2.LF398A 采样保持器
- 格式:pdf
- 大小:572.28 KB
- 文档页数:14
采样保持器各IC型号序号IC型号描述1ad1154Low Cost, 16-Bit Accurate Sample-and-Hold Amplifier 2ad1154ad$StartFalse3ad1154aw Sample/Track-and-Hold Amplifier4ad1154bd$StartFalse5ad1154bw Sample/Track-and-Hold Amplifier6ad386bd$StartFalse7ad386td Sample/Track-and-Hold Amplifier8ad386td/883b$StartFalse9ad582kd Sample/Track-and-Hold Amplifier10ad582kh$StartFalse11ad582sd Sample/Track-and-Hold Amplifier12ad582sd/883b$StartFalse13ad582sh Sample/Track-and-Hold Amplifier14ad582sh/883b$StartFalse15ad583kd Sample/Track-and-Hold Amplifier16ad585achips$StartFalse17ad585aq/+Sample/Track-and-Hold Amplifier18ad585schips$StartFalse19ad585se/883b Sample/Track-and-Hold Amplifier20ad585sq/883b$StartFalse21ad681aq Sample/Track-and-Hold Amplifier22ad681sq$StartFalse23ad682an Sample/Track-and-Hold Amplifier24ad682jn$StartFalse25ad682sq Sample/Track-and-Hold Amplifier26ad683aq$StartFalse27ad683sq Sample/Track-and-Hold Amplifier28ad684sq/883b$StartFalse29ad783an Sample/Track-and-Hold Amplifier30ad783jn$StartFalse31ad783sq Sample/Track-and-Hold Amplifier32ad783sq/883b$StartFalse33ad9100Ultrahigh Speed Monolithic Track-and-Hold 34ad9100*$StartFalse35ad9100ad Ultrahigh Speed Monolithic Track-and-Hold 36ad9100jd$StartFalse37ad9100sd Ultrahigh Speed Monolithic Track-and-Hold 38ad9100se/883b$StartFalse39ad9101125 MSPS Monolithic Sampling Amplifier40ad9101ae$StartFalse41ad9101ar125 MSPS Monolithic Sampling Amplifier 42ad9101se$StartFalse43adh-050Sample/Track-and-Hold Amplifier44adh-050-883b$StartFalse45adh-051Sample/Track-and-Hold Amplifier46adh-051-883b$StartFalse47ah20016Sample/Track-and-Hold Amplifier48ah201-1$StartFalse49ah201-2Sample/Track-and-Hold Amplifier50al1210ar$StartFalse51al1210-die Sample/Track-and-Hold Amplifier52al1210es$StartFalse53al1210jr Sample/Track-and-Hold Amplifier54al1210se$StartFalse55al1210sj Sample/Track-and-Hold Amplifier56cds-1401mc$StartFalse57cds-1401mm Sample/Track-and-Hold Amplifier59cs3101-kd Sample/Track-and-Hold Amplifier60cs3101-td$StartFalse61cs3112-bd1Sample/Track-and-Hold Amplifier62cs3112-kd1$StartFalse63cs3112-kd2Sample/Track-and-Hold Amplifier64cs3112-td1$StartFalse65cs31412-bc1Sample/Track-and-Hold Amplifier66cs31412-bd$StartFalse67cs31412-kc1Sample/Track-and-Hold Amplifier68cs31412-kc2$StartFalse69cs31412-kd Sample/Track-and-Hold Amplifier70cs31412-tc1$StartFalse71cs31412-td Sample/Track-and-Hold Amplifier72dgl-13-1$StartFalse73dgl-13-1-883b Sample/Track-and-Hold Amplifier74dgl-13-3$StartFalse75dgl-13-3-883b Sample/Track-and-Hold Amplifier76ha1-2420-2$StartFalse77ha1-2425-5 3.2レs Sample and Hold Amplifiers78ha1-5320-2$StartFalse79ha1-5320-5 1 Microsecond Precision Sample and Hold Amplifier 80ha1-5330-2$StartFalse81ha1-5330-5650ns Precision Sample and Hold Amplifier82ha-2420$StartFalse83ha-2425 3.2レs Sample and Hold Amplifiers84ha3-2425-5$StartFalse85ha3-5320-5 1 Microsecond Precision Sample and Hold Amplifier 86ha3-5330-5$StartFalse87ha4p2425-5 3.2レs Sample and Hold Amplifiers89ha-5330650ns Precision Sample and Hold Amplifier90ha9p2425-5$StartFalse91ha9p5320-5 1 Microsecond Precision Sample and Hold Amplifier 92ha9p5320-9$StartFalse93hs346b Sample/Track-and-Hold Amplifier94hs346c$StartFalse95hs9704b Sample/Track-and-Hold Amplifier96hs9704c$StartFalse97hs9705b Sample/Track-and-Hold Amplifier98hs9705c$StartFalse99hs9714k Sample/Track-and-Hold Amplifier100hs9714tb$StartFalse101hs9716k Sample/Track-and-Hold Amplifier102hs9716tb$StartFalse103hs9720k Sample/Track-and-Hold Amplifier104hs9720tb$StartFalse105htc-0300a Ultrahigh-Speed Hybrid Track-and-Hold Amplifiers106htc-0300am$StartFalse107htc-0300am/883b Ultrahigh-Speed Hybrid Track-and-Hold Amplifiers108htc-0300atd/883b$StartFalse109htc-0500am Sample/Track-and-Hold Amplifier110htc-0500sm$StartFalse111hts-0010Ultra High Speed Hybird Track-and Hold Amplifiers112hts-0010kd$StartFalse113hts-0010sd Ultra High Speed Hybird Track-and Hold Amplifiers115hts-0025m Ultra High Speed Hybird Track-and Hold Amplifiers116hv257$StartFalse117hv257fg32 CHANNEL HIGH VOLTAGE SAMPLE AND HOLD AMPLIFIER ARRAY 118hv257x$StartFalse119lf198MONOLITHIC SAMPLE AND HOLD CIRCUITS120lf198/bgc$StartFalse121lf198a Precision Sample and Hold Amplifier122lf198ah Monolithic Sample-and-Hold Circuits123lf198al Sample/Track-and-Hold Amplifier124lf198fe$StartFalse125lf198h Monolithic Sample-and-Hold Circuits126lf198h/883Monolithic Sample-and-Hold Circuits127lf198l$StartFalse128lf298MONOLITHIC SAMPLE AND HOLD CIRCUITS129lf298fe Sample-and-hold amplifiers130lf298h$StartFalse131lf298hb Sample/Track-and-Hold Amplifier132lf298m$StartFalse133lf298n Sample-and-hold amplifiers134lf398$StartFalse135lf398a$StartFalse136lf398ah$StartFalse137lf398ah/a+$StartFalse138lf398al Sample/Track-and-Hold Amplifier139lf398an$StartFalse140lf398an/a+Sample/Track-and-Hold Amplifier141lf398an/b+$StartFalse142lf398an8Precision Sample and Hold Amplifier143lf398d$StartFalse144lf398d-t Sample/Track-and-Hold Amplifier145lf398fe$StartFalse146lf398h Monolithic Sample-and-Hold Circuits 147lf398h/a+Sample/Track-and-Hold Amplifier148lf398hb$StartFalse149lf398jg Sample/Track-and-Hold Amplifier150lf398l$StartFalse151lf398m Monolithic Sample-and-Hold Circuits 152lf398mx$StartFalse153lf398n MONOLITHIC SAMPLE AND HOLD CIRCUITS 154lf398n/a+Sample/Track-and-Hold Amplifier155lf398n/b+$StartFalse156lf398n8Precision Sample and Hold Amplifier 157lf398nb$StartFalse158lf398p Sample/Track-and-Hold Amplifier159lf398s8$StartFalse160lf39j8Precision Sample and Hold Amplifier 161lf6197$StartFalse162lf6197ccj$StartFalse163lf6197j$StartFalse164lh0053g-mil Sample/Track-and-Hold Amplifier165max5165$StartFalse166max5165lccm 32-Channel Sample/Hold Amplifier with a Single Multiplexed Input167max5165lecm$StartFalse168max5165mccm 32-Channel Sample/Hold Amplifier with a Single Multiplexed Input169max5165mecm$StartFalse170max5165nccm 32-Channel Sample/Hold Amplifier with aSingle Multiplexed Input171max5165necm$StartFalse172max516632-Channel Sample/Hold Amplifier with Four Multiplexed Inputs173max5166lccm$StartFalse174max5166lecm 32-Channel Sample/Hold Amplifier with Four Multiplexed Inputs175max5166mccm$StartFalse176max5166mecm 32-Channel Sample/Hold Amplifier with Four Multiplexed Inputs177max5166nccm$StartFalse178max5166necm 32-Channel Sample/Hold Amplifier with Four Multiplexed Inputs179max5167lccm$StartFalse180max5167lecm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 181max5167mccm$StartFalse182max5167mecm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 183max5167nccm$StartFalse184max5167necm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 185max5168$StartFalse186max5168lccm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 187max5168lecm$StartFalse188max5168mccm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 189max5168mecm$StartFalse190max5168nccm SAMPLE/TRACK-AND-HOLDAMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 191max5168necm$StartFalse192ne5537Sample-and-hold amplifier193ne5537d$StartFalse194ne5537n Sample-and-hold amplifier195se5537$StartFalse196se5537fe Sample-and-hold amplifier197vn1025cc$StartFalse198vn1025ci Sample/Track-and-Hold Amplifier 199vn1025cm$StartFalse200vn1025dc Sample/Track-and-Hold Amplifier 201vn1025di$StartFalse202vn1025dm Sample/Track-and-Hold Amplifier 203vn1025mc$StartFalse204vn1025mi Sample/Track-and-Hold Amplifier 205vn1025mm$StartFalse206vn1025sc Sample/Track-and-Hold Amplifier 207vn1225cc$StartFalse208vn1225ci Sample/Track-and-Hold Amplifier 209vn1225cm$StartFalse210vn1225dc Sample/Track-and-Hold Amplifier 211vn1225di$StartFalse212vn1225dm Sample/Track-and-Hold Amplifier 213vn1225sc$StartFalse厂家Analog DevicesAnalog Devices Analog Devices Analog Devices Analog Devices Analog DevicesIntersil CorporationIntersil CorporationIntersil Corporation Intersil CorporationIntersil Corporation Intersil CorporationIntersil Corporation Intersil CorporationAnalog Devices Analog DevicesAnalog Devices Analog Devices Analog Devices Supertex, Inc ETCLinear Technology National Semiconductor National Semiconductor National SemiconductorETCPhilips Semiconductors Philips SemiconductorsLinear Technology National SemiconductorNational Semiconductor ETCLinear Technology Linear Technology Maxim IntegratedProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsPhilips SemiconductorsPhilips SemiconductorsPhilips Semiconductors。
微机保护复习题[1]第一章1.电力系统中继电保护的作用是什么?2. 继电保护在技术上应满足哪四个基本要求?3. 微机保护由硬件系统和软件系统两大部分组成。
4. 微机保护装置有哪些特点?第二章5.从功能上来说,微机保护装置可以分为哪4个部分?6. 基于A/D转换的数据采集系统有哪几部分组成?试画出其原理方框图。
7. 电压形成回路有哪几种形式?其作用是什么?8. 对采样频率有什么要求?模拟低通滤波器与采样频率有什么关系?9. 对采样保持电路有什么要求?10.什么叫量化?量化误差? A/D转换器的位数与量化误差、精度和分辨率之间有何关系?11. 何谓谥出?12.基于 VFC型数据采集系统有哪几部分组成?它有哪些特点?13. 一个基本的CPU主系统包含哪些电路?14. 什么是总线?它分哪些类型?15.存储器是用来存放程序、数据和中间结果。
在微机保护中RAM、EPROM、E2分别存放什么?PROM16.计算机与外设数据传送方式一般采用何种方式?17.微机继电保护装置中常用的计算机芯片有哪几种?各有什么结构特点?第三章18. 数字滤波器与模拟滤波器相比有何优点?19. 何谓频率混叠?20. 简单数字滤波器有哪几种?它们有何共同特点?第四章21. 何谓微机保护算法?它分为哪两大类?22. 衡量各种算法的主要指标有哪些?23. 两点乘积算法具有哪些特点?24. 半周绝对值积分算法具有哪些特点?25. 半波傅里叶算法与全波傅里叶算法相比有何特点?第五章26. 微机保护软件分为接口软件和保护软件两大部分。
它们各配置何种程序?27. 保护软件有哪三种工作状态?28. 微机保护装置为什么要采用定时中断方式和定时采样中断服务程序?29. 了解微机保护主程序的工作流程,会画出图5-1流程图。
30.初始化自检有哪些内容?第六章31. 可靠性是对继电保护的基本要求之一,它包括哪两个方面?32. 何谓程序出格?33. 电力系统中干扰源有哪些?干扰的形式有哪两种?34. 微机保护的硬件抗干扰措施都有哪些?35. 微机保护的软件抗干扰措施都有哪些?第一章1. 电力系统中继电保护的作用是什么?电力系统在运行中,可能发生各种故障和不正常运行状态。
运放线性系列(OP、TL、LM、LF系列)型号功能型号功能OP07低失调运算放⼤器LM318⾼速运算放⼤器OP07CZ 低失调运算放⼤器(⼯业级)LM319⾼速运算放⼤器OP20⾼精度、微功耗运算放⼤器LM324通⽤四运放OP27超低噪声、⾼精密运算放⼤器LM331电压、频率/频率、电压转换OP37低噪声精密运算放⼤器LM334恒流源OP77超低噪声精密运放LM339四⽐较器TL061低功耗、JFET输⼊运算放⼤器LM347四运放TL062低功耗JFET输⼊双运算放⼤器LM348四电路通⽤运算放⼤器TL064低功耗JFET输⼊四运算放⼤器LM35温度传感器TL071低功耗、JFET输⼊运算放⼤器LM358低功耗双运放TL072低功耗JFET输⼊双运算放⼤器LM361⾼频差动⽐较器TL074低功耗JFET输⼊四运算放⼤器LM376可调稳压电源TL081通⽤JFET输⼊运算放⼤器LM386声频⼩功放⼤器TL082通⽤JFET输⼊双运算放⼤器LM390四电路、最流差动运算放⼤器TL084通⽤JFET输⼊四运算放⼤LM391⼗段点级显⽰驱动器器4LM10CLN ⾼精度基准电源运放(军品)LM3915⼗段点级显⽰驱动器LM101JH 通⽤可调运算放⼤器(军品)LM393双电压⽐较器LM108H⾼精度运算放⼤器(军品)LM710CN⾼频差分电压⽐较器LM1203三基⾊视频放⼤器LM725低漂移⾼精度运放LM124J四运放(军品)LM733视频放⼤器LM139J四电压⽐较器(军品)LM741通⽤单运放LM158J低耗双运放(军品)LM747通⽤双运放LM1881N视频同步分离器LM748CN不带补尝的741运放LM193J双电压⽐较器LM759功率运放LM201宽通⽤运放(⼯业级)LM760⾼速差分⽐较仪LM208H精密双极单运放(⼯业级)LM776可编程运放LM211N⾼精度⽐较器(⼯业级)LM777⾼电压运放LM224J四运放(⼯业级)LM796HC⾼电压运放LM231电压、频率转换(⼯业级)LM833双⾳频功放LM258N低功耗双运放(⼯业级)LF13332四常开模护开关LM2851.2V、2.5V精密基准源(⼯业)LF13333三常开⼆常闭模拟开关LM2902N四电路、单电源运算放⼤器LF351JFET输⼊运算放⼤器LM2903N双电压⽐较器LF353JFET输⼊运算放⼤器LM2904N双电路、单电源运算放⼤器LF355LM2907N频率电压转换器LF356JFET输⼊运算放⼤器LM2917N频率电压转换器LF357JFET输⼊运算放⼤器LM301AN能⽤宽带运算放⼤器LF398采样/保持器LM308N单运算放⼤器LF411低失调、低漂移、JFET输⼊LM310N电压跟随运算放⼤器LF412双低失调、低漂移JFET运放LM311P单⽐较器LF441低功耗、JFET输⼊运放通⽤运算放⼤器型号失调电压mV偏流mA失调电流mA电压漂移µV电压增益V/V共模抑制⽐dB说明OP07CP0.15760.2100100超低偏移电压OP07DN0.15126 2.510094超低噪声,单路OP27OGP0.14010.81800114超低噪声,单路OP27EP0.180750.41200120超低噪声,单路OP27GP0.180750.41200120超低噪声,单路OP77GP0.15 2.8 2.8 1.22000108单路超低偏移电压OP97FP0.0250.20.10.6200108低功率,单路LM741UA741LM741KH LM741JLH0003C H 3.0200200420K70宽带,⼤电流输出LH0004CH1.010020430K70⾼压LH0021CK3.03001003100K70 1.0A⼤电流输出LH0033CG跟随器LF347550PA25PA10100100四路JFET输⼊OP *LF351550PA25PA10100100JFET输⼊OPLF353550PA25PA10100100双路JFET输⼊LF356性能⽐通常运放要好*LF358双路⼩功率差分输⼊*LF4110.50.6PA20PA108090精密JFET输⼊OP*LF412 1.00.5PA25PA10150100双路JFET输⼊OP TL022 5.0200804K60低功率*TL031 0.8-1.594低功耗⾼精度OP*TL032 0.8-1.94低功耗,⾼精OP*TL0613-1586低功耗JFET输⼊OPTL062CN 3.03PA0.5104K80双路,低功率, JFETTL062MJGTL064IN 3.03PA0.5104K80四路,低功率JFE TL070 6.00.20.051050K80低噪声JFET TL071 3.030PA5PA1050K100单路,低噪声JFETTL072 3.030PA5PA1050K100双路,低噪声JFET*TL074 3.030PA5PA10100四路,低噪声JFETTL08015.00.40.2102570双极型JFETTL08115.00.40.21025K80单路JFETTL082MJG6.00.20.11050K80双路双极型JFET TL084CD154000.2102570四路TL08415.00.40.21025K70四路双极型JFET *NE55324100双路低噪声MC1458690双路OP通⽤运算放⼤器(续)型号失调电压mV 偏流mA失调电流mA电压漂移µV电压增V/V共模抑制⽐dB说明LM108H 2.020.21550K65精密双极LM110 J/883 4.0312跟随器,代替1 0 2 LM110H 跟随器LM118H 4.02505050K80精密⾼速LM1203ANLM146J 5.0100201K70⾼增益,可编程LM1458 6.05002002050K70双71 C*LM2582380双路低功耗O P*LM2900四路O P*LM2902780四路O P*LM2904780双路O P*LM31810100单路⾼速O PLM324780四路O PLM348690*LM3583-780双路P*LM3900四路O PLM6361 LMC660AIN LMC662CN AD102JY 隔离放⼤器AD104JY 隔离放⼤器AD204KY 隔离放⼤器AD517JH0.155131M94超低失调电压AD542JH 2.00.0250.012050K76精密极J F E TAD544JH 1.00.0260.0021050K80⾼速双极J F E TAD545AJH 1.00.0020.0012520K68精密低漂移J F E TAD624AD0.2510011K100精密仪⽤AD625JN 仪表放⼤器AD648JN 线性运算放⼤AD6640AST放⼤器TLC274CN线性运算放⼤器TLC27L4CNTLC271CP2-1080低噪声OP NJM062D双单元线性运算放⼤器HA1-2539-2⾼速运算放⼤器HA2-2522-2线性运算放⼤器CA3080低偏置运算放⼤器TDA2004R⾳频功放,双功率放⼤器TDA2006⾳频功放,单功率放⼤器M51392视频放⼤器LM386N-1线性单⽚单功率放⼤器LM386N-4线性单⽚单功率放⼤器。
《微型计算机控制技术》复习题纲1.1 计算机控制系统的结构。
1.2 计算机控制系统的典型形式有哪些? 各有什么优缺点? (P5)1.3 实时、在线方式和离线方式的含义是什么?2.1 采用74LS244和74LS273,设计与PC总线等工业控制机的数字量(开关量) 输入输出接口,要求:画出接口电路原理图,并采用8086汇编语言编写数字量输入输出程序。
2.2 用8位A/D转换器ADC0809与PC总线等工业控制机接口,设计模拟输入通道以及数据采集程序流程图。
2.3 采样信号有何特点? 采样保持器的作用是什么?是否所有的模拟量输入通道中都需采样保持器? 为什么?2.4 什么是串模干扰和共模干扰? 如何抑制?2.5 计算机控制系统中地线有哪几种?2.6 什么是波反射? 如何消除波反射?3.1 插补计算程序流程:(1) 直线插补程序;(2) 圆弧插补程序。
3.2 给出一段直线或圆弧。
要求:(1) 按逐点比较法插补进行列表计算;(2) 作出走步轨迹图,并标明进给方向和步数。
3.3 三相步进电机的工作方式。
3.4 利用8255A设计x轴步进电机和y轴步进电机的控制电路,要求:(1) 画出接口电路原理图;(2) 分别列出x轴和y轴步进电机在三相单三拍、三相双三拍或三相六拍工作方式下的输出字表。
4.1 数字控制器的连续化设计步骤。
(P103)4.2 PID控制器的三个参数对系统性能的影响。
4.3 数字控制器的离散化设计步骤是什么?4.4 最少拍无纹波控制器的设计。
4.5 模糊推理的计算。
6.1 测量数据预处理技术包括哪些?(185~190)7.1 什么是现场总线?有哪几种典型的现场总线?7.2 分布式控制系统的设计原则是什么?DCS系统分为哪几层?各层实现哪些功能?错误!未找到引用源。
第一章(绪论)作业1.1 什么是计算机控制系统?它由哪几部分组成?答:计算机控制系统就是利用计算机来实现生产过程控制的系统。
、计算机控制系统由工业控制机和生产过程两个大部分组成。
前言前言自动控制理论的形成和发展经历了近半个世纪的历程。
现代数字计算机的迅速发展,为自动控制技术的应用开辟了广阔的前景。
自动控制技术的广泛应用不仅能够使生产设备或过程实现自动化,而且在人类征服大自然、探索新能源、发展空间技术和改善人民生活等方面都起着极其重要的作用。
“自动控制原理”是自动控制、自动化、电子技术、电气技术、精密仪器等专业教学中的—门重要专业基础课程。
实验作为感性认知的重要渠道构成教学环节中必不可少的一环。
上海埃威航空电子有限公司推出了爱迪克labACT自控/计控原理教学实验系统。
本公司隶属于航空工业总公司第615研究所,我们一贯以航空产品的要求来研制和生产产品,我们的口号是:“用户至上,质量第一,追求卓越,不断改进”。
爱迪克labACT自控/计控原理教学实验系统具有以下突出特点,有效地提高了实验系统的实验效果和性价比:1、采用模块式结构,可构造出各种型式和阶次的模拟环节和控制系统。
被控实验对象构建方便,含有9个放大器和一个比较器,0~999.9KΩ的直读式可变电阻和0~0.7uf的直读式可变电容。
标准实验部分只需使用短路套连接即可,直观且简化了实验操作和设备管理。
扩充环节可以灵活搭建多种不同参数的系统。
2、元器件的选用上,我们都采用了较高精度元器件。
例如放大器采用了高精度、低漂移的OP07,电阻选用0.5%精度,电容选用5%精度,使之实验结果更接近于理论值。
3、实验系统自带多种信号源,足以满足实验的要求。
有信号发生器、函数发生器、正弦波发生器,其中正弦波信号源采用幅度和频率较为稳定的ICL8038集成电路。
4、labACT自控/计控原理教学实验系统加了外接接口模块,可以容易的扩展外设接口。
(1)烤箱控制实验通道选用了铂电阻PT100作为检测传感器。
(2)电机驱动和检测通道。
(3)单回路可编程调节器通道。
(2路A/D输入、1路D/A输出、4路开关量输入、4路开关量输出)5、系统集成软件提供的虚拟示波器功能可实时、清晰的观察控制系统各项静态、动态特性.方便了对模拟控制系统特性的研究。
第一章i )简述计算机控制系统与常规仪表控制系统的基本结构及主要异同点。
基本结构:SM (<n 册覘翦相同点: 1、结构基本相同,功能相同。
2不同点: 、计算机控制系统是在常规仪表控制系统演变而来。
1、计算机控制系统能够实现复杂的控制规律,从而达到较高的控制质量。
23 45、由于计算机具有分时操作的功能,所以计算机控制系统具有群控的功能。
、由于计算机的软件有恢复功能,所以计算机控制系统灵活性强。
、由于计算机控制系统有有效的抗干扰,抗噪声,所以可靠性高。
、由于计算机有监控,报警,自诊断功能,所以计算机控制系统的可维护性强。
2)分析说明图1-3计算机控制系统的硬件组成及其作用。
1. 主机组成:中央处理器(CPU 和内存储器(RAM 和ROM 组成。
作用:根据输入通道送来的被控对象的状态参数,进行信息处理、分析、计算,作出控制决 策,通过输出通道发出控制命令。
2. 常规外部设备外部设备按功能可分成三类:输入设备、输出设备和外存储器。
生产i±程f +给定值———-—1 ■ -——— -—-—B1-2计聲晦髒絃理區输入设备有键盘、光电输入机、扫描仪等,用来输入程序、数据和操作命令。
输出设备有打印机、绘图机、显示器等,用来把各种信息和数据提供给操作者。
外存储器有磁盘装置、磁带装置、光驱装置,兼有输入、输出两种功能,用来存储系统程序 和数据。
3. 过程输入/输出通道过程输入通道又分为模拟量输入通道和数字量输入通道两种; 过程输出通道又分为模拟量输出通道和数字量输出通道两种。
作用:主机和被控对象实现信息传送与交换的通道。
4. 操作台操作台是操作员与计算机控制系统之间进行联系的纽带, 可以完成向计算机输入程序、修改数据、显示参数以及发出各种操作命令等功能。
5. 通信设备在不同地理位置、不同功能的计算机之间通过通信设备连接成网络,以进行信息交换。
第二章1)课本14页的图2-2 以4位D/A 转换器为例说明其工作原理R--2R 电阻网络假设D3 D2、Di 、D0全为1,贝U B 图33-2BS 公转S1器原S0全部与“ 1 ”端相连。
电压信号采集方案设计叶云云摘要: 电压信号采集电路是电子系统中常用到的功能模块,该电路设计分三个模块:数据采集、数据处理和显示模块。
数据信号采集采用运算放大器0P07构成电压跟随器对信号进行跟随处理,再由采样/保持器LF398对信号进行采样/保持。
高电平,采样;低电平,保持。
采样控制信号由集成锁相环CD4046对被测信号进行64倍频产生。
关键词: 电压跟随器采样/保持器 A/D转换锁相环电路 LED显示1.方案设计采用89C51单片机来实现。
单片机软件编程灵活、自由度大,可用软件编程实现各种算法和逻辑控制。
单片机系统可用数码管显示测量值。
对于电压信号采样用OP07电压跟随器和LF398数据保持器进行预处。
在测量工频交流电压信号时,利用锁相环对信号倍频,所得脉冲控制89C51对电压信号的相位测量。
采用以89C51为核心的单片机系统使整体结构简单,并且可以实现显示、打印、与微机通信等功能,大大提高了系统的智能化程度,同时系统所测结果的精度很高。
系统图1 系统整体框图2.模块电路设计与比较2.1 数据采集模块数据采集模块包括:电压跟随电路,信号采样/保持电路,A/D转换电路。
2.1.1 电压跟随电路:由OP07构成,虽然精确度不够高,但它能提高带负载能力,硬件电路简单,也不需软件控制,所以本设计采用了此方案。
输入信号是0~5V交流电压信号,输出信号不变。
f(t) f(t)tt图2 电压跟随电路2.1.2 信号采样/保持电路采用保持器LF398对电压信号进行采样/保持。
在单片机P2.5口的控制下,高电平,采样;3所示:图3 信号采样/保持电路失调电压的调整是通过与V+的分压并调整1KΩ电位器实现的。
保持电容CH应选用300~1000PF的高性能低漏电云母电容器。
控制逻辑在高电平时为采样,在低电平时为保持。
本设计采用此种连接方法。
2.1.3 A/D转换电路利用ADC0809完成A/D转换功能。
输入的是LF398输出的抽样信号,经过ADC0809内部的量化编码,以数字信号的形式输出。
实验一控制系统典型环节的模拟实验一、实验目的1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
二、实验内容1.对表一所示各典型环节的传递函数设计相应的模拟电路(参见表二)2.测试各典型环节在单位阶跃信号作用下的输出响应。
3.改变各典型环节的相关参数,观测对输出响应的影响。
三、实验内容及步骤1.观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。
①准备:使运放处于工作状态。
将信号发生器单元U1的ST端与+5V端用“短路块”短接,使模拟电路中的场效应管(K30A)夹断,这时运放处于工作状态。
②阶跃信号的产生:电路可采用图1-1所示电路,它由“阶跃信号单元”(U3)及“给定单元”(U4)组成。
具体线路形成:在U3单元中,将H1与+5V端用1号实验导线连接,H2端用1号实验导线接至U4单元的X端;在U4单元中,将Z端和GND端用1号实验导线连接,最后由插座的Y端输出信号。
以后实验若再用阶跃信号时,方法同上,不再赘述。
实验步骤:①按表二中的各典型环节的模拟电路图将线接好(先接比例)。
(PID先不接)②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。
③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。
改变比例参数,重新观测结果。
④同理得积分、比例积分、比例微分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线参见表三。
2.观察PID环节的响应曲线。
实验步骤:①将U1单元的周期性方波信号(U1 单元的ST端改为与S端用短路块短接,S11波段开关置于“方波”档,“OUT”端的输出电压即为方波信号电压,信号周期由波段开关S11和电位器W11调节,信号幅值由电位器W12调节。
以信号幅值小、信号周期较长比较适宜)。
②参照表二中的PID模拟电路图,按相关参数要求将PID电路连接好。
LF198/LF298/LF398,LF198A/LF398A Monolithic Sample-and-Hold CircuitsGeneral DescriptionThe LF198/LF298/LF398are monolithic sample-and-hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate.Operating as a unity gain follower,dc gain accuracy is 0.002%typical and acquisition time is as low as 6µs to 0.01%.A bipolar input stage is used to achieve low offset voltage and wide bandwidth.Input offset adjust is accom-plished with a single pin,and does not degrade input offset drift.The wide bandwidth allows the LF198to be included in-side the feedback loop of 1MHz op amps without having sta-bility problems.Input impedance of 1010Ωallows high source impedances to be used without degrading accuracy.P-channel junction FET’s are combined with bipolar devices in the output amplifier to give droop rates as low as 5mV/min with a 1µF hold capacitor.The JFET’s have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities.The overall design guarantees no feed-through from input to output in the hold mode,even for input signals equal to the supply voltages.Featuresn Operates from ±5V to ±18V supplies n Less than 10µs acquisition timen TTL,PMOS,CMOS compatible logic input n 0.5mV typical hold step at C h =0.01µF n Low input offsetn 0.002%gain accuracyn Low output noise in hold moden Input characteristics do not change during hold mode n High supply rejection ratio in sample or hold n Wide bandwidth nSpace qualifiedLogic inputs on the LF198are fully differential with low input current,allowing direct connection to TTL,PMOS,and CMOS.Differential threshold is 1.4V.The LF198will operate from ±5V to ±18V supplies.An “A”version is available with tightened electrical specifications.Typical Connection and Performance CurveDS005692-32Acquisition TimeDS005692-16May 1998LF198/LF298/LF398,LF198A/LF398A Monolithic Sample-and-Hold Circuits©1999National Semiconductor Corporation Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Supply Voltage±18V Power Dissipation(PackageLimitation)(Note2)500mW Operating Ambient Temperature RangeLF198/LF198A−55˚C to+125˚C LF298−25˚C to+85˚C LF398/LF398A0˚C to+70˚C Storage Temperature Range−65˚C to+150˚C Input Voltage Equal to Supply Voltage Logic To Logic ReferenceDifferential Voltage(Note3)+7V,−30V Output Short Circuit Duration Indefinite Hold Capacitor ShortCircuit Duration10sec Lead Temperature(Note4)H package(Soldering,10sec.)260˚C N package(Soldering,10sec.)260˚C M package:Vapor Phase(60sec.)215˚C Infrared(15sec.)220˚C Thermal Resistance(θJA)(typicals)H package215˚C/W(Board mount in still air)85˚C/W(Board mount in400LF/min air flow)N package115˚C/WM package106˚C/WθJC(H package,typical)20˚C/WElectrical CharacteristicsThe following specifcations apply for−V S+3.5V≤V IN≤+V S−3.5V,+V S=+15V,−V S=−15V,T A=T j=25˚C,C h=0.01µF, R L=10kΩ,LOGIC REFERENCE=0V,LOGIC HIGH=2.5V,LOGIC LOW=0V unless otherwise specified.Parameter Conditions LF198/LF298LF398UnitsMin Typ Max Min Typ MaxInput Offset Voltage,(Note5)T j=25˚C1327mVFull Temperature Range510mV Input Bias Current,(Note5)T j=25˚C5251050nAFull Temperature Range75100nA Input Impedance T j=25˚C10101010ΩGain Error T j=25˚C,R L=10k0.0020.0050.0040.01%Full Temperature Range0.020.02% Feedthrough Attenuation Ratio T j=25˚C,C h=0.01µF86968090dB at1kHzOutput Impedance T j=25˚C,“HOLD”mode0.520.54ΩFull Temperature Range46Ω“HOLD”Step,(Note6)T j=25˚C,C h=0.01µF,V OUT=00.5 2.0 1.0 2.5mV Supply Current,(Note5)T j≥25˚C 4.5 5.5 4.5 6.5mA Logic and Logic Reference Input T j=25˚C210210µA CurrentLeakage Current into Hold T j=25˚C,(Note7)3010030200pA Capacitor(Note5)Hold ModeAcquisition Time to0.1%∆V OUT=10V,C h=1000pF44µsC h=0.01µF2020µs Hold Capacitor Charging Current V IN−V OUT=2V55mA Supply Voltage Rejection Ratio V OUT=08011080110dB Differential Logic Threshold T j=25˚C0.8 1.4 2.40.8 1.4 2.4V Input Offset Voltage,(Note5)T j=25˚C1122mVFull Temperature Range23mV Input Bias Current,(Note5)T j=25˚C5251025nAFull Temperature Range7550nA 2Electrical CharacteristicsThe following specifcations apply for −V S +3.5V ≤V IN ≤+V S −3.5V,+V S =+15V,−V S =−15V,T A =T j =25˚C,C h =0.01µF,R L =10k Ω,LOGIC REFERENCE =0V,LOGIC HIGH =2.5V,LOGIC LOW =0V unless otherwise specified.ParameterConditionsLF198A LF398AUnitsMinTyp Max MinTyp MaxInput Impedance T j =25˚C10101010ΩGain ErrorT j =25˚C,R L =10k 0.0020.0050.0040.005%Full Temperature Range 0.010.01%Feedthrough Attenuation Ratio T j =25˚C,C h =0.01µF86968690dBat 1kHzOutput Impedance T j =25˚C,“HOLD”mode0.510.51ΩFull Temperature Range46Ω“HOLD”Step,(Note 6)T j =25˚C,C h =0.01µF,V OUT =00.51 1.01mV Supply Current,(Note 5)T j ≥25˚C 4.5 5.5 4.5 6.5mA Logic and Logic Reference Input T j =25˚C210210µACurrentLeakage Current into Hold T j =25˚C,(Note 7)3010030100pA Capacitor (Note 5)Hold ModeAcquisition Time to 0.1%∆V OUT =10V,C h =1000pF 4646µs C h =0.01µF 20252025µs Hold Capacitor Charging Current V IN −V OUT =2V 55mA Supply Voltage Rejection Ratio V OUT =0901*******dB Differential Logic ThresholdT j =25˚C0.81.42.40.81.42.4VNote 1:“Absolute Maximum Ratings”indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is functional,but do not guarantee specific performance limits.Note 2:The maximum power dissipation must be derated at elevated temperatures and is dictated by T JMAX ,θJA ,and the ambient temperature,T A .The maximum allowable power dissipation at any temperature is P D =(T JMAX −T A )/θJA ,or the number given in the Absolute Maximum Ratings,whichever is lower.The maximum junction temperature,T JMAX ,for the LF198/LF198A is 150˚C;for the LF298,115˚C;and for the LF398/LF398A,100˚C.Note 3:Although the differential voltage may not exceed the limits given,the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit.For proper logic operation,however,one of the logic pins must always be at least 2V below the positive supply and 3V above the nega-tive supply.Note 4:See AN-450“Surface Mounting Methods and their effects on Product Reliability”for other methods of soldering surface mount devices.Note 5:These parameters guaranteed over a supply voltage range of ±5to ±18V,and an input range of −V S +3.5V ≤V IN ≤+V S −3.5V.Note 6:Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor.1pF,for instance,will create an additional 0.5mV step with a 5V logic swing and a 0.01µF hold capacitor.Magnitude of the hold step is inversely proportional to hold capacitor value.Note 7:Leakage current is measured at a junction temperature of 25˚C.The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the 25˚C value for each 11˚C increase in chip temperature.Leakage is guaranteed over full input signal range.Note 8:A military RETS electrical test specification is available on request.The LF198may also be procured to Standard Military Drawing #5962-8760801GA or to MIL-STD-38510part ID JM38510/12501SGA.Typical Performance CharacteristicsNote 9:See Definition of TermsAperture Time (Note 9)DS005692-17Dielectric Absorption Error in Hold CapacitorDS005692-18Dynamic Sampling ErrorDS005692-193Typical Performance Characteristics(Continued)Note 10:See DefinitionOutput Droop RateDS005692-20Hold StepDS005692-21“Hold”Settling Time (Note 10)DS005692-22Leakage Current into Hold Capacitor DS005692-23Phase and Gain (Input to Output,Small Signal)DS005692-24Gain ErrorDS005692-25Power Supply Rejection DS005692-26Output Short Circuit Current DS005692-27Output NoiseDS005692-28 4Typical Performance Characteristics(Continued)Logic Input ConfigurationsInput Bias CurrentDS005692-29Feedthrough Rejection Ratio(Hold Mode)DS005692-30Hold Step vs Input VoltageDS005692-31Output Transient at Startof Sample ModeDS005692-12Output Transient at Startof Hold ModeDS005692-13TTL&CMOS3V≤V LOGIC(Hi State)≤7VDS005692-33Threshold=1.4VDS005692-34Threshold=1.4V*Select for2.8V at pin85Logic Input Configurations(Continued)Application HintsHold CapacitorHold step,acquisition time,and droop rate are the major trade-offs in the selection of a hold capacitor value.Size and cost may also become important for larger e of the curves included with this data sheet should be helpful in se-lecting a reasonable value of capacitance.Keep in mind that for fast repetition rates or tracking fast signals,the capacitor drive currents may cause a significant temperature rise in the LF198.A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor.A mylar cap,for instance,may “sag back”up to 0.2%after a quick change in voltage.A long sample time is required before the circuit can be put back into the hold mode with this type of capacitor.Dielectrics with very low hysteresis are polysty-rene,polypropylene,and Teflon.Other types such as mica and polycarbonate are not nearly as good.The advantage of polypropylene over polystyrene is that it extends the maxi-mum ambient temperature from 85˚C to 100˚C.Most ce-ramic capacitors are unusable with >1%hysteresis.Ce-ramic “NPO”or “COG”capacitors are now available for 125˚C operation and also have low dielectric absorption.For more exact data,see the curve Dielectric Absorption Error.The hysteresis numbers on the curve are final values,taken after full relaxation.The hysteresis error can be significantlyreduced if the output of the LF198is digitized quickly after the hold mode is initiated.The hysteresis relaxation time constant in polypropylene,for instance,is 10—50ms.If A-to-D conversion can be made within 1ms,hysteresis error will be reduced by a factor of ten.DC and AC ZeroingDC zeroing is accomplished by connecting the offset adjust pin to the wiper of a 1k Ωpotentiometer which has one end tied to V +and the other end tied through a resistor to ground.The resistor should be selected to give ≈0.6mA through the 1k potentiometer.AC zeroing (hold step zeroing)can be obtained by adding an inverter with the adjustment pot tied input to output.A 10pF capacitor from the wiper to the hold capacitor will give ±4mV hold step adjustment with a 0.01µF hold capacitor and 5V logic supply.For larger logic swings,a smaller capacitor (<10pF)may be used.Logic Rise TimeFor proper operation,logic signals into the LF198must have a minimum dV/dt of 1.0V/µs.Slower signals will cause ex-cessive hold step.If a R/C network is used in front of theCMOS7V ≤V LOGIC (Hi State)≤15VDS005692-35Threshold =0.6(V +)+1.4VDS005692-36Threshold =0.6(V +)−1.4VOp Amp DriveDS005692-37Threshold ≈+4VDS005692-38Threshold =−4V6Application Hints(Continued)logic input for signal delay,calculate the slope of the wave-form at the threshold point to ensure that it is at least 1.0V/µs.Sampling Dynamic SignalsSample error to moving input signals probably causes more confusion among sample-and-hold users than any other pa-rameter.The primary reason for this is that many users make the assumption that the sample and hold amplifier is truly locked on to the input signal while in the sample mode.In ac-tuality,there are finite phase delays through the circuit creat-ing an input-output differential for fast moving signals.In ad-dition,although the output may have settled,the hold capacitor has an additional lag due to the300Ωseries resis-tor on the chip.This means that at the moment the“hold”command arrives,the hold capacitor voltage may be some-what different than the actual analog input.The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold.For ex-ample,consider an analog input of20Vp-p at10kHz.Maxi-mum dV/dt is0.6V/µs.With no analog phase delay and100 ns logic delay,one could expect up to(0.1µs)(0.6V/µs) =60mVerror if the“hold”signal arrived near maximum dV/dt of the input.A positive-going input would give a+60mV er-ror.Now assume a1MHz(3dB)bandwidth for the overall analog loop.This generates a phase delay of160ns.If the hold capacitor sees this exact delay,then error due to analog delay will be(0.16µs)(0.6V/µs)=−96mV.Total output error is+60mV(digital)−96mV(analog)for a total of−36mV.To add to the confusion,analog delay is proportioned to hold capacitor value while digital delay remains constant.A family of curves(dynamic sampling error)is included to help esti-mate errors.A curve labeled Aperture Time has been included for sam-pling conditions where the input is steady during the sam-pling period,but may experience a sudden change nearly coincident with the“hold”command.This curve is based on a1mV error fed into the output.A second curve,Hold Settling Time indicates the time re-quired for the output to settle to1mV after the“hold”com-mand.Digital FeedthroughFast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode.To minimize this problem,board layout should keep logic lines as far as possible from the analog input and the C h pin.Grounded guarding traces may also be used around the input line,especially if it is driven from a high impedance source.Reducing high amplitude logic signals to2.5V will also help.Functional DiagramGuarding TechniqueDS005692-5Use10-pin layout.Guard around C h is tied to output.DS005692-1 7Typical ApplicationsX1000Sample&HoldDS005692-39*For lower gains,the LM108must be frequency compensatedSample and Difference Circuit(Output Follows Input in HoldMode)DS005692-40V OUT=V B+∆V IN(HOLD MODE) Ramp Generator with Variable Reset LevelDS005692-42Integrator with Programmable Reset LevelDS005692-43 8Typical Applications(Continued)Output Holds at Average of Sampled InputDS005692-46Increased Slew CurrentDS005692-47Reset Stabilized Amplifier(Gain of1000)DS005692-49Fast Acquisition,Low Droop Sample&HoldDS005692-509Typical Applications(Continued)Synchronous Correlator for RecoveringSignals Below Noise LevelDS005692-522–Channel SwitchDS005692-53AB Gain 1±0.02%1±0.2%Z IN 1010Ω47k ΩBW ≅1MHz≅400kHzCrosstalk−90dB −90dB @1kHzOffset≤6mV≤75mVDC &AC Zeroing DS005692-59Staircase GeneratorDS005692-55*Select for step height50k →1V Step 10Typical Applications(Continued)Definition of TermsHold Step:The voltage step at the output of the sample andhold when switching from sample mode to hold mode with asteady(dc)analog input voltage.Logic swing is5V.Acquisition Time:The time required to acquire a new ana-log input voltage with an output step of10V.Note that acqui-sition time is not just the time required for the output to settle,but also includes the time required for all internal nodes tosettle so that the output assumes the proper value whenswitched to the hold mode.Gain Error:The ratio of output voltage swing to input volt-age swing in the sample mode expressed as a per cent dif-ference.Hold Settling Time:The time required for the output tosettle within1mV of final value after the“hold”logic com-mand.Dynamic Sampling Error:The error introduced into theheld output due to a changing analog input at the time thehold command is given.Error is expressed in mV with agiven hold capacitor value and input slew rate.Note that thiserror term occurs even for long sample times.Aperture Time:The delay required between“Hold”com-mand and an input analog transition,so that the transitiondoes not affect the held output.Connection DiagramsDifferential HoldDS005692-57Capacitor Hysteresis CompensationDS005692-56**Adjust for amplitudeDual-In-Line PackageDS005692-11Order Number LF398Nor LF398ANSee NS Package Number N08ESmall-Outline PackageDS005692-15Order Number LF298M or LF398MSee NS Package Number M14AMetal Can PackageDS005692-14Order Number LF198H,LF198H/883,LF298H,LF398H,LF198AH or LF398AHSee NS Package Number H08C1112Physical Dimensions inches(millimeters)unless otherwise notedMetal Can Package(H)Order Number LF198H,LF298H,LF398H,LF198AH or LF398AHNS Package Number H08CMolded Small-Outline Package(M)Order Number LF298M or LF398MNS Package Number M14A13Physical Dimensions inches(millimeters)unless otherwise noted(Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or sys-tems which,(a)are intended for surgical implant intothe body,or(b)support or sustain life,and whose fail-ure to perform when properly used in accordancewith instructions for use provided in the labeling,canbe reasonably expected to result in a significant injuryto the user.2.A critical component is any component of a life supportdevice or system whose failure to perform can be rea-sonably expected to cause the failure of the life supportdevice or system,or to affect its safety or effectiveness.National SemiconductorCorporationAmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National SemiconductorEuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National SemiconductorAsia Pacific CustomerResponse GroupTel:65-2544466Fax:65-2504466Email:sea.support@National SemiconductorJapan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507Molded Dual-In-Line Package(N)Order Number LF398N or LF398ANNS Package Number N08ELF198/LF298/LF398,LF198A/LF398AMonolithicSample-and-HoldCircuitsNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。