆AB 的高度是5.3 m. 【方法指导】解决直角三角形的实际应用问题,最重要的是建立数学模型,将其转化为数学问题,其次是牢记特殊角的三角函数值及边角关系.相似的综合【例2】(2019株洲中考)如图所示,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 相交于点G ,连接CF.(1)求证:△DAE≌△DCF; (2)求证:△ABG∽△CFG.【解析】(1)由正方形ABCD 与等腰直角三角形DEF ,得到两对边相等,一对直角相等,利用SAS 即可得证;(2)由第(1)问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角对应角相等的三角形相似即可得证.【答案】证明:(1)∵正方形ABCD ,等腰直角三角形EDF , ∴∠ADC =∠EDF=90°, AD =CD ,DE =DF ,∴∠ADE +∠ADF=∠ADF+∠CDF, ∴∠ADE =∠CDF,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧DE =DF ,∠ADE =∠CDF DA =DC ,,∴△ADE ≌△CDF ;(2)延长BA ,交ED 于点M.∵△ADE ≌△CDF ,∴∠EAD =∠FCD, 即∠EAM+∠MAD=∠BCD+∠BCF.∵∠MAD =∠BCD=90°,∴∠EAM =∠BCF. ∵∠EAM =∠BAG,∴∠BAG =∠BCF. ∵∠AGB =∠CGF,∴△ABG ∽△CFG.2.(2019常德中考)如图,Rt △ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF⊥AD 分别交AD 于E ,交AC 于F.(1)如图①,若BD =BA ,求证:△ABE≌△DBE;(2)如图②,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM=2MC ;②AG 2=AF·AC.解:(1)在Rt △ABE 和Rt △DBE 中, ∵⎩⎪⎨⎪⎧BA =BD ,BE =BE ,∴△ABE ≌△DBE(HL); (2)①过G 作GH∥AD 交BC 于H.∵G 是AB 中点且GH∥AD,∴H 是BD 中点,∴BH =DH. ∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2;∵GH ∥AD ,∴GM MC =HD DC =21,∴GM =2MC ;②过C 作CN⊥AC 交AD 的延长线于N ,则CN∥AG.∴△AGM∽△NCM,∴AGNC =GM MC.由①知GM=2MC,∴2NC=AG.∵∠BAC=∠AEB=90°,∴∠ABF=∠C AN=90°-∠BAE,∴△ACN∽△BAF,∴AFCN =AB AC.∵AB=2AG,∴AFCN=2AGAC,∴2CN·AG=AF·AC,∴AG2=AF·AC.【方法指导】首先掌握相似的性质和判定,再结合图形选择正确的判断方法,辅助线的添加是解题关键,添辅助线有一个重要原则是“构造相似三角形”.教后反思__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2019-2020学年数学中考模拟试卷一、选择题1.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°2.如图,将矩形纸片ABCD的四个角向内折起,恰好拼成一个无缝隙,无重叠的四边形EFGH,设AB=a,BC=b,若AH=1,则()A.a2=4b﹣4 B.a2=4b+4 C.a=2b﹣1 D.a=2b+13.已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是( )A. B. C. D.4.如图,已知△ABC内接于⊙O,AE平分∠BAC,交BC于D,交⊙O于E,若AB、AC的长是方程x2-ax+12=0的两实根,AD=2,则AE的长为()A.5B.6C.7D.85.一副三角板按如图所示方式叠放在一起,则图中∠α等于()A .105B .115C .120D .1356.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .230cm πB .260cm πC .248cm πD .280cm π7.下列立体图形中,主视图是三角形的是( )A .B .C .D .8.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( ) A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册9.如图,在△ABC 中,5,6AB AC BC ===,动点P ,Q 在边BC 上(P 在Q 的左边),且2PQ =,则AP AQ +的最小值为( )A .8B .C .9D .10.下列条件中,能判定四边形是平行四边形的条件是( ) A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角相等 C .一组对边平行,一组邻角互补 D .一组对边相等,一组邻角相等11.由7个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则其左视图是( )A .B .C .D .12.下列计算正确的是( ) A .b 5∙ b 5=2 b 5B .(a- b)5 ·(b - a)4=( a - b)9C .a +2 a 2=3 a 3D .(a n-1)3 = a 3n-1二、填空题13.若关于x 的一元二次方程()22210m x x --+=有两个实数根,那么m 的取值范围是________.14.将抛物线22y x =向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为______. 15.如图,AD 和AC 分别是⊙O 的直径和弦,且∠CAD=30°,OB ⊥AD ,交AC 于点B ,若OB=3,则BC=__.16.计算:=________.17.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.18.如图是二次函数y=ax 2+bx+c 的图象的一部分,对称轴是直线x=1,①b 2>4ac ;②4a ﹣2b+c <0;③不等式ax 2+bx+c >0的解集是x >3;④若(﹣2,y 1),(5,y 2)是抛物线上的两点,则y 1<y 2.上述判断中,正确的是________.三、解答题19.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若AB=BC+AD,求证:BE⊥AF;(3)在(2)的条件下,若∠D=90°,AD AF=10,则点E到AB的距离是.(直接写出结果即可,不用写出演推过程)20.在平面直角坐标系xOy中,直线y=kx+b(k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数y=mx(x>0)的图象G交于A,B两点.(1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.记图象G在点A、B之间的部分与线段AB围成的区域(不含边界)为W.①当m=2时,直接写出区域W内的整点的坐标;②若区域W内恰有3个整数点,结合函数图象,求m的取值范围.21.如图,在平面直角坐标系中,四边形OABC是矩形,且B(6,4),F是AB上的一个动点(F不与A,B重合),过点的反比例函数y=kx(k>0)的图象与BC边交于点E,连接AE.(1)当F为AB的中点时,求反比例函数和直线AE的解析式.(2)设△EFA的面积为S,当k为何值时,S最大?并求出这个最大值.22.计算:()2 01sin3022-︒⎛⎫--⎪⎝⎭.23.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D,E是线段AC的中点,连接ED.(1)求证:ED是⊙O切线.(2)求线段AD的长度.24.某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=100.在销售过程中,每天还要支付其他费用350元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大利润是多少元?25.先化简,再求值:2221(1)244x xx x x+++÷--+,其中x=3.【参考答案】*** 一、选择题二、填空题 13.3m ≤且2m ≠ 14.22(3)2y x =-+ 15.3 16.-2 17.80 18.①④ 三、解答题19.(1)见解析;(2)见解析;(3【解析】 【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点,可证明△ADE ≌△FCE ;(2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论;(3)在(2)的条件下有△ABE ≌△FBE ,得到∠ABE=∠FBE ,由勾股定理求DE 的长,根据角平分线的性质即可得到结果. 【详解】 (1)∵AD ∥BC , ∴∠ADC =∠ECF , ∵E 是CD 的中点, ∴DE =EC ,∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA ); (2)由(1)知△ADE ≌△FCE , ∴AE =EF ,AD =CF , ∵AB =BC+AD ,∴AB =BC+CF ,即AB =BF , 在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩, ∴△ABE ≌△FBE (SSS ), ∴∠AEB =∠FEB =90°, ∴BE ⊥AE ;(3)在(2)的条件下有△ABE ≌△FBE , ∴∠ABE =∠FBE ,∴E 到BF 的距离等于E 到AB 的距离, 由(1)知△ADE ≌△FCE , ∴AE =EF =12AF =5, ∵∠D =90°, ∴DE==∴CE =DE, ∵CE ⊥BF ,∴点E 到AB. 【点睛】本题考查了平行线的性质,全等三角形的判定与性质,等腰三角形的性质、勾股定理等知识.证明三角形全等是解题的关键. 20.(1)y =﹣12x+3;(2)①(3,1);②1≤m<2. 【解析】 【分析】(1)借助直线与x 轴、y 轴的交点坐标表示出直线与坐标轴围成的三角形的两条直角边长,利用面积是9,求出直线与y 轴的交点为C (0,3),利用待定系数法求出直线的表达式;(2)①先求出当m=2时,两函数图象的交点坐标,再结合图象找到区域W 内的整点的坐标;②利用特殊值法求出图象经过点(1,1)、(2,1)时,反比例函数中m 的值,结合图象得到在此范围内区域W 内整点有3个,从而确定m 的取值范围为1≤m<2. 【详解】 如图:(1)设直线与y轴的交点为C(0,b),∵直线与两坐标轴围成的三角形的面积是9,∴12×6b=9,b=±3.∵k<0,∴b=3,∵直线y=kx+b经过点(6,0)和(0,3),∴直线的表达式为y=﹣12x+3;(2)①当m=2时,两函数图象的交点坐标为方程组1322y xyx⎧=-+⎪⎪⎨⎪=⎪⎩的解,∴A(3,),观察图象可得区域W内的整点的坐标为(3,1);②当y=mx图象经过点(1,1)时,则 m=1,当y=mx图象经过点(2,1)时,则 m=2,∴观察图象可得区域W内的整点有3个时1≤m<2.【点睛】本题考查了反比例函数与一次函数的综合问题,结合图象利用反比例函数与一次函数的交点解决问题.21.(1)12yx=,4y x83=-+;(2)当k=12时,S最大,最大值是3.【解析】【分析】(1)先求出点F的坐标,然后利用待定系数法求反比例函数解析式,求解点E,由E、A两点即可求得直线AE的解析式.(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.【详解】解:(1)∵B (6,4),点F 是AB 的中点,∴点F 的坐标为(6,2),∵反比例函数y=k x (k >0)的图象过点F , ∴k=6×2=12,∴反比例函数解析式为y=12x , 把y=4代入y=12x 得,4=12x, 解得x=3,∴E (3,4),设直线AE 的解析式为y=ax+b , ∴3460a b a b +=⎧⎨+=⎩解得438a b ⎧=-⎪⎨⎪=⎩ ,∴直线AE 的解析式:4y 83x =-+; (2)设F (6,6k ),则E (,44k ), ∴S=()221111·612326448248k k k k k ⎛⎫-=-+=--+ ⎪⎝⎭ ∴当k=12时,S 最大,最大值是3.【点睛】本题考查了反比例函数图象上点的坐标特征,矩形的性质,待定系数法求函数解析式,表示出△EFA 的面积是解本题的关键.22.0【解析】【分析】根据三角函数、0指数幂,负指数幂的定义进行计算.【详解】解:原式=1+3﹣4=0.【点睛】考核知识点:三角函数、0指数幂,负指数幂.理解定义是关键.23.(1)见解析;(2)9 5【解析】【分析】(1)由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可;(2)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.【详解】(1)证明:连接OD,DE,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.(2)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴AC AD AB AC=,∴295ACADAB==.【点睛】此题综合考查了切线的判定和性质,圆周角定理、相似三角形的判定和性质、直角三角形的性质、正确的作出辅助线是解题的关键.24.(1) y =﹣2x+220(40≤x≤70);(2) w =﹣2x 2+300x ﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解析】【分析】(1)根据y 与x 成一次函数解析式,设为y =kx+b (k≠0),把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价×销售量,列出w 关于x 的二次函数解析式即可;(3)利用二次函数的性质求出w 的最大值,以及此时x 的值即可.【详解】(1)设y =kx+b(k≠0),根据题意得708060100k b k b +=⎧⎨+=⎩, 解得:k =﹣2,b =220,∴y =﹣2x+220(40≤x≤70);(2)w =(x ﹣40)(﹣2x+220)﹣350=﹣2x 2+300x ﹣9150=﹣2(x ﹣75)2+2100;(3)w =﹣2(x ﹣75)2+2100,∵40≤x≤70,∴x =70时,w 有最大值为w =﹣2×25+2100=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.25.3【解析】【分析】先算括号内的加法,把除法变成乘法,算乘法,再代入求出即可.【详解】 2221(1)244x x x x x +++÷--+ 2222(2)21x x x x x -++-=⋅-+2(1)(2)21x x x x x +-=⋅-+ =x (x ﹣2)=x 2﹣2x ,当x =3时,原式=32﹣2×3=3.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.95°B.75°C.35°D.85°2.已知点()1,3x ,()2,2x 是直线 2 1y x =-+上两点,则下列正确的是( )A.120x x ->B.120x x -<C.12x x =D.120x x +> 3.关于抛物线,下列说法错误..的是( ). A.开口向上B.与轴只有一个交点C.对称轴是直线D.当时,随的增大而增大4.下列关于向量的等式中,不正确的是( )A .OE ED OD +=B .AB BC CA -= C .AB AC CB -=D .0AB BA +=5.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110 B .(1+x )2=109 C .1+2x =1110 D .1+2x =109 6.分式方程的解是( )A.3B.-3C.D.97.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE SS ∆= C .若AB=4,则BE =D .sin 14CBE ∠= 8.已知二次函数2y ax bx c =++的图像如图所示,对称轴是直线x=1,下列结论中:①abc>0,②2a+b=0,③24b ac -<0,④4a+2b+c>0,其中正确的是( )A .①②B .①③C .②③D .②④9.如图,点A 、B 、C 在半径为2的圆O 上,且∠BAC=60°,作OM ⊥AB 于点M ,ON ⊥AC 于点N ,连接MN ,则MN 的长为( )A.1 C.2 10.如图,函数2y x =和4y ax =+的图象相交于点(),3A m ,则不等式24x ax <+的解集为( )A.32x <B.3x <C.32x >D.3x > 11.如图,抛物线2y ax bx c =++与x 轴相交于A 、B 两点,点A 在点B 左侧,顶点在折线M-P-N 上移动,它们的坐标分别为(1,4)M -、(3,4)P 、(3,1)N .若在抛物线移动过程中,点A 横坐标的最小值为-3,则a b c -+的最小值是( )A .-15B .-12C .-4D .-212.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( )A .平均数B .方差C .众数D .中位数 二、填空题13.若()2m 2y m 2x mx 1-=+++是关于自变量x 的二次函数,则m =______.14x 的取值范围是______.15.计算:(﹣12)2=_____. 16.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.17.不等式1102x -+>的正整数解是____________; 18.如图,点A 在双曲线2x 上,点B 在双曲线k y x=上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,且面积为3,则k=__________.三、解答题19.请你将下式化简,再求值:(x+2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1.20.解方程:252112x x x+--=3. 21.如图,在由边长为1的小正方形组成的网格图中,已知点O 及△ABC 的顶点均为网格线的交点.(1)将△ABC 绕着点B 顺时针旋转90°,得到△A 1BC 1,请在网格中画出△A 1BC 1;(2)以点O 为位似中心,将△ABC 放大为原来的三倍,得到△A'B'C',请在网格中画出△A'B'C'.22.给定关于x 的二次函数y =kx 2﹣4kx+3(k≠0),(1)当该二次函数与x 轴只有一个公共点时,求k 的值;(2)当该二次函数与x 轴有2个公共点时,设这两个公共点为A 、B ,已知AB =2,求k 的值;(3)由于k 的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y 轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.23.某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.(1)求从这五名翻译中随机挑选一名会翻译英语的概率;(2)若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.24.如图是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?25.如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠OCD =90°,点D 在第一象限,OC =6,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD的另一边DC交于点B,求过A、B两点的直线的解析式.【参考答案】***一、选择题二、填空题13.214.x315.416.AB=BC(或AC⊥BD)答案不唯一17.x=118.5三、解答题19.3x2﹣9x+4,7【解析】【分析】运用平方差公式、完全平方公式和多项式的乘法的运算法则计算,再合并同类项,然后整体代入求值.【详解】(x+2)(x﹣2)+(x﹣2)2+(x﹣4)(x﹣1),=x2﹣4+x2﹣4x+x2﹣5x+4,=3x2﹣9x+4,当x2﹣3x=1时,原式=3x2﹣9x+4,=3(x2﹣3x)+4,=3×1+4,=7.【点睛】本题考查了平方差公式,完全平方公式,多项式的乘法,熟练掌握公式和运算法则是解题的关键,注意整体代入思想.20.12 x=-【解析】【分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=3(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 21.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用旋转变换的性质得出对应点位置进而得出答案;(2)直接利用位似图形的性质进而得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1BC1,即为所求;(2)如图所示:△A'B'C',即为所求.【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.22.(1)32(2)1(3)①②③【解析】【分析】(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=32,k≠0,∴k=32;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.23.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24.(1)逐渐变短;(2)详见解析;(3)16 7【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA并延长交直线BO于点E,则线段BE即为小亮站在AB处的影子(3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可【详解】(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴1.6 1.6,4.2 1.6 AB BEOP OE x==+即∴x=5.8米当OD=6米时,设小亮的影长是y米,∴DF CD DF OD OP=+∴1.6 6 5.8 yy=+y=167(米)即小亮的影长是167米。
状元廊学校秋季班数学思想方法讲义之五年级:九年级2021-2021 年九年级中考二轮专题:解直角三角形专题【考点透视】一、锐角三角函数与解直角三角形:1.锐角三角函数的定义,经过画图找出直角三角形中边角关系;2.正确记忆 30°、 45°、 60°的三角函数值并进行计算;三角函数值求相应锐角;3.三角函数与直角三角形的相关应用.二、几何直线型:1、利用相关三角形、平行四边形、特别平行四边形〔矩形、菱形、正方形〕、梯形等的性质、判断及其相关结论进行相关计算推理;2、解决几何图形的三大变换问题。
【思想方法】1、本专题所研究的锐角三角函数,所涉及的角都是锐角,研究这样的角,可以与直角三角形直接联系起来。
利用直角三角形的边角关系求图形中的某些边或角时,都是经过数值计算,这是数形结合的一种方式。
所以在解析问题时,最好画出它的平面或截面表示图,按照图中边角关系去进行计算,便于解答、防范出错。
有些图形诚然不是直角三角形,但可添加合适的辅助线把它们切割成一些直角三角形和矩形,如等腰三角形、梯形等问题。
从而可以运用直角三角形的相关知识去解决这些图形中求边角的问题。
2、“一招取胜〞——分别图形法【优秀知识】考点 1: 相关三角函数的重要看法【例 1】(1) 以以下图正方形网格中,每个小正方形的边长都相等,点A、B、C、D 都在这些小正方形的极点上,线段AB与 CD订交于 P,那么tan∠ BPD的值为。
A DCPB(2) △ABC中,∠A、∠B是锐角,且 sin A= 5,tan B=2, AB=29cm,那么S ABC =.13变式训练:C 1. 〔泰安市〕直角三角形纸片的两直角边长分别为8E6,8,现将△ABC如图那样折叠,使点A与点B重合,6折痕为 DE ,那么tan CBE 的值是〔〕B D AA.24B .7C.7D .1 732432.如图,△ ABC,AB=AC=1,∠ A=36°,∠ ABC的均分线BD交 AC A于点 D,那么 AD的长是,cos A的值是.(结果保存根号)DBC考点 2: 相关三角函数的计算【 例2 】 已 知α是 锐 角, 且 sin( α +15°)=3 , 计 算21 18 4 cos(3.14)0tan的值。
2021年中考数学二轮专题复习《解直角三角形与相似三角形》精选练习一、选择题1.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A. B. C. D.2.在Rt△ABC中,∠C=90°,BC=1,那么AB的长为( )A.sinAB.cosAC.D.3.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.4.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC 的值为()A. B. C. D.6.一座楼梯的示意图如图,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为()(精确到0.1米,参考数据:≈1.41,≈1.73,≈2.45)A.30.6 B.32.1 C.37.9 D.39.48.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个B.2个C.3个D.4个9.生活中到处可见A黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b 的高度比值接近0.618,可以增加视觉美感,若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米10.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(﹣4,4),(2,1),则位似中心的坐标为()A.(0,3) B.(0,2.5)C.(0,2)D.(0,1.5)11.如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD.则图中相似三角形对数是( )A.1B.2C.3D.412.在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为( )A. B. C. D.二、填空题13.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin∠BAC=______.14.如图△ABC的三个顶点在网格中格点上,求sinA=_15. “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于___________16.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.17.两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是 cm2.18.如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.三、作图题19.已知△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.四、计算题20.计算:21.计算:五、解答题22.先化简,再求代数式÷(a+2﹣)的值,其中a=tan45°+2sin60°.23.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7)24.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A、B两处的距离为2米,两棵树之间的距离CE=3米,A、B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)25.如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西60°方向上有一小岛C,小岛C在观测站B的北偏西15°方向上,码头A到小岛C的距离AC为10海里.(1)填空:∠BAC= 度,∠C= 度;(2)求观测站B到AC的距离BP(结果保留根号).26.如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.(1)求证:FB2=FE•FA;(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.27.如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC 的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.参考答案1.B.2.D.3.D.4.A.5.A.6.D7.D8.答案为:C;9.答案为:A;10.答案为:C.11.答案为:C;12.答案为:D.13.答案为:.14.答案为:0.6.15.答案为:0.75.16.答案为:(﹣1,0)或(5,﹣2).17.略18.答案为:2.19.解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C2=20,A2B22=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.答案为:10.20.解:=﹣9+2﹣+9﹣=﹣9+2﹣=﹣9+2﹣=1﹣2.21.原式=3-6+2+1=022.解:原式=÷=÷=•=,当a=tan45°+2sin60°=1+时,原式==.23.解:如图所示:过点C作CD⊥AB于点D,在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10km,在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10km,则AC+BC﹣AB=20+10﹣10﹣10≈7(km),答:打通长江路后从A地道B地可少走7km的路程.24.解:25.解:(1)由题意得:∠BAC=90°﹣60°=30°,∠ABC=90°+15°=105°,∴∠C=180°﹣∠BAC﹣∠ABC=45°;故答案为:30,45;(2)∵BP⊥AC,∴∠BPA=∠BPC=90°,∵∠C=45°,∴△BCP是等腰直角三角形,∴BP=PC,∵∠BAC=30°,∴PA=BP,∵PA+PC=AC,∴BP+BP=10,解得:BP=5﹣5,答:观测站B到AC的距离BP为(5﹣5)海里.26.(1)证明:∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB,∴△FBE∽△FAB,∴∴FB2=FE•FA;(2)∵FB2=FE•FA,BF=3,EF=2∴32=2×(2+AE)∴∴,∴△ABE与△BEF的面积之比为5:4.27.。
年份题型考点题号分值难易度
2017选择题、解答
题
方位角、三角
函数
10、25(2)(3) 3+7=10
容易题、中等
题、较难题
2016选择题相似三角形判
定
15 2 中等题
2015选择题方位角9 3 容易题
命题规律纵观河北历年中考,每年都有命题,而且多与其他知识综合考查,近几年考查稍微弱一些,但感觉以后考查会侧重的,并且此专题难题较多,出题角度很广,2017年已经体现了,复习时要重视.预测2018年会延续2017
年,分值和题量不变.
解题策略
首先夯实基础,其次加强与其他知识的综合应用,今年中考单独考查相似或三角函数的时候很少,多数把它俩作为解题工具,因此要加强综合训练.
,重难点突破)
锐角三角函数的实际应用
【例1】(贵阳中考)在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基AB的高为4 m,他在C处测得塔基顶端B的仰角为30°,然后沿AC方向走5 m到达D点,又测得塔顶E的仰角为50°.(人的身高忽略不计)
(1)求A,C的距离;(结果保留根号)
(2)求塔高AE.(结果保留整数)
【解析】(1)在Rt △ABC 中,利用锐角三角函数关系可得AC =AB tan ∠ACB ,结合已知求出AC 的距离;(2)在Rt △ADE 中,易得AE =AD·tan ∠A DE ,结合已知求解,根据题目要求取近似值.
【答案】解:(1)在Rt △ABC 中,∠ACB =30°,AB =4 m .
∵tan ∠ACB =AB AC
, ∴AC =AB tan ∠ACB =4tan 30°=43(m ). 答:A ,C 的距离为4 3 m .
(2)在Rt △ADE 中,∠ADE =50°,
AD =(5+43)m .
∵tan ∠A DE =AE AD
, ∴AE =AD·tan ∠ADE =(5+43)×tan 50°≈14(m ).
答:塔高AE 约为14 m .
1.(张家界中考)如图,某建筑物AC 顶部有一旗杆AB ,且点A ,B ,C 在同一条直线上,小明在地面D 处观测旗杆顶端B 的仰角为30°,然后他正对建筑物的方向前进了20 m 到达地面的E 处,又测得旗杆顶端B 的仰角为60°,已知建筑物的高度AC =12 m ,求旗杆AB 的高度.(结果精确到0.1 m ,参考数据:3≈1.73,2≈1.41)
解:由题意得∠DBE=∠BEC-∠BDE=60°-30°=30°=∠BDE,∴BE=DE=20.
在Rt△BEC中,
BC=BE·sin60°=20×
3
2
=103(m),∴AB=BC-AC=103-12≈5.3(m).
答:旗杆AB的高度是5.3 m.
【方法指导】
解决直角三角形的实际应用问题,最重要的是建立数学模型,将其转化为数学问题,其次是牢记特殊角的三角函数值及边角关系.
相似的综合
【例2】(2017株洲中考)如图所示,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 相交于点G ,连接CF.
(1)求证:△DAE≌△DCF;
(2)求证:△ABG∽△CFG.
【解析】(1)由正方形ABCD 与等腰直角三角形DEF ,得到两对边相等,一对直角相等,利用SAS 即可得证;
(2)由第(1)问的全等三角形的对应角相等,根据等量代换得到∠BAG=∠BCF,再由对顶角相等,利用两对角对应角相等的三角形相似即可得证.
【答案】证明:(1)∵正方形ABCD ,等腰直角三角形EDF ,
∴∠ADC =∠EDF=90°,
AD =CD ,DE =DF ,
∴∠ADE +∠ADF=∠ADF+∠CDF,
∴∠ADE =∠CDF,
在△ADE 和△CDF 中,⎩⎪⎨⎪⎧DE =DF ,∠ADE =∠CDF DA =DC ,
,
∴△ADE ≌△CDF ;
(2)延长BA ,交ED 于点M.
∵△ADE ≌△CDF ,∴∠EAD =∠FCD,
即∠EAM+∠MAD=∠BCD+∠BCF.
∵∠MAD =∠BCD=90°,∴∠EAM =∠BCF.
∵∠EAM =∠BAG,∴∠BAG =∠BCF.
∵∠AGB =∠CGF,∴△ABG ∽△CFG.
2.(2017常德中考)如图,Rt △ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF⊥AD 分别交AD 于E ,交AC 于F.
(1)如图①,若BD =BA ,求证:△ABE≌△DBE;
(2)如图②,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM=2MC ;②AG 2=AF·AC.
解:(1)在Rt △ABE 和Rt △DBE 中,
∵⎩
⎪⎨⎪⎧BA =BD ,BE =BE ,∴△ABE ≌△DBE(HL ); (2)①过G 作GH∥AD 交BC 于H.
∵G 是AB 中点且GH∥AD,∴H 是BD 中点,∴BH =DH.
∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2;
∵GH ∥AD ,∴GM MC =HD DC =21,∴GM =2MC ; ②过C 作CN⊥AC 交AD 的延长线于N ,则CN∥AG.
∴△AGM ∽△NCM ,∴AG NC =GM MC
. 由①知GM =2MC ,∴2NC =AG.
∵∠BAC =∠AEB=90°, ∴∠ABF =∠C AN =90°-∠BAE,
∴△ACN ∽△BAF ,∴AF CN =AB AC
. ∵AB =2AG ,∴AF CN =2AG AC , ∴2CN ·AG =AF·AC,∴AG 2=AF·AC.
【方法指导】
首先掌握相似的性质和判定,再结合图形选择正确的判断方法,辅助线的添加是解题关键,添辅助线有一个重要原则是“构造相似三角形”.
教后反思
__________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________。