2, 是二重特征根
例1 求方程 y 5 y 4 y ( x 1)e3x 的通解. m 1
解: 特征方程 r2 5r 4 0, r1 1,r2 4, 3
对应齐次方程通解 Y c1e x c2e4x ,
3不 是特征根,设 y* ( Ax B)e3x ,
代入方程, 得:
B 1 , A 0, 2
y2*
1 2
x sin
x,
原方程有一个特解: y*
y1*
y2*
1ex 2
1 2
x sin x,
原方程的通解为
y
c1
cos
x
c2
sin
x
1 2
e
x
1 2
x
sin
x.
三、小结与教学要求:
◆掌握 y py qy f ( x) 以下两种形式的求解方法:
解 特征方程为 r2 r 0, r1 0,r2 1, m 1, n 0
wi i 不是特征根,
Hale Waihona Puke 可设 y* (ax b)cos x (cx d )sin x,
代入原方程, 得:
(2c ax b cx a d )cos x
(c ax b 2a d cx)sin x 4sin x 7xcos x,
iw 1 i 不是特征根,
可设y* e x[(ax b)cos x (cx d )sin x],
代入原方程, 整理得:
cos x[(ax b) 3a 3(cx d ) 2c]
sin x[(cx d ) 2a 3c 3(ax b)] xsin x, a 3c 0, b 3a 3d 2c 0,
x(1 2
x
1)e2 x
.