基本不等式
- 格式:ppt
- 大小:599.50 KB
- 文档页数:17
基本不等式一、 基本不等式的依据由于无论x ,y 取何值,都有()20x y -≥成立,则必有222x y xy +≥,显然当x y =时()2x y -有最小值0,于是我们得到:”成立时,“当且仅当==≥+∈∀y x xy y x R y x ,2,,22同样的,当x y ==”成立时,“当且仅当==≥+>>∀b a ab b a b a ,2,0,0,我们称之为基本不等式基本不等式的公示变形:()()210,0,20,0,22a b a b a b a b ab ++⎛⎫>>≥>>≤ ⎪⎝⎭变形变形, ※ 其中2ba +叫做a ,b 的算术平均数,ab 称作a ,b 的几何平均数二、 几何意义如右图所示:显然2a b +DE 的一半DC由于ADC ∆∽DBC,∆则2DC AC BC =⋅,即DC =.即,任意圆的半径都不小于圆内的任何一条弦长的一半三、 例题1.10,x x x>+已知求的最小值110,0,2x x x x >>+≥=因为则,则当11x x x==±时,即,而0x >, 所以当11x x x=+时,有最小值2 2.已知01x <<,求函数()1y x x =-的最大值因为01x <<,则0,10x x >->,则()211124x x y x x +-⎛⎫=-≤= ⎪⎝⎭ 即当()1x x =-时,12x =时,y 有最大值14总结:基本不等式的作用可以用来求函数的最值以及式子的范围,但基本不等式的应用需要条件注意:先要验证是否满足基本不等式的前提条件:,x y 均大于零然后,验证式子是否存在,x y xy +其中一个是固定的值,则另一个必有最值 最后,则要求出取得最值时的x ,y 的值,x ,y 的值必须满足第一个条件我们称利用基本不等式时,要满足:一正,二定,三相等,缺一不可,依次递推四、 基本不等式的常见题型1. 积时定值,和有最值例1:已知1x >,求11y x x =+-的最值 分析:显然第一个条件满足,而第二个积不是定值,不能使用,可以进行变形为1111y x x =-++-,即可求出例2:已知0x <,求1y x x=+的最值 分析:第一个条件10,0x x<<不成立,所以无法直接利用基本不等式,需要进行简单变形:()1y x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦,这时10,0x x ->->,12x x ⎛⎫-+-≥= ⎪⎝⎭ 即1[]2y x x ⎛⎫=--+-≤- ⎪⎝⎭,当且仅当1x x -=-时, 1x =±,又因为0x <, 则1x =-时,函数y 有最大值-2练习:112,33y x x x =+>-求时的最小值512,42445x y x x <=-+-求函数的最大值2313,0x x y x x++=>求时的最小值24)y x R =∈求的最小值2. 和是定值,积有最值例:当302x <<,求()32y x x =⋅-的最值 分析:第一个条件满足.而和不是定值,故需要适当变形: ()()1322322y x x x x =⋅-=⋅⋅- 这样就可以求出函数的最值了()()2112329322322228x x y x x x x +-⎛⎫=⋅-=⋅⋅-≤= ⎪⎝⎭, 当且仅当()232x x =-时,即34x =时,函数y 有最大值98练习: 104(82)x y x x <<=-当时,求的最大值22111x y x -≤≤=-,求函数的最大值33.利用条件化为1,借助1进行代换810,0,1,2x y x y x y>>+=+例:已知且求的最小值 分析: ()()811621282x yx y x y x y y x ⎛⎫+⋅=+⋅+=+++ ⎪⎝⎭,显然就可以求出最值了练习:141,,2,x y R x y x y+∈+=+已知求的最小值<2>已知0,0,a b >>a+b=2,则14y a b=+的最小值<3>若正数x ,y 满足35x y xy +=,求3x+4y 的最小值4.利用基本不等式转化成不等式求解,,3,xy x y x y R xy x y +∈=+++例:已知求,的范围练习:10,0,80,xy x y x y xy >>++-=已知求的最大值20,0,228,2x y x y xy x y >>++=+求的最小值<3>若对于任意的正数x ,231x a x x ≤++恒成立,则a 的取值范围5.扩展21,112a b a b x y a b +≤≤≤=+若都是正数,则时成立33332,,,3,,,,,3a b c R a b c abc a b c a b c R a b c a b c a b c abc a b c ++∈++≥==∈++≥==++⎛⎫≤== ⎪⎝⎭当且仅当时,等号成立当且仅当时,等号成立当且仅当时,等号成立例题:29104x y x x>=+当时,求的最小值2320(32)2x y x x <<=-当时,求的最大值22233332019,,1,1111(2)()()()24a b c abc a b c a b ca b b c a c =⎡⎤⎣⎦++≤+++++++≥全国均为正数,且证明:()6.实际应用:<1>某工厂要建造一个长方体的无盖存水池,其容积为4800立方米,深为3米,如果池底造价为每平方米150元,池壁每平方造价为120元,怎么设计水池能使总造价最低?最低造价是多少?<2>十九大提出中国的电动汽车革命早已展开,通过新能源汽车替代汽油车,中国正大力实施一项计划,某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,当生产量为x(百辆)时,需另外投入成本C(x)万元,且210100,040()10000501,40x x xC xx xx⎧+<<⎪=⎨+≥⎪⎩,由市场调研可知,每辆车的售价为5万元,且全年内生产的车辆当年能全部销售完.(1)求今年的利润()L x(万元)关于生产量x(百辆)的函数关系式(2)今年生产量为多少百辆时,该企业获得的利润最大?并求出最大利润.。
基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)判断正误(正确的打“√”,错误的打“×”)(1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)×(教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析:选C.xy ≤⎝⎛⎭⎪⎫x +y 22=⎝ ⎛⎭⎪⎫1822=81,当且仅当x =y =9时等号成立,故选C.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2解析:选D.因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x=-1时,等号成立,所以x +1x ≤-2. 若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5(教材习题改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号. 答案:25 m 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题.高考对利用基本不等式求最值的考查常有以下三个命题角度:(1)求不含等式条件的函数最值; (2)求含有等式条件的函数最值; (3)已知不等式恒成立求参数范围.[典例引领]角度一 求不含等式条件的函数最值(1)函数f (x )=xx 2+3x +1(x >0)的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)因为x >0,则f (x )=xx 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1x 时等号成立.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1. 当且仅当5-4x =15-4x,即x =1时,等号成立. 故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)15 (2)1角度二 求含有等式条件的函数最值(1)(优质试题·高考山东卷)若直线xa +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.(2)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为________. 【解析】 (1)由题设可得1a +2b =1,因为a >0,b >0,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =2+b a +4ab +2≥4+2b a ·4ab =8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a 时,等号成立. 故2a +b 的最小值为8. (2)因为x >0,y >0,所以8=x +2y +x ·2y ≤(x +2y )+⎝ ⎛⎭⎪⎫x +2y 22, 令x +2y =t ,则8≤t +t 24,即t 2+4t -32≥0, 解得t ≥4或t ≤-8,即x +2y ≥4或x +2y ≤-8(舍去),当且仅当x =2y ,即x =2,y =1时等号成立. 【答案】 (1)8 (2)4角度三 已知不等式恒成立求参数范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +axy ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2, 于是(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.[通关练习]1.(优质试题·石家庄市教学质量检测(一))已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.解析:因为直线l 经过点(2,3),所以2a +3b -ab =0, 则3a +2b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫3a +2b =5+3b a +2ab ≥5+2 6.当且仅当3b a =2ab ,即a =3+6,b =2+6时等号成立. 答案:5+2 62.(优质试题·高考天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4. 答案:43.当x ∈R 时,32x -(k +1)3x +2>0恒成立,则k 的取值范围是________.解析:由32x -(k +1)·3x +2>0,解得k +1<3x +23x . 因为3x+23x ≥22⎝⎛当且仅当3x=23x ,即x =log 32时,⎭⎪⎪⎫等号成立), 所以3x +23x 的最小值为2 2.又当x ∈R 时,3-(k +1)3+2>0恒成立,所以当x ∈R 时,k +1<⎝ ⎛⎭⎪⎫3x +23x min ,即k +1<22,即k <22-1. 答案:(-∞,22-1)利用基本不等式解决实际问题[典例引领]某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x -200=200,当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.(1)利用基本不等式求解实际问题的注意事项①根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.②设变量时一般要把求最大值或最小值的变量定义为函数. ③解应用题时,一定要注意变量的实际意义及其取值范围. ④在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2)此类问题还常与一元二次函数(如本例(2))、一元二次不等式结合命题,求解关键是构建函数与不等关系,在实际条件下解决.某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,若价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元? (2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入x4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和? 解:(1)设商品的销售价格提高a 元, 则(10-a )(5+a )≥50,解得0≤a ≤5. 所以商品的价格最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+x4+50(x >5)即可, 此时m =12x +34+50x ≥2x 2·50x +34=434,当且仅当12x =50x ,即x =10时,取“=”.故销售量至少应达到434万件,才能使技术革新后的销售收入等于原销售收入与总投入之和.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx (m >0)的单调性. 易错防范(1)使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.(2)连续使用基本不等式求最值要求每次等号成立的条件一致.1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误. 对于D ,因为ab >0, 所以b a +a b ≥2b a ·a b =2.2.(优质试题·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1, 所以1xy ≥1; 又1xy ≥M 恒成立,所以M ≤1,即M 的最大值为1.。
基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
基本不等式完整版(非常全面) 基本不等式专题辅导一、知识点总结1、基本不等式原始形式1) 若 $a,b\in R$,则 $a^2+b^2\geq 2ab$2) 若 $a,b\in R$,则 $ab\leq \frac{a^2+b^2}{2}$2、基本不等式一般形式(均值不等式)若 $a,b\in R^*$,则 $a+b\geq 2\sqrt{ab}$3、基本不等式的两个重要变形1) 若 $a,b\in R^*$,则 $\frac{a+b}{2}\geq \sqrt{ab}$2) 若 $a,b\in R^*$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4、求最值的条件:“一正,二定,三相等”5、常用结论1) 若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)2) 若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)3) 若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)4) 若 $a,b\in R$,则 $ab\leq \frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}$5) 若 $a,b\in R^*$,则 $\frac{1}{a^2+b^2}\leq\frac{1}{2ab}\leq \frac{1}{a+b}$特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6、柯西不等式1) 若 $a,b,c,d\in R$,则 $(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2$2) 若 $a_1,a_2,a_3,b_1,b_2,b_3\in R$,则$(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)\geq(a_1b_1+a_2b_2+a_3b_3)^2$3) 设 $a_1,a_2,\dots,a_n$ 与 $b_1,b_2,\dots,b_n$ 是两组实数,则有$(a_1^2+a_2^2+\dots+a_n^2)(b_1^2+b_2^2+\dots+b_n^2)\geq (a_1b_1+a_2b_2+\dots+a_nb_n)^2$二、题型分析题型一:利用基本不等式证明不等式1、设 $a,b$ 均为正数,证明不等式:$ab\geq\frac{1}{2}(a+b)^2$2、已知 $a,b,c$ 为两两不相等的实数,求证:$a^2+b^2+c^2>ab+bc+ca$3、已知 $a+b+c=1$,求证:$a^2+b^2+c^2\geq\frac{1}{3}$4、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$(1-a)(1-b)(1-c)\geq 8abc$5、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq\frac{9}{2(a+b+c)}$题型二:利用柯西不等式证明不等式1、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{(a+b+c)^2}{2(a+b+c)}$2、已知 $a,b,c\in R^+$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$3、已知 $a,b,c\in R^+$,且 $abc=1$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq a+b+c$4、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$5、已知 $a,b,c\in R^+$,求证:$\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{c^2-ca+a^2}+\frac{c^3}{a^2-ab+b^2}\geq a+b+c$题型三:求最值1、已知 $a,b$ 均为正数,且 $a+b=1$,求 $ab$ 的最大值和最小值。
基本不等式的四种形式基本不等式是数学中常用的一种关系式,它可以帮助我们解决各种问题。
本文将介绍基本不等式的四种形式,并通过具体例子进行说明。
第一种形式:a≥b这个不等式表示a大于等于b,即a可以是b或者大于b。
我们可以通过这个不等式来比较两个数的大小关系。
例如,我们要比较两个数a=5和b=3的大小关系。
根据基本不等式的第一种形式,我们可以得出结论:5大于等于3,即5≥3。
第二种形式:a≤b这个不等式表示a小于等于b,即a可以是b或者小于b。
同样地,我们可以通过这个不等式来比较两个数的大小关系。
例如,我们要比较两个数a=2和b=4的大小关系。
根据基本不等式的第二种形式,我们可以得出结论:2小于等于4,即2≤4。
第三种形式:a>b这个不等式表示a大于b,即a一定大于b。
我们可以通过这个不等式来判断两个数的大小关系。
例如,我们要比较两个数a=7和b=6的大小关系。
根据基本不等式的第三种形式,我们可以得出结论:7大于6,即7>6。
第四种形式:a<b这个不等式表示a小于b,即a一定小于b。
同样地,我们可以通过这个不等式来判断两个数的大小关系。
例如,我们要比较两个数a=1和b=8的大小关系。
根据基本不等式的第四种形式,我们可以得出结论:1小于8,即1<8。
基本不等式的四种形式可以帮助我们解决各种实际问题。
例如,在购物时,我们可以通过比较不同商品的价格来判断哪个商品更便宜。
假设商品A的价格是a,商品B的价格是b,根据基本不等式的四种形式,我们可以得出以下结论:1. 如果a≥b,则商品A的价格大于等于商品B的价格,即商品A 更贵。
2. 如果a≤b,则商品A的价格小于等于商品B的价格,即商品A 更便宜。
3. 如果a>b,则商品A的价格大于商品B的价格,即商品A更贵。
4. 如果a<b,则商品A的价格小于商品B的价格,即商品A更便宜。
通过基本不等式,我们可以更准确地比较两个数的大小关系,从而做出更合理的选择。
基本不等式一、基础知识☐基本不等式:在不等式的应用中,有一些很基本而十分重要的不等式,如平均值不等式和三角不等式等,我们将其统称为基本不等式.☐平均值不等式:两个正数的算术平均值大于等于它们的几何平均值,即对于任意的正数a 、b ,有2a b ab ,且等号当且仅当a b 时成立.证明:对于正数a 、b ,要证明定理所述之平均值不等式,只要证明2a bab ,即20a b ab.由22a b aba b.上式显然成立,且只有当ab 时,原不等式两边才相等.☐常用不等式:对于任意的正数a 、b ,有22a bab ,且等号当且仅当a b 时成立.☐三角不等式:对于任意的实数a 、b ,有a b a b ,且等号当且仅当0ab 时成立.证明:为证明a ba b ,只需证明22a ba b,即222222aab b a ab b ,也即22ab ab ,这是显然的,且等号当且仅当a 、b 同号,即0ab时成立.二、拓展知识☐基本不等式:如果a ,b ,c R ,那么3333a b c abc (当且仅当a b c 时取“”)证明:33333223333a b c abca bc a b ab abc223a b ca ba b c c ab a b c22223a b c a ab b ac bc c ab 222a b c a b c ab bc ac 22212a bc a ba cbca ,b ,cR ,222102a b c a b a cb c从而3333ab c abc☐推论:如果a ,b ,c R ,那么33a b c abc (当且仅当a b c 时取“”)☐基本不等式:1212nn a a a a a a n,*n N ,ia R ,1in .证明可用数学归纳法,二项式定理证明,这里证明省略; ☐柯西不等式:222222211221212n nn n a b a b a b a a a b b b,1,2,,i i a b R i n ,等号当且仅当120na a a 或i ib ka 时成立(k 为常数,1,2,,i n )证明:构造二次函数2221122n nf xa xb a x b a x b2222222121122122n n n n a a a xa b a b a b xb b b222120n aa a又0f x 恒成立222222211221212440n nn n a b a b a b a a a b b b即222222211221212n nn n a b a b a b a a a b b b当且仅当0i i a x b x(1,2,,i n )即1212nna a ab bb 时等号成立. ☑一个重要的不等式链:2112a b a b+≤≤≤+. ☑函数()()0,0bf x ax a b x =+>>图象及性质 (1)函数()0)(>+=b a xb ax x f 、图象大致如下图(xx x f 1)(+=)所示:(2)函数()0)(>+=b a xb ax x f 、性质:①值域:()2,ab,⎡-∞-+∞⎣;②单调递增区间:,,⎛⎫-∞+∞ ⎪ ⎪⎝⎭;单调递减区间:0,,0⎛⎡⎫ ⎪⎢ ⎪⎝⎣⎭.三、最值常见类型注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 类型一:积定和最小;重点:利用好“一正,二定,三相等”,凑积为定值; 例1、已知1->x ,求221xx 的最小值【解析】求和的最小值,去找积的定值,这里面发现2x 与21x 的积没有关系,但是能够注意到题目中有1->x ,从而01>+x ,且可以将2x 出来1x 让分母抵消,故有222221222122111xx x x x x ,当且仅当2211x x 即0x 时取等号;注意:在使用积定和最小时,第一要注意两个式子是正还是负(一正);第二要注意两个式子乘起来是不是定值,如果是定值,结束,如果不是定值要注意进行变形,凑成乘起来是定值的式子(二定);第三是要注意进行验证,是否可以取等(三取等);注意:三取等一定要关注,一个是为了验证等号,第二个是因为有的不等式是会进行多次应用基本不等式(多次放缩),如果多次应用中等号不一致,是不可以进行取等的; 例2、已知0xy ,1xy ,求yx y x -+22的最小值及相应的y x ,的值。
基本不等式基本不等式是数学中一个重要的概念。
其中,重要不等式指的是a²+b²≥2ab,当且仅当a=b时等号成立。
而基本不等式则是指a+b≥2√(ab),当且仅当a=b时等号成立。
此外,还有一条基本不等式是任意两个正数的算术平均数不小于它们的几何平均数。
在利用基本不等式求函数的最大值、最小值时,需要注意函数式中各项必须都是正数,含变数的各项的积或者必须是常数,等号成立条件必须存在。
举例来说,如果0<a<b且a+b=1,则a²+b²>2ab,a+b≥2√(ab),2ab<2(1/2-a)²,a²+b²>(1/2-a)²+(1/2-b)²,因此b 最大。
又如,如果a、b、c都是正数,则(a+b+c)(1/a+1/b+1/c)≥9,即a/b+b/a+b/c+c/b+c/a+a/c≥6,证明过程中利用了基本不等式。
例3、已知$a,b,c$为不等正实数,且$abc=1$。
求证:$a+b+c<\sqrt{a}+\sqrt{b}+\sqrt{c}$。
证明:根据柯西不等式,$(1+1+1)(a+b+c)\geq(\sqrt{a}+\sqrt{b}+\sqrt{c})^2$,即$3(a+b+c)\geq(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca})$。
因为$abc=1$,所以$2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=2\sqrt{abc}(1/\sqrt{a}+1/\sqrt {b}+1/\sqrt{c})\leq3\sqrt[3]{abc}\cdot3=9$。
所以$3(a+b+c)\geq(a+b+c+9)$,即$2(a+b+c)\geq9$,即$a+b+c\geq\frac{9}{2}$。
又因为$a,b,c$不全相等,所以$a+b+c>\frac{9}{2}$。