动力电池系统技术规范
- 格式:docx
- 大小:181.47 KB
- 文档页数:10
安徽天康特种车辆装备有限公司动力电池系统设计规范编制:审核:批准:日期:2015年8月21日发布2015年10月22日实施安徽天康特种车辆装备有限公司发布目录前言.................................................................................................................................... I I 电动汽车动力系统设计规范 . (1)1.概述 (1)2.设计原则 (1)3.参考引用标准 (1)4.术语和定义 (2)5.设计要求 (4)6.设计验证 (24)前言本规范规定山东省普天新能源汽车(山东)有限公司开发的专用车辆时的线束设计规范。
本规范由安徽天康特种车辆装备有限公司产品开发部提出。
本规范由安徽天康特种车辆装备有限公司批准。
本规范主要起草人:李劲松本规范于2015年8月首次发布。
电动汽车动力系统设计规范1.概述动力电池系统是电动汽车的重要组成部分,为电动汽车驱动提供能量来源。
由于电池系统是高电压高能量密度产品,在设计电池系统时,主要从箱体设计、电池成组设计、电池安全、以及电池管理系统设计等方面进行。
2.设计原则动力电池系统设计以满足车辆动力要求为前提,同时从电池系统自身内部结构和安全设计、电池管理等方面进行设计,主要包括以下几个部分:(1)电池箱外观尺寸:电池箱体尺寸主要根据车辆提供的电池安装空间进行设计,并且要考虑到接插件和机械连接部位的尺寸影响。
电池箱内部尺寸,主要从整体设计考虑,从电池的排布、线束的排布以及电池管理系统尺寸位置、热管理系统尺寸及位置等方面进行设计。
电池箱的外观设计主要从材质、表面防腐蚀、绝缘处理、产品标识等方面进行设计。
(2)电池性能参数:电池系统参数,比如电压平台、额定容量、额定能量、最大可持续放电电流、瞬间峰值放电电流、瞬间峰值充电电流等,在设计时要根据车辆的动力参数和要求进行匹配。
动力锂离子电池行业规范
1. 引言
动力锂离子电池作为一种重要的能源储存设备,在现代社会中得到了广泛应用。
为了推动该行业的持续发展和确保产品的质量与安全性,制定一套科学合理的行业规范是十分必要的。
2. 规范目标
本规范的目标是确保动力锂离子电池的设计、生产、销售和使用符合法律法规以及相关国家标准,保障用户的利益,促进行业的健康发展。
3. 规范内容
3.1 产品设计与生产
- 动力锂离子电池产品应符合国家相关技术规范,包括电池容量、电流放电速率、循环寿命等方面的要求。
- 生产企业应建立质量管理体系,确保生产过程严格按照质量标准进行。
3.2 产品销售与标识
- 销售企业应对动力锂离子电池的产品进行标识,明确产品规格、型号、生产企业信息等。
- 销售企业不得销售未经标识或标识不清晰的动力锂离子电池产品。
3.3 产品使用与维护
- 用户在使用动力锂离子电池时应遵循产品说明书,正确使用和存储电池,以确保安全。
- 在电池出现故障或安全问题时,用户应及时停止使用,并按照规定进行处理或报修。
4. 规范执行与监督
- 相关行政部门应加强对动力锂离子电池行业的监督检查,确保企业的生产和销售行为符合规范。
- 行业协会或组织应组织行业内部的自律行为,推动行业规范的执行。
5. 结论
动力锂离子电池行业规范的制定和执行,对于保障用户权益,推动行业发展具有重要意义。
各方应共同努力,确保行业规范的有效实施,促进动力锂离子电池行业的可持续发展。
密级:项目内部动力电池系统技术规范项目代号:文件编号:EVPT-VD1.27编写:时间:校核:时间:批准:时间:天津易鼎丰动力科技有限公司1. 文件范围本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。
2. 术语定义和及产品执行标准2.2. 术语定义2.1.1 电动汽车(electric vehicle, EV):指以车载能源为动力,由电动机驱动的汽车;2.1.2 电芯(cell):一个单一的电化学电池最小的功能单元;2.1.3 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元;2.1.4 电池组(battery pack):由一个或多个模组连接组成的单一机械总成;2.1.5 电池管理系统(battery management system, BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则;2.1.6 动力电池系统(battery system):动力电池系统是指由动力电池组、电池箱体、电池管理系统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电;2.1.7 整车控制器(vehicle controller unit):检测控制电动汽车系统电路的控制器;2.1.8 高电压(High Voltage, HV):特指电动汽车200VDC以上高压系统;2.1.9 低电压(Low Voltage, LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统;2.1.10 荷电状态(state-of-charge, SOC):电池放电后剩余容量与全荷电容量的百分比;2.1.11 寿命初始(Beginning Of Life, BOL):指动力电池系统刚交付使用的状态;2.1.12 寿命终止(End Of Life, EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值功率低于初始峰值功率的85%时,视为寿命终止;2.1.13 电磁兼容性(Electro-Magnetic Compatibility, EMC):在同一电子环境中,两种或多种电子设备能互不干扰进行正常工作的能力;2.1.14 高低压互锁(High Voltage Inter-Lock, HVIL):特指低压断电时,通过低压信号控制能够同时将高压回路切断;2.1.15 CAN(Controller Area Network):控制器局域网;2.1.16 DFMEA(Failure Mode and Effects Analysis):设计故障模式及失效分析;2.1.17 MTBF(Mean Time Between Failure):平均无故障时间;2.1.18 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体电压达到规定电压值,以恒定电压充电至电流小于0.05C(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah;2.1.19 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高单体电压达到规定电压值,以恒定电压充电至电流小于0.05CA时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到;2.1.20 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。
电池及管理系统设计技术规范编制:校对:审核:批准:有限公司2015年9月目录前言 (3)一、锂离子电池选型 (4)1、范围 (4)2、规范性引用文件 (4)3、术语和定义 (4)4、符号 (4)5、动力蓄电池循环寿命要求 (5)6、动力蓄电池安全要求 (5)7、动力蓄电池电性能要求 (6)8、电池组匹配 (8)9、电池组使用其他注意事项 (9)二、电池管理系统选型 (10)1、术语定义 (10)2、要求 (10)3、试验方法 (12)4、标志 (13)前言综述电动车的的电池就好比汽车油箱里的汽油。
它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。
电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。
高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。
动力电池容量和正极材料的选择电池容量的确定,是根据车型电机的功率、运行时的额定电压、电流。
选择出电池包的电压、串并联的形式。
由电机额定的电压可以选择出需要串联电池的个数,由电机运行时的额定电流可以选择出需要并联电池的个数。
具体计算如下:由整车设计的匹配参数,确定好电机的功率和扭矩后,就可以计算出,动力电池包的串并联电池的数目,串联电池的电压U等于电机额定电压,就可推算出串联的电池个数N串=U/3.7(对于三元锂电的锂电池),对于最少并联的电池个数N并=电机运行工况的平均电流/单元电池的容量*续航里程/工况的平均时速。
电池的选择,则要考虑电池正极材料的类型,总的原则是12米以上的客车主要以磷酸铁锂电池为主,6米小型客车和乘用车的主要是三元锂电池为主。
动力电池技术的国际标准与规范随着全球能源转型和汽车产业的快速发展,动力电池作为电动汽车的核心组件之一,其技术标准与规范的制定和实施变得至关重要。
本文将对动力电池技术的国际标准和规范进行探讨,以期为相关行业提供参考和借鉴。
一、动力电池技术的国际标准1. ISO/IEC 62660系列标准ISO/IEC 62660系列标准是国际上最重要的动力电池标准之一。
该系列标准主要规定了动力电池的性能测试方法、耐久性能要求、安全性能要求等内容,为动力电池的设计、研发、制造和使用提供了一致的技术规范。
2. UN R100UN R100是联合国制定的动力电池国际标准,适用于电动汽车和混合动力汽车的高压动力电池系统。
该标准对动力电池的安全性能、机械强度、电气安全性和安全管理等方面进行了详细规定,确保了动力电池的安全可靠性。
3. GB/T 31485-2015GB/T 31485-2015是中国制定的动力电池技术标准,是中国汽车工业领域的动力电池技术标准,与国际标准相互衔接。
该标准细化了电池的性能指标、测试方法和试验条件,有力地推动了我国动力电池行业的规范化和标准化发展。
二、动力电池技术的国际规范1. ISO/IEC 29167系列规范ISO/IEC 29167系列规范是国际电工委员会和国际标准化组织联合制定的,主要规范了动力电池与车辆之间的通信标准。
该系列规范确保了动力电池在不同车辆之间的互操作性和通信的安全性,为电动汽车的发展提供了技术保障。
2. SAE J2929SAE J2929是美国汽车工程师协会制定的动力电池规范,详细规定了动力电池的构造、性能和测试方法。
该规范对动力电池的设计、制造、测试和使用提供了指导,为动力电池的研发和市场应用奠定了基础。
3. GB/T 31467.3-2015GB/T 31467.3-2015是中国制定的动力电池规范之一,主要规定了动力电池的储存、运输和安全要求。
该规范要求电池制造商和使用者制定和执行相应的管理制度和操作规程,确保动力电池的安全运输和存储。
电动汽车动力电池系统国标最详解读来源:第一电动网发布时间:2015-08-28 09:56 设置字体:大中小关注度:4791 次分享到:摘要:国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等。
【高工锂电综合报道】国标针对动力电池系统,建立了常规性能和功能要求--容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求--操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。
一、构建标准体系电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。
仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。
随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。
新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。
新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。
新版国标则完整的围绕电能和化学能的防护做了严格的规定,并明确了测试规范,形成了较为完整的体系,从这方面来讲,产品安全设计与国标的检验要求,殊途同归。
本文将系统的论述各项标准所规定的内容,对比新标准与旧标准的差异等,希望能够为动力电池企业或整车企业的同仁,在标准的理解和运用方面提供一些帮助。
《汽车动力电池行业规范条件》第一章总则第一条为加强汽车动力电池行业管理,规范企业行为,保障产品安全,提高动力电池的性能和可靠性,特制定本《汽车动力电池行业规范条件》(以下简称《规范条件》)。
第二条本《规范条件》适用于从事汽车动力电池生产、销售、使用和回收利用等活动的企事业单位。
第三条汽车动力电池是用于提供电动汽车动力的电池系统,包括电池芯、模块、电池管理系统等组成部分。
第四条汽车动力电池行业应坚持“安全第一、品质第一、环保第一、创新第一”的原则,不断提高产品质量和技术水平,促进行业健康可持续发展。
第五条国家将建立完善的汽车动力电池行业标准体系,提高产品标准的可比性和适用性。
第二章产品要求第六条汽车动力电池产品应符合国家相关标准和技术规范,并取得相应的产品认证。
第七条汽车动力电池产品应具备以下基本要求:(一)安全性能稳定可靠,能够经受各种极端环境和工作条件的考验;(二)多充电倍率,具备快速充电和高速放电能力;(三)循环寿命长,使用寿命能满足市场需求;(四)能适应不同型号和不同品牌的电动汽车;(五)具备电池状态监测和故障预警功能;(六)轻量化设计,具有较高的能源密度;(七)具备适应电网互联的能力。
第八条汽车动力电池产品的设计、制造和测试应符合相关技术规范和国家标准,确保产品质量和安全可靠性。
第三章生产要求第九条汽车动力电池生产企业应具备以下基本条件:(一)具备完善的质量保证体系,建立健全的质量管理制度;(二)拥有独立的研发能力和技术实力,能够不断推进产品创新和技术升级;(三)拥有先进的生产设备和检测设备,确保产品质量和安全;(四)建立完善的生产控制和过程管理体系,确保生产过程的稳定性和可控性;(五)建立完善的工艺文件和作业指导书,确保产品的一致性和可追溯性;(六)培养和吸引高素质的技术人才,提高企业的创新能力。
第十条汽车动力电池生产企业应建立完善的产品追溯体系,确保产品生命周期内的全程可追溯。
第十一条汽车动力电池生产企业应建立有效的质量控制和质量管理体系,进行全面的自检、互检和抽检,确保产品质量稳定可靠。
Q/DAGXXXX企业标准Q/DAG JS001-2020动力电池箱体设计规范2020-XX-XX发布 2020-XX-XX实施XXXX公司发布Q/DAG JS001-2020前言本标准按照GB/T 1.1-2009给出的规则起草。
本标准由XXXX有限公司XXXX部门提出。
本标准由XXXX有限公司XXXX部门起草。
本标准主要起草人:XXX本标准于2020年X月X日首次发布。
Q/DAG JS001-2020动力电池箱体设计规范1范围本标准规定了动力电池系统中电池箱体设计时所需注意的安全要求、使用要求、规格尺寸、安装、储存及运输等通用要求。
本标准适用于纯电动汽车动力电池包的箱体部分。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本标准。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。
GB/T 19595-2004 电动汽车术语GB 2894-2008 安全标志及其使用导则GB 4208-1993 外壳防护等级(IP代码)GB/T 18384.1 2015 电动汽车安全要求第1部分:车载可充电储能装置GB/T 18384.2 2015 电动汽车安全要求第2部分:操作安全和故障防护GB/T 18384.3 2015 电动汽车安全要求第3部分:人员触电防护GB/T 20234-2015 电动汽车传导充电用插头/插座/车辆耦合器和车辆插孔通用要求GB/T 31467.3-2015 电动汽车用锂离子动力蓄电池包和系统_第3部分:安全性要求与测试方法QC/T 413-2002 汽车电器设备基本技术条件GB/T 2423.5 电工电子产品环境试验第2部分:试验方法试验Ea和导则: 冲击GB/T 2423.10 电工电子产品环境试验第2部分:试验方法试验 Fc:振动(正弦) GB/T 2423.17 电工电子产品环境试验第2部分:试验方法试验Ka:盐雾GB 6388 运输包装收发货标志GB/T 13306 标牌GB 50169-2006 电气装置安装工程接地装置施工及验收规范QC/T 625-1999 汽车用涂镀层和化学处理层QC/T 625 汽车用涂镀层和化学处理层3术语和定义GB/T 19596中界定的术语和定义适用于本标准。
bms相关政策BMS(电池管理系统)是一种用于监测、控制、保护和维护电池性能的系统,广泛应用于电动汽车、太阳能储能系统等领域。
BMS的相关政策主要涉及到BMS的标准与规范、技术要求、安全性能等方面,以确保电池的安全和性能符合相关要求。
1. BMS标准与规范BMS的标准与规范是保障电池性能和安全性的基础,各国和地区都制定了相应的标准和规范。
例如,在中国,国家质量监督检验检疫总局颁布了《动力蓄电池系统用电池管理系统技术要求》(GB/T 31485-2015),其中明确了BMS的功能要求、通信接口标准、安全控制策略等内容,并对BMS的测试和验证方法进行了规定。
2. 技术要求BMS的技术要求通常包括功能性、可靠性和兼容性等方面。
例如,BMS需要具备电池电压、电流和温度的实时监测能力,同时能够及时响应异常情况并采取相应的控制措施。
此外,BMS还应具备兼容不同型号电池的能力,以适应不同应用场景的需求。
3. 安全性能BMS在保障电池安全方面起着至关重要的作用。
为了确保BMS的安全性能,政策可以规定BMS要具备过压保护、欠压保护、过流保护、过温保护等功能。
例如,BMS应能及时监测和控制电池的电压,当电压超过设定阈值时应立即切断电流以避免过充,当电压低于设定阈值时应立即切断电流以避免过放。
此外,BMS还应具备温度监测和控制功能,以防止电池过热引发安全事故。
4. 充放电管理BMS还需要管理电池的充放电过程,以保证电池性能和寿命。
政策可以对BMS的充放电管理功能进行规定。
例如,充电管理方面,BMS应能根据电池性能和工作状态实施恰当的充电策略,包括恒流充电、恒压充电和浮充充电等。
放电管理方面,BMS应能根据负载需求对电池进行合理放电,防止电池过度放电影响寿命。
5. 系统可靠性和维护BMS的可靠性是保证电池系统稳定运行的关键因素之一。
政策可以规定BMS的可靠性要求,包括硬件可靠性和软件可靠性。
此外,政策还可以要求BMS具备故障诊断和预报功能,能够及时报警并提供故障排除的方法,以确保系统的稳定性和可维护性。
动力电池国家标准动力电池是电动汽车的重要组成部分,其性能和安全标准直接关系到电动汽车的使用效果和用户的安全。
为了规范动力电池的生产和应用,保障电动汽车的安全性能,我国制定了一系列的国家标准,对动力电池的参数、测试方法、安全要求等进行了详细规定。
首先,国家标准对动力电池的参数进行了明确规定。
包括电池的额定容量、额定电压、充电电压、放电电压、工作温度范围等。
这些参数的规定,有利于生产企业在生产过程中进行技术设计和工艺控制,确保动力电池的性能稳定和可靠性。
其次,国家标准对动力电池的测试方法进行了详细规定。
包括电池的静态性能测试、动态性能测试、循环寿命测试、安全性能测试等。
这些测试方法的规定,有利于监督检测机构对动力电池进行全面的性能评估,确保电池的质量符合国家标准的要求。
国家标准还对动力电池的安全要求进行了严格规定。
包括电池的过充电保护、过放电保护、短路保护、过温保护等。
这些安全要求的规定,有利于电动汽车制造企业在设计和生产过程中,加强对动力电池的安全性能控制,确保电池在使用过程中不会发生安全事故。
总的来说,国家标准的制定对动力电池的生产和应用起到了重要的指导作用。
通过严格的参数规定、测试方法规定和安全要求规定,保障了动力电池的质量和安全性能,为电动汽车的推广和应用提供了可靠的保障。
此外,国家标准的不断修订和完善,也推动了我国动力电池产业的发展。
生产企业在满足国家标准的基础上,不断提高产品的性能和质量,加强技术创新和研发能力,提升了我国动力电池产业的竞争力和市场地位。
总之,国家标准对动力电池的规范化和标准化,对于推动电动汽车产业的健康发展和提升我国动力电池产业的竞争力具有重要意义。
希望未来国家标准能够继续完善,为动力电池产业的可持续发展提供更加有力的支持。
1 主题内容与适用范围本标准规定了XXX电动车用三元体系动力锂离子电池组的术语、代号、技术要求、试验方法、检验规则,以及包装、运输和贮存。
本标准适用于XXX电动车用三元体系动力锂离子电池组(以下简称电池组)。
2 引用标准GB/T 18287-2013 移动电话用锂离子蓄电池及蓄电池组总规范;GB/Z 183331-2001 电动道路车辆用锂离子蓄电池GB/Z 18333.1-2001 电动道路车辆用锂离子电池组GB/T 4942.2-93 低压电器外壳防护等级QC/T 743-2006 电动汽车用锂离子蓄电池;3 术语、代号3.1 额定容量生产厂标称的电池组容量。
指电池组在环境温度为(20±5)℃条件下,电池组充满电后,表示,单位为Ah(安时)。
以10h率放电至终止电压时所提供的电量,用C23.2 标称电压用来标明电池组电压的近似值,为3.6*nV,n为电池组中单体电池串联的数目(下同)。
3.3 充电限制电压对电池组充电时的电压限制值,为4.2*nV。
3.4 标准充电A恒流充电,当电池组两端的电压达到指电池组在环境温度为(20±5)℃条件下以0.2C2充电限制电压时,改为恒压充电,直到充电电流降至0.01C时停止充电。
3.5 终止电压在规定条件下,电池组放电终止的电压值,为2.9*nV。
3.6 荷电保持能力在规定条件下,标准充电的电池组开路贮存后的容量保持性能。
3.7 容量恢复能力电池组在一定条件下,贮存一定时间后再进行标准充电,其后放电容量与额定容量之比。
3.8 爆炸电池组的外壳猛烈破开且主要成分抛射出来。
3.9 燃烧电池组冒烟并伴有火焰。
3.10 泄漏电池组中可见的液体电解质漏出。
4 技术要求4.1 使用环境充电温度:0℃~45℃;放电温度:-20℃~55℃;相对湿度:≤93%RH;大气压力:86kPa~106kPa.4.2 外观电池组表面应清洁、无锈蚀、无划痕、无变形及机械损伤,无漏液现象,电池组表面的标志应符合第7章要求。
动力电池标准动力电池是电动汽车的核心部件之一,其性能和安全性直接关系到电动汽车的使用体验和用户安全。
为了规范动力电池的生产和使用,各国都制定了相应的动力电池标准。
本文将介绍动力电池标准的相关内容,以便读者对动力电池标准有一个全面的了解。
首先,动力电池标准主要包括对动力电池的性能、安全性、生产工艺和环境保护等方面的要求。
其中,动力电池的性能指标包括能量密度、循环寿命、充放电速率等;安全性要求主要包括防火防爆、热失控、过充过放等方面;生产工艺要求包括原材料选择、生产工艺流程、工艺控制等;环境保护要求主要包括动力电池的回收利用和废弃物处理等。
其次,动力电池标准的制定和执行对于动力电池行业的发展至关重要。
通过制定统一的标准,可以提高动力电池的质量和安全性,降低生产成本,增强产品竞争力,促进行业健康发展。
同时,标准的执行也需要相关部门的监督和检验,确保动力电池产品符合标准要求,保障用户的权益和安全。
再次,动力电池标准的国际化趋势也日益明显。
随着电动汽车产业的快速发展,各国对动力电池标准的要求也在逐渐趋同。
国际标准化组织(ISO)和国际电工委员会(IEC)等国际组织也在推动动力电池标准的国际化进程,以促进全球动力电池行业的合作和发展。
最后,动力电池标准的不断更新和完善是一个持续的过程。
随着科技的进步和市场需求的变化,动力电池的性能和安全性要求也在不断提高。
因此,动力电池标准的制定和修订需要与时俱进,吸收最新的科研成果和行业经验,以确保动力电池的质量和安全性始终处于领先水平。
总之,动力电池标准是动力电池行业发展的基石,对于提高动力电池产品的质量和安全性,促进行业健康发展,推动电动汽车产业的发展具有重要意义。
希望各国能够加强合作,共同制定和执行动力电池标准,为电动汽车行业的可持续发展做出贡献。
新能源动力电池热安全技术规范管理制度一、技术规范1.材料选择:选择具有较低热传导率、高温稳定性和良好隔热性能的材料作为电池的主要组成材料;2.散热系统设计:合理设计电池散热系统,采用散热片、散热风扇等设备,以提高系统的散热效果;3.温度监测:在电池系统中设置温度传感器,实时监测电池的温度,当温度超过设定值时,及时采取应对措施;4.过热保护:设置过热保护装置,当电池温度超过安全范围时,自动切断电源供应,以防止进一步的危险;5.安全阀装置:电池系统中设置安全阀装置,当电池内部压力超过安全范围时,自动释放压力,以保证电池的安全运行;6.整车安全防护:在整车设计中,加入电池散热系统、温度探测器等设备,确保电池的热安全;7.着火和爆炸防护:采用阻燃材料,在电池设计中加入阻燃装置,以防止电池发生着火和爆炸等危险情况。
二、管理制度1.质量管理制度:建立一套完善的质量管理制度,包括质量标准、质量控制、质量检验等环节,以确保电池的质量;2.安全生产管理制度:制定安全生产管理制度,包括安全操作规程、事故应急预案、安全培训等内容,保障生产过程的安全;3.设备检修维护制度:建立设备检修维护制度,定期对电池系统、散热设备等进行检查和维护,确保设备的正常运行;4.技术改进和创新制度:建立技术改进和创新制度,鼓励技术人员对新能源动力电池热安全技术进行研究和创新,提高系统的热安全性;5.事故报告和分析制度:建立事故报告和分析制度,对发生的电池热安全事故进行及时的报告和分析,总结事故原因,并采取相应的措施,以防止事故再次发生;6.监督检查制度:建立监督检查制度,定期对电池热安全管理情况进行检查,发现问题及时纠正,并对相关责任人进行追究;7.安全培训和教育制度:建立安全培训和教育制度,对从业人员进行热安全知识培训和技能培训,提高其热安全意识和应急处理能力。
总之,新能源动力电池热安全技术规范管理制度旨在确保新能源动力电池在使用过程中能够保持热安全,并通过技术规范和管理制度的落实,保障使用人员和财产的安全。
密级:项目内部动力电池系统技术规范项目代号:文件编号:编写:时间:校核:时间:批准:时间:天津易鼎丰动力科技有限公司1.文件范围本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。
2.术语定义和及产品执行标准.术语定义电动汽车(electricvehicle,EV):指以车载能源为动力,由电动机驱动的汽车;电芯(cell):一个单一的电化学电池最小的功能单元;模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元;电池组(batterypack):由一个或多个模组连接组成的单一机械总成;电池管理系统(batterymanagementsystem,BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则;动力电池系统(batterysystem):动力电池系统是指由动力电池组、电池箱体、电池管理系统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电;整车控制器(vehiclecontrollerunit):检测控制电动汽车系统电路的控制器;高电压(HighVoltage,HV):特指电动汽车200VDC以上高压系统;低电压(LowVoltage,LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统;荷电状态(state-of-charge,SOC):电池放电后剩余容量与全荷电容量的百分比;寿命初始(BeginningOfLife,BOL):指动力电池系统刚交付使用的状态;寿命终止(EndOfLife,EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值功率低于初始峰值功率的85%时,视为寿命终止;电磁兼容性(Electro-MagneticCompatibility,EMC):在同一电子环境中,两种或多种电子设备能互不干扰进行正常工作的能力;高低压互锁(HighVoltageInter-Lock,HVIL):特指低压断电时,通过低压信号控制能够同时将高压回路切断;CAN(ControllerAreaNetwork):控制器局域网;DFMEA(FailureModeandEffectsAnalysis):设计故障模式及失效分析;MTBF(MeanTimeBetweenFailure):平均无故障时间;额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体电压达到规定电压值,以恒定电压充电至电流小于(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah;额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高单体电压达到规定电压值,以恒定电压充电至电流小于时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到;可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。
额定电压:额定能量除以额定容量,标定为额定电压;峰值功率:本项目峰值功率标定为XXkW。
产品执行标准表1.产品执行标准备注:未经特殊说明,本规范中涉及到的术语定义、检测方法、判断标准等都以上述标准为准。
3.功能描述及部件要求动力电池系统描述动力电池系统最基本的功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电动汽车提供高压直流电。
电芯采用串、并联方式组成电池组,电池组放置在一个或多个密封并且屏蔽的箱体里面,一个或多个箱体使用可靠的接插件进行连接。
使用电池管理系统对电池组进行综合管理,实时采集各电芯的电压值、各温度传感器的温度值、电池组的总电压值和总电流值,电池组与箱体的绝缘电阻值等数据,并根据系统中设定的阀值判定电池组工作是否正常。
根据需要,动力电池系统中可含有加热装置以保障低温充、放电能够安全进行;可含有冷却装置以保障温度过高时能够降温;含有绝缘电阻监测系统以检测电池组与箱体、车体等之间的绝缘状况;含有电芯均衡装置,在电池组充、放电及停车时对电芯进行均衡,以保障一致性;含有高压保护系统以保障高压使用安全,电池管理系统能够根据设定的阀值情况自动开启各项辅助单元。
电池管理系统使用CAN与整车控制器及车载充电机进行通讯,根据要求上报动力电池系统的状态,接收充电或者整车控制器提出的请求。
为满足便利维修,动力电池系统设有维修开关,通过维修开关能够方便断开动力电池组的高压回路,更换动力电池系统中的熔断器等易损件;动力电池系统为汽车零部件,因此要求动力电池系统采用的各个部件为汽车级。
动力电池系统部件要求为满足功能要求,每套动力电池系统应配有以下部件,详见表2:表2.动力电池系统主要配件参数表4.动力电池系统要求电性能能量要求能量密度:≥100Wh/kg;额定容量(起始/寿命终止):(25℃,1/3C)额定能量(起始/寿命终止):(25℃,1/3C)可用能量范围(起始/寿命终止):5%~95%SOC;可用能量(起始/寿命终止):≥(25℃,1/3C)环境温度-15℃可用能量(起始/寿命终止):不低于正常条件下可用能量的80%;功率要求额定功率(起始和寿命终止):≥40kW/40kW(10-100%SOC,-5℃to55℃);峰值功率(起始):≥70kW(详细见表7)峰值功率(寿命终止):≥60kW(不低于要求的起始峰值功率的85%);SOC≥30%时,要求-25℃时动力电池系统输出功率不小于7kW;充电性能应符合GB/电动车辆传导充电系统一般要求车载充电机模式下充电温度与充电时间要求见表5:地面充电机模式下充电温度与充电时间要求见表5:行车过程中制动能量回收充电要求见附件2《动力电池系统BMS控制策略求》放电性能额定放电功率:40kw(≥10%SOC,10~55℃);峰值放电功率要求:动力电池系统每次峰值放电持续时间为:SOC<30%时,放电持续时间不小于30S;SOC≧30%时,放电持续时间不小于120S。
系统在不同温度和不同SOC条件下,允许的峰值放电功率如表6所示:表6峰值放电功率矩阵表储存性能要求月自放电:≤4%(常温常压);荷电保持与容量恢复性能:按QC/T743-2012中检测常温储存28天,其容量恢复应不低于额定容量的96%。
高温50℃自放电:按照北京市准入标准,满电存放7天,动力电池包荷电容量保持不低于实际容量85%.安全性能维修断电:确保动力电池系统维修时断电,设置于与总正端口电压为180V±20V区域;停车断电:低压控制的总正、总负端口高压继电器各不少于1套;高低压互锁:将高压接插件、低压接插件、维修开关和车载充电机等器件用低压12V串联互锁,当某一低压器件断开时,即时断开高压;耐压要求:要求满足GB/标准耐压试验Ⅰ类设备基本绝缘要求;绝缘性能:动力电池系统正/负极对车体绝缘电阻大于500Ω/V,参照GB/标准执行;隔离要求:动力电池系统与车体物理隔离;短路保护:具有电池系统短路断电功能;电骚扰:满足15KV电击要求,测试方法见GB/T19951-2005关于台架和整车状态下电子模块对静电放电产生的电骚扰;阻燃材料:动力电池系统内部使用的连接材料、绝缘材料、密封材料、屏蔽材料及减震材料等都必须使用有阻燃效果的材料;安全性执行标准:测试方法见QC/T743-2012及863电动汽车重大专项关于EV用能量型锂电池性能测试规范。
可靠性使用环境温度及湿度:温度-20℃~+43℃,湿度5%~95±2%;贮存环境温度及湿度:温度-30℃~+55℃,湿度5%~95±2%;冲击试验:试验方法详见表7,试验完毕后电池箱体及其焊点、安装点不得有开裂、褶皱等塑性变形。
表7.电池箱体冲击试验表振动:要求满足QC/T413-2002中产品耐振动性能,“表2其它部位”振动要求;外壳防护等级:满足GB4208-2008外壳防护等级IP67DH要求;涉水:不少于308mm,测试方法详见GB/模拟涉水要求,试验结果要求电池系统不进水,不报绝缘故障,满足相关地方准入测试要求;质心:要求电池系统质量左右均布,质心在电池系统中心线左右尺寸3%范围内,并且乙方需提交电池系统总质量、质心坐标、转动惯量的报告;连接可靠性要求:采用标准件模块化,并具有物理防松措施。
动力电池系统工作时,若连接可靠性低于阀值则通过CAN总线上报连接故障,连接可靠性的阀值待试验数据多次验证之后确定;系统可靠性:在电池系统寿命期内,按乙方提供的《产品说明书》进行周期性维护保养,首次故障里程≥5000km,平均故障间隔时间/里程≥5个月或5000km;故障定义参照GB/T12678汽车可靠性行驶试验方法,包括过电流、绝缘等级太低、温度不均衡、单体电压不均衡、温度过高、绝缘等级过低、BMS内部通讯故障、动力电池系统高压母线直流电阻异常及其它硬件故障;耐低温:试验方法参考QC/T413-2002中产品耐低温性能并出具检验报告;耐高温:试验方法参考QC/T413-2002中产品耐高温性能并出具检验报告;耐温度变化:试验方法参考QC/T413-2002中产品耐温度变化性能并出具检验报告;耐交变湿热要求:试验方法参考QC/T413-2002中产品耐温度、湿度循环变化性能并出具检验报告。
寿命要求日历寿命:在贮存环境温度及湿度范围内对私人客户10年,对出租车6年;里程寿命:使用环境温度及湿度范围内对私人用户20万公里,对出租车用于60万公里(依据标准GB/T18386-2001电动汽车能量消耗和续驶里程试验方法),日历寿命和里程寿命以先到者为限;维修保养:维护保养间隔为5000km/5个月;5.电芯基本要求正极材料:三元材料/C额定电压:(25℃,1/3C)额定容量:(25℃,1/3C)放电容量:参考QC/T743-2012标准,见表8内阻:同一电池组内的电芯内阻差不超过Ω;月自放电:≤2%(常温常压)输出比功率:≥900Wh/kg;重量比能量:≥165Wh/kg体积比能量:≥360Wh/L;循环寿命:≥3000次,循环寿命测量方法按照QC/T743-2012标准规定执行,电池容量小于额定容量的80%终止试验;温升:3C连续放电120S.,温升≤10℃;1C连续放电30min,温升≤15℃。