四年级下册数学讲义-奥数专题讲练:第六讲 排列组合的综合应用(例题解析版)全国通用
- 格式:docx
- 大小:44.04 KB
- 文档页数:4
超全的排列组合解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元C 14A 34C 13位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
北师大版小学四年级数学下册同步复习与测试讲义第6章数据的表示和分析【知识点归纳总结】1. 简单的排列、组合1.排列组合的概念:所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序.组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序.排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数.2.解决排列、组合问题的基本原理:分类计数原理与分步计数原理.(1)分类计数原理(也称加法原理):指完成一件事有很多种方法,各种方法相互独立,但用其中任何一种方法都可以做完这件事.那么各种不同的方法数加起来,其和就是完成这件事的方法总数.如从甲地到乙地,乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法.(2)分步计数原理(也称乘法原理):指完成一件事,需要分成多个步骤,每个步骤中又有多种方法,各个步骤中的方法相互依存,只有各个步骤都完成才算做完这件事.那么,每个步骤中的方法数相乘,其积就是完成这件事的方法总数.如从甲地经过丙地到乙地,先有3条路可到丙地,再有2路可到乙地,所以共有3×2=6种不同的走法.【经典例题】例1:有4支足球队,每两支球队打一场比赛,一共要比赛()A、4场B、6场C、8场分析:两两之间比赛,每只球队就要打3场比赛,一共要打4×3场比赛,这样每场比赛就被算了2次,所以再除以2就是全部的比赛场次.解:4×3÷2,=12÷2,=6(场);故选:B.点评:甲与乙比赛和乙与甲的比赛是同一场比赛,所以要再除以2.例2:小华从学校到少年宫有2条路线,从少年宫到公园有3条路线,那么小华从学校到公园一共有()条路线可以走.A、3B、4C、5D、6分析:小华从学校到公园分两个步骤完成,第一步小华从学校到少年宫有2条路线即有两种方法,第二步从少年宫到公园有3条路线即有3种方法,根据乘法原理,即可得解.解:2×3=6,答:小华从学校到少年宫有2条路线,从小年宫到公园有3条路线,那么小华从学校到公园一共有6条路线可以走;故选:D.点评:此题考查了简单的排列组合,分步完成用乘法原理.2. 简单的统计表1.统计表定义:是表现数字资料整理结果的最常用的一种表格.是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.统计调查所得来的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.2.统计表构成及格式:一般由表头、行标题、列标题和数字资料四个主要部分组成,必要时可以在统计表的下方加上表外附加.(1)表头应放在表的上方,它所说明的是统计表的主要内容.(2)行标题和列标题通常安排在统计表的第一列和第一行,它所表示的主要是所研究问题的类别名称和指标名称,通常也被称为“类”.(3)表外附加通常放在统计表的下方,主要包括资料来源、指标的注释、必要的说明等内容.统计表分类:统计表形式繁简不一,通常是按项目的多少,分为单式统计表与复式统计表两种.只对某一个项目数据进行统计的表格,称为单式统计表,也称之为简单统计表.统计项目在2个或2个以上的统计表格,称之为复式统计表.1.按作用不同:统计调查表、汇总表、分析表.2.按分组情况不同:简单表、简单分组表、复合分组表.(1)简单表:即不经任何分组,仅按时间或单位进行简单排列的表.(2)简单分组表:即仅按一个标志进行分组的表.(3)复合分组表:即按两个或两个以上标志进行层叠分组的表.【经典例题】例1:六一儿童节,学校进行歌咏比赛,7位评委给张华的打分如下:评委 1 2 3 4 5 6 7打分92 90 95 88 85 97 90去掉一个最高分,一个最低分,张华的平均分是91分.分析:根据平均数的应用和求平均数的方法解答即可.解:去掉一个最高分97分,最低分85分;其他五位评委打的平均分是:(92+90+95+88+90)÷5=455÷5=91(分);答:张华的平均分是91分;故答案为:91.点评:此题属于简单的统计和求平均数问题,根据求平均数的方法,总数÷份数=平均数,列式计算即可.3. 以一当五(或以上)的条形统计图制作:(1)根据图纸的大小,画出两条互相垂直的线条,作为纵轴和横轴.(2)在水平射线(横轴)上适当分配条形的位置,确定直条的宽度和间隔.(3)在纵轴上确定单位长度,并标出数量的标记和计量单位.(4)根据数据的大小,画出长短不同的直条,并标上标题.(5)若条形太小可适当在条形内画上颜色等区分.作用:可以清楚的反映数量,便于比较.以一当五(或以上)的条形统计图:数据较大,这些数据中,变化的范围也较大,为了节省纸张,美观,选择单位长度较大.按照题目给出的数据,先确定间隔大小,尽可能多的使数据与我们分配的数据重合.【经典例题】例1:如图显示了四个同学的身高.图表中没有学生的名字,已知小刚最高,小丽最矮,小明比小红高,请问小红的身高是( )A 、150厘米B 、125厘米C 、100厘米D 、75厘米分析:运用排除法,去掉最高和最矮,再由小明比小红高判断余下的两个. 解:小刚最高,小丽最矮,那么小红就不是最高的150厘米和75厘米;还剩下125厘米和100厘米,由于小明比小红高,那么高的125厘米就是小明的身高,较矮的100厘米就是小红的身高. 故选:C .点评:本题需要从统计图上找出四个升高数据,再根据题目给出的条件进行排除和推理. 提高题:例2:如图是甲、乙、丙三个人单独完成某项工程所需天数统计图.请看图填空.①甲、乙合作这项工程,748天可以完成. ②先由甲做3天,剩下的工程由丙做,还需要20天完成.分析:①设这项工程的工作量为单位1,所以可以写出甲的工作效率和乙的工作效率,然后用单位1除以甲与乙的工作效率之和;②先求出丙的工作效率,然后用总的工作量减去甲3天的工作量,用剩下的工作量除以丙的工作效率即可;解:①设这项工程的工作量为单位1, 可知甲的工作效率:1÷15=151,乙的工作效率:1÷20=201, 1÷(151+201), =1÷607,=874(天); 答:甲、乙合作这项工程,874天可以完成. ②丙的工作效率:1÷25=251, (1-151×3)÷251, =54÷251, =54×25, =20(天);答:还需要20天完成. 故答案为:874,20. 点评:此题的关键点是设这项工程的工作量为单位1,然后根据工作量与工作效率和工作时间的关系来做题.4. 两种不同形式的单式条形统计图1.条形图定义:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.它可以表示出每个项目的具体数量.2.单式条形统计图只表示一种数据的变化情况,比较简单. 【经典例题】例1:看图回答问题.(1)哪个季度的月平均销售量多?多多少?(2)从统计图中你还能发现什么信息?分析:(1)先分别求出第一季度和第三季度的月平均销售量,再比较哪个季度的月平均销售量多,进而求出多的具体的数量即可;(2)从统计图中我还能发现以下信息:一月销售120箱,二月销售110箱,三月销售130箱,七月销售195箱,八月销售190箱,九月销售185箱;其中二月销售的箱数最少,七月销售的箱数最多;等等.解:(1)第一季度的月平均销售量:(120+110+130)÷3,=360÷3,=120(箱),第三季度的月平均销售量:(195+190+185)÷3,=570÷3,=190(箱),190>120,190-120=70(箱);答:第三季度的月平均销售量多,多70箱.(2)从统计图中我还能发现以下信息:一月销售120箱,二月销售110箱,三月销售130箱,七月销售195箱,八月销售190箱,九月销售185箱;其中二月销售的箱数最少;七月销售的箱数最多;等等.点评:此题主要考查从条形统计图中获取信息,并根据信息解决问题;也考查了求平均数的方法:平均数=总数量÷总份数.5. 两种不同形式的复式条形统计图复式条形统计图:是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来.从复式条形统计图中很容易看出两者数量的多少.复式条形统计图分类:根据直条的方向可以分为横向复式条形统计图和纵向复式条形统计图.①一般在数据种类较多,数据又不是非常大时使用纵向复式条形统计图;②在数据种类较少,每类数据又比较大时,使用横向复式条形统计图.这两种统计图的本质是一样的,只是表现形式不同.【特点】用直条的长短表示数量的多少.【优点】能清楚地看出数量的多少,便于比较两组数据的多少.复式条形统计图画法:1.准备尺子,铅笔,橡皮等画图工具.2.注意写单位,画纵坐标和横坐标,还有日期名字和横坐标上的“0”.3.假如位置有限,例如说0到10,到20,假如你写到200,位置绝对有限,你可以在0的上面画波浪线,然后写100(当然其他数也可以,但最标准的还是画闪电线).4.例如上图两者要有不同的颜色,假如没有色笔,第一个可以用阴影填充,第二个可以涂得严严实实或一个不涂,一个涂阴影.5.在每个图的上方都要写标题.【经典例题】例1:(1)从图上看出男生人数最多的是科技小组,女生人数最少的是数学小组,科技小组的总人数最多,数学小组的总人数最少.(2)通过计算,三个兴趣小组的总人数有39人,男生人数比女生人数多15人.数学小组再增加22人就和科技小组的人数一样多.分析:由图可知:数学小组男生有20人,女生有16人;文艺小组男生有18人,女生有27人;科技小组男生有39人,女生有19人.由以上数据求解.解:(1)39>20>18;科技小组的男生最多;16<19<27;数学小组的女生最少;数学:20+16=36(人);文艺:18+27=45(人);科技:39+19=58(人);58>45>36;科技小组的总人数最多,数学小组的总人数最少.(2)总人数:36+45+58=139(人);男生:20+18+39=77(人);女生:16+27+19=62(人);77-62=15(人);58-36=22(人);三个兴趣小组的总人数有139 人,男生人数比女生人数多15人.数学小组再增加22人就和科技小组的人数一样多.故答案为:科技,数学,科技,数学;139,15,22.点评:本题是复式条形统计图,这类题目先根据图例读出出数量,再由问题找出合适的数据求解.6. 以一当二的条形统计图条形统计图的制作步骤:1.标题:根据统计表所反映的内容,在正上方写上统计图的名称;2.画出横、纵轴:根据纸张大小,画出两条互相垂直的横轴跟纵轴(射线),并在交点处写上0,然后注明横、纵轴分别表示什么(还要写上单位);3.在横轴上,适当分配条形的位置,确定直条的宽度和间隔;4.在纵轴上,根据数值大小的具体情况,确定单位长度表示多少;5.画图:按照数据大小,在与水平射线互相垂直的射线上找到相应的位置,然后画出长短不同的直条,并注明数量.【经典例题】例1:五名学生进行投篮比赛,编号依次是1号、2号…5号,投篮成绩如图.(1)2号投中最多,是14个;5号投中最少,是6个.(2)平均每人投中9个.(3)投中个数比平均数少的学生号码是:3号和5号.分析:观察条形统计图可知:一个长方形格代表一个球,那么1号投中9个球,2号投中14个球,3号投中7个球,4号投中9个球,5号投中6个球;(1)根据直条的长短,确定几号投中的最多或最少,进而确定投中的个数;(2)用5个人投进球的总个数,除以总人数5,即可求得平均每人投进的个数;(3)根据上题的结果,确定出投中个数比平均数少的学生号码.解:(1)2号投中最多,是14个,5号投中最少,是6个;(2)(9+14+7+9+6)÷5,=45÷5,=9(个);(3)因为平均每人投进9个,所以投中个数比平均数少的学生号码是3号和5号.故答案为:2,14,5,6,9,3号和5号.点评:解答本题的关键是读懂统计图,能从统计图中获取与问题有关的信息,再根据基本的数量关系解决问题.【同步测试】单元同步测试题一.选择题(共6小题)1.用0、1、2、3四个数字组成不同的三位数,共有()个.A.3B.9C.12D.182.下面是四(1)班同学最喜欢的一种早餐(不包括主食)统计表.最喜欢的早餐牛奶豆浆粥人数/人61224如果制成条形统计图,每一格表示这里的数据比较合适的是()A.1B.2C.5D.103.观察下面的条形统计图,下面对图的分析正确的话有()句.从以上条形统计图可以看出:(1)六月份产量最少;(2)五月份产量最多;(3)上半年总产量是20500台.A.1B.2C.3D.04.下面是美华果品店上星期5天卖出苹果和橘子的数量.平均每天卖出苹果和橘子各多少箱?()A.8,7B.8,8C.7,8D.8,65.下图表示的是甲班和乙班男、女生人数的情况.如果每个班都是36人,那么甲班的男生比乙班多()人.A.4B.11C.18D.436.小明调查了一些同学最喜欢的运动项目是什么,他把收集的数据记录在如图表内.如果用黑条表示男生,灰条表示女生.如图中()是小明调查的结果.项目男生人数女生人数跑步II III跳高IIII IIIIII游泳IIIIII IIIIII跳远II IA.B.C.二.填空题(共6小题)7.下面是李强家水、电的交费单,算一算各需交多少钱上期读数本期读数实际用量水153吨162吨吨电236千瓦/时386千瓦/时千瓦时8.如图是新星工厂一、二车间1~4月份生产产值情况统计图.(1)一车间产值最高的是月,是万元;二车间产值最高的是月,是万元.(2)两个车间产值相差最多的是月,是万元.(3)一车间的最高产值是最低产值的倍.9.在一幅条形统计图中,用0.8厘米表示200吨,要表示750吨的数量,直条应当画厘米.10.如图是四(2)黎慧同学的段考成绩.从图中可以看出一格代表分,她这次段考,学科的成绩最好,是分;学科的成绩最低,是分;成绩最好的学科与最低的学科相差分.11.用6、0、2三个数字组成一个最大的三位数是,最小的三位数是,它们的积是.12.有A,B两个国家,A国的人口增长率为2.5%,B国的人口增长率为﹣1.5%.如图所示,图比较正确地反映了着两国的人口变化情况.三.判断题(共5小题)13.任意两个条形统计图都可以合成一个纵向复式条形统计图..(判断对错)14.用2、4、6可以摆出三种不同的三位数..(判断对错)15.在一幅条形统计图中,用2厘米表示90万吨,那么用4厘米表示180万吨.(判断对错)16.在同一个条形统计图中,每小格表示的数量多少可以不相等.(判断对错)17.在统计的数据比较多时,可以先分组统计,再汇总..(判断对错)四.应用题(共3小题)18.爸爸带了1200元钱,买这三种商品够吗?产品名称空调扇学习机护眼灯价格(元)58033526719.期间,王老师要带领小红、小明、小军、小丽4名同学坐火车从青岛到济南参加文艺演出.成人火车票每张120元,请你算一算所有成员买单程票共需多少钱?姓名小红小明小军小丽身高(米) 1.09 1.43 1.64 1.5620.解决问题在“大爱佛山﹣关注贫困家庭”活动中,同学们纷纷捐出了自己的零用钱.四年级三个班的同学捐款如下:班级四(1)班四(2)班四(3)班金额/元508423492你能算出四年级同学一共捐款多少元吗?五.操作题(共2小题)21.德凯小学开展体育活动,小明对五(1)班同学的锻炼情况做了统计,并绘制了下面两幅统计图.(1)五(1)班参加体育锻炼的有人,参加的人数最多.(2)根据条件把条形统计图补充完整.22.把统计图补充完整,回答问题.(1)从统计图中你能得到那些信息?.(2)他们五个人中最有可能入选学校游泳队.参考答案与试题解析一.选择题(共6小题)1.【分析】先先排百位,有3种方法(0不能在首位,只有从1、2、3中选),再排十位,也有3种方法(从排完百位后剩下的数字中选),最后排个位,有2种方法(从排完百位和十位后剩下的数字中选),再根据乘法原理,即可得出要求的答案.【解答】解:先排百位,有3种方法(0不能在首位),再排十位,也有3种方法,最后排个位,有2种方法,一共有:3×3×2=18(种),即可以组成18个不同的三位数.故选:D.【点评】解答此题的关键是,找出组成的三位数的每一位数有几种排法,再根据乘法原理即可解答.2.【分析】根据统计表中所提供的数据,用1格代表2人比较合适,在图中绘制出喜欢每种早餐人数的直条图,标出数据等即可完成统计图.【解答】解:(1)你认为一格代表2人比较合适,把统计图补充完整如下:故选:B.【点评】此题主要考查的是如何根据统计表所提供的数据绘制条形统计图、观察条形统计图并从图中获取信息,然后再进行有关计算.注意,绘制条形统计图时要写上标题,标上数据及绘图时间,直条宽度相同,分布均匀,美观大方.3.【分析】由条形的高低可以看到产量,条形最高的产量最高;条形最矮的产量最少,据此判断(1)(2);把六个月的产量相加,判断(3).【解答】解:由条形的高低可以看到产量,可以发现五月份的条形最高所以产量最高;六月份的条形最矮所以产量最少,所以(1)(2)正确;上半年的产量有3500+3000+4000+3000+5000+2000=6500+4000+3000+5000+2000=20500(台),上半年总产量是20500台,(3)正确,所以条形统计图的分析正确的话有3句.故选:C.【点评】本题考查了条形统计图,先从条形统计图中读出数据,再根据问题找到合适的数据进行解答.4.【分析】分别每天过表示苹果、橘子的直条图的顶端作横轴的平行线与纵轴的交点处的数值就是该天卖出的箱数.根据平均数的意义及求法,分别求出5天卖出的苹果、橘子的总箱数除以5就是平均每天卖的箱数.【解答】解:苹果:(6+7+9+7+11)÷5=40÷5=8(箱)橘子:(4+8+6+7+10)÷5=35÷5=7(箱)答:平均每天卖出苹果和橘子的箱数分别是8箱、7箱.故选:A.【点评】此题是考查如何从条形统计图中获取信息,并根据所获取的信息解决实际问题.5.【分析】由扇形统计图可以看出,甲班表示女生人数的扇形的圆心角为直角,即女生人数占全班人数的(或25%),则男生占全班人数的(或75%),根据分数乘法的意义,用全班人数乘男生人数所占的分率(百分率)就是甲班男生人数.乙班男生人数从条形统计图中可以直接看出.用甲班男生人数减乙班男生人数就是甲班的男生比乙班多的人数.【解答】解:36×﹣16=27﹣16=11(人)答:甲班的男生比乙班多11人.故选:B.【点评】此题主要是考查如何根据计算需要从扇形统计图、条形统计图中获取有用信息,然后再根据所获取的信息进行相关计算.6.【分析】根据统计表可知,跑步的男生有2人、女生有3人,跳高的男生有4人、女生有6人,游泳的男生有6人、女生有6人,跳远的男生有2人、女生有1人,根据这些数据选择条形统计图即可得到答案.【解答】解:根据分析可知统计表中的数据与选项D的数据相对应.故选:C.【点评】此题主要考查的是如何从统计表中获取信息,然后再根据信息选择条形统计图即可.二.填空题(共6小题)7.【分析】分别用水、电本期读数减上期读数即可得水、电实际用量.【解答】解:162﹣153=9(吨),386﹣236=150(千瓦时),答:水实际用量9吨,电实际用量150千瓦时.故答案为:9,150.【点评】本题考查了简单的统计表,依据本次读数﹣上次读数=使用数量,分别求出本月李强家水、电的使用数量即可.8.【分析】(1)从统计图中观察可知一车间产值最高的是4月,是160万元;二车间产值最高的是4月,是140万元,(2)从统计图中观察找出产值相差最多的月份,两车间的产值相减就是相差的,(3)从统计图中观察找出一车间的最高产值是最低产值,最高产值除以最低产值即可解答.【解答】解:(1)一车间产值最高的是4月,是160万元;二车间产值最高的是4月,是140万元.答:一车间产值最高的是4月,是160万元;二车间产值最高的是4月,是140万元.(2)两个车间产值相差最多的是4月.160﹣140=20(万元)答:两个车间产值相差最多的是4月,是20万元.(3)一车间的最高产值是160万元,最低产值是80万元160÷80=2(倍)答:一车间的最高产值是最低产值的2倍.故答案为:4,160,4,140;4,20;2.【点评】本题的重点是让学生能从统计图中选出相关的数据,然后再进行解答的能力.9.【分析】根据题意,可用750吨除以200吨计算出750里面有几个200,然后再乘0.8即可得到答案.【解答】解:750÷200×0.8=3.75×0.8,=3(厘米),答:直条应当画3厘米.故答案为:3.【点评】解答此题的关键是确定750吨里面有几个200吨,有几个200吨就有几个0.8厘米.10.【分析】认真观察条形统计图,根据条形统计图的特点做题即可.【解答】解:98﹣96=2(分)答:从图中可以看出一格代表1分,她这次段考,外语学科的成绩最好,是98分;语文学科的成绩最低,是96分;成绩最好的学科与最低的学科相差2分.故答案为:1;外语;98;语文;96;2.【点评】本题主要运用统计图的特点做题.11.【分析】用6、0、2三个数字组成一个最大的三位数是620,组成的最小三位数是206,然后求出它们的积即可.【解答】解:用6、0、2三个数字组成一个最大的三位数是620,组成的最小三位数是206,620×206=127720;故答案为:620,206,127720.【点评】写三位数要注意:0不能放在最高位百位上,要按照一定的顺序写.12.【分析】A国的人口增长率为2.5%,B国的人口增长率为﹣1.5%.也就是说A国的人口2008年比2007年增长,B国的人口2008年比2007年下降,图(B)正好反映了这一特征.【解答】解:A国的人口增长率为2.5%,B国的人口增长率为﹣1.5%.如图,图比较正确地反映了着两国的人口变化情况.故答案为:(B).【点评】关键抓住A国的人口增长率为2.5%,B国的人口增长率为﹣1.5%及两个条形统计图的特征来判断.三.判断题(共5小题)13.【分析】为了便于分析和比较,有时需要把两个有联系的统计图合编成一个复式统计图.但不是任意两个条形统计图都可以合成一个纵向复式条形统计图,据此即可判断.【解答】解:为了便于分析和比较,有时需要把两个有联系的统计图合编成一个复式统计图.原题说法错误.故答案为:×.【点评】此题考查的目的是掌握复式条形统计图的特点及作用.14.【分析】先从最高位排列,百位上有3种选择,十位上有2种选择,个位上有1种选择,所以共有:3×2×1=6(个),据此解答即可.【解答】解:3×2×1=6(个),即用2、4、6这三个数字可以组成6个不同的三位数.故答案为:×.【点评】本题考查了简单的乘法原理:即做一件事情,完成它需要分成n个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,…,做第n步有M n种不同的方法,那么完成这件事就有M1×M2×…×M n种不同的方法.15.【分析】先求出1厘米代表多少吨,用180吨除以4厘米代表的吨数就是180吨应画的长度.【解答】解:90÷2=45(万吨);180÷45=4(厘米);故答案为:√.【点评】本题先求出不变的单一量,然后再根据这个单一量求解.16.【分析】在同一个条形统计图,表示数量的轴所分成的格数是相同的,每小格所表示的数量是相同的.【解答】解:在同一个条形统计图中,每小格表示的数量多少是相等的;原题说法错误.故答案为:×.【点评】同样长的小格,不同的条形统计图中所代表的数量可以不同,但在同一个条形统计图中,每小格表示的数量多少一定相等.17.【分析】根据我们平时统计数据的方法,在统计的数据比较多时,可以先分组统计,然后再汇总.【解答】解:在统计的数据比较多时,可以先分组统计,再汇总.这种说法是正确的.故答案为:√.【点评】此题是考查统计数据的方法,要记住.四.应用题(共3小题)18.【分析】首先根据整数加法的运算方法,把空调扇、学习机、护眼灯这三种商品的价格相加,求出买这三种商品一共需要多少钱;然后把它和1200比较大小即可.【解答】解:580+335+267=1182(元)1200>1182所以爸爸带了1200元钱,买这三种商品够;答:爸爸带了1200元钱,买这三种商品够.【点评】此题主要考查了统计表的实际应用以及整数加法的运算方法,要熟练掌握,解答此题的关键是求出买这三种商品一共需要多少钱.19.【分析】根据火车票票价的规律,1.50米以上购买成人票,1.10﹣1.150米,购买半票,1.10米以下免票.由此可知:小红免票,小明半票,小军、小丽和王老师购买成人票,据此解答即可.【解答】解:120×3+120×=360+60=420(元),答:所有成员买单程票共需420元.【点评】此题考查的目的是理解掌握统计表的特点及作用,并且能够根据统计表提供的信息,解。
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合问题的解题思路和解题方法一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 (倍缩法):7373/A A (空位法) 47A (插入法)练习:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 共有67种不同的排法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法873. 七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 75六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 7!练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 215445A A A 种 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个 222222A A A .练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 共有69C 种分法。
第六讲排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。
四年级奥数讲义:排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。
四年级奥数:排列组合的综合应用1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?7.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.8.从19,20,21,…,97,98,99这81个数中,选取两个不同的数,使其和为偶数的选法总数是多少?9.现有五元人民币2张,十元人民币8张,一百元人民币3张,用这些人民币可以组成多少种不同的币值?参考答案1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成20种加法式子(包括被加数与加数交换位置,例如将1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
四年级数学第六讲:排列组合的综合应用基础班1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5. 200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成 20种加法式子(包括被加数与加数交换位置,例如将 1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
第六讲:排列组合的综合应用基础班1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5. 200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成 20种加法式子(包括被加数与加数交换位置,例如将 1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
6.2.3 排列组合的综合运用(精讲)考法一全排列【例1】(2020·全国专题练习)在新冠肺炎疫情防控期间,某记者要去武汉4个方舱医院采访,则不同的采访顺序有()A.4种B.12种C.18种D.24种【答案】D【解析】由题意可得不同的采访顺序有4424A 种,故选:D.【一隅三反】1.(2020·全国专题练习)2020年初,我国向相关国家派出了由医疗专家组成的医疗小组.现有四个医疗小组和4个需要援助的国家,每个医疗小组只去一个国家,且4个医疗小组去的国家各不相同,则不同的分配方法有()A.64种B.48种C.24种D.12种【答案】C【解析】4个医疗小组全排列后按顺序到四个国家即可,共有4424A=种方法.故选:C.2.(2020·吉林吉林市·高二期末)将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90【答案】C【解析】由题意,将5本不同的数学用书放在同一层书架上,即将5本不同数学书全排列,故有55120A=种,故选:C.3.(2020·灵丘县豪洋中学高二期末)3本不同的课外读物分给3位同学,每人一本,则不同的分配方法有()A.3种B.6种C.12种D.5种【答案】B【解析】3本不同的课外读物分给3位同学,每人一本,全排列:333216A=⨯⨯=.故选:B考法二相邻问题【例2】(2021·河北张家口市)某班优秀学习小组有甲、乙、丙、丁、戊共5人,他们排成一排照相,则甲、乙二人相邻的排法种数为()A.24 B.36 C.48 D.60【答案】C【解析】先安排甲、乙相邻,有22A种排法,再把甲、乙看作一个元素,与其余三个人全排列,故有排法种数为424248A A⨯=.故选:C【一隅三反】1.(2020·全国专题练习)在某场新冠肺炎疫情视频会议中,甲、乙、丙、丁、戊五位疫情防控专家轮流发言,其中甲必须排在前两位,丙、丁必须排在一起,则这五位专家的不同发言顺序共有()A.8种B.12种C.20种D.24种【答案】C【解析】当甲排在第一位时,共有323212A A=种发言顺序,当甲排在第二位时,共有1222228C A A=种发言顺序,所以一共有12820+=种不同的发言顺序.故选:C.2.(2020·湖北随州市·高二期末)5个人排成一排照相,甲乙要相邻,则有多少种排列的方法()A.24种B.36种C.48种D.72种【答案】C【解析】5个人排成一排照相,甲乙要相邻,则有424248A A=种排列的方法.故选:C.3.(2020·重庆高二期末)6月,也称毕业月,高三的同学们都要与相处了三年的同窗进行合影留念.现有4名男生、2名女生照相合影,若女生必须相邻,则有()种排法.A.24 B.120 C.240 D.140【答案】C【解析】将2名女生捆绑在一起,当作1个元素,与另4名男生一起作全排列,有55120A=种排法,而2个女生可以交换位置,所以共有52521202240A A⋅=⨯=排法,故选:C.4.(2020·深圳市龙岗区龙城高级中学)把座位号为1、2、3、4、5、6的六张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,且分给同一人的多张票必须连号,那么不同的分法种数为()A.96B.240C.280D.480【答案】B【解析】因为每人至少一张,且分给同一人的多张票必须连号,又分给甲、乙、丙、丁四个人,则在座位号1、2、3、4、5、6的五个空位插3个板子,有3510C=种,然后再分给甲、乙、丙、丁四个人,有4424A=种,所以不同的分法种数为1024240⨯=,故选:B考法三不相邻问题【例3】(2020·河北石家庄市·石家庄二中高二期中)省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有()种安排方式. A.12 B.24 C.36 D.48【答案】B【解析】6间空教室,有3个空教室不使用,故可把作为检查项目的教室插入3个不使用的教室之间,故所有不同的安排方式的总数为3424A=.故选:B.【一隅三反】1.(2020·北京高二期末)3位老师和4名学生站成一排,要求任意两位老师都不相邻,则不同的排法种数为()A .77A B .4343A A +C .4343A A D .4345A A【答案】D【解析】根据题意,分2步进行:①将4名学生站成一排,有44A 种排法;②4人排好后,有5个空位可选,在其中任选3个,安排三名教师,有35A 种情况;则有4345A A 种排法; 故选:D .2.(2020·北海市教育教学研究室高二期末)若5个人排成一列纵队,则其中甲、乙、丙三人两两不相邻的排法有( ) A .12种 B .14种 C .5种 D .4种【答案】A【解析】分两步完成:第一步,5个人中除去甲、乙、丙三人余2人排列有22A 种排法;第二步,从3个可插空档给甲、乙、丙3人排队有33A 种插法.由分步乘法计数原理可知,一共有2323A A 种排法.故答案选A 3.(2020·四川省新津中学)五名学生和五名老师站成一排照相,五名老师不能相邻的排法有( ) A .55552A A B .5565A AC .55562A AD .5555A A【答案】B【解析】由题意五名老师不能相邻用插空法,排法数为5565A A .故选:B .4.(2020·重庆市第七中学校高二月考)现“学习强国”平台设有“阅读文章”、“视听学习”等多个栏目.在某时段时,更新了2篇文章和4个视频,一位学习者准备学习这2篇文章和其中2个视频,则这2篇文章学习顺序不相邻的学法有( )种. A .24 B .36 C .72 D .144【答案】C【解析】根据题意,分2步进行分析:①,在4个视频中任选2个进行学习,有246C =种情况, ②,将选出的2个视频与2篇文章依次进行学习,共有4424A =种情况,其中2篇文章学习顺序相邻的情况有232312A A =种情况,故2篇文章学习顺序不相邻的情况有12种,则这2篇文章学习顺序不相邻的学法有61272⨯=种;故选:C考法四 分组分配【例4】(2020·全国)疫情期间,上海某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有( ) A .60种 B .90种 C .150种 D .240种【答案】C【解析】5名专家到3个不同的区级医院,分为1,2,2和1,1,3两种情况;分为1,2,2时安排有1223542322C C C A A ;分为1,1,3时安排有1133543322C C C A A 所以一共有12211333542543332222150C C C C C C A A A A +=故选:C 【一隅三反】1.(2020·广东深圳市·深圳外国语学校)有四位朋友于七夕那天乘坐高铁G 77从武汉出发(G 77只会在长沙、广州、深圳停),分别在每个停的站点至少下一个人,则不同的下车方案有( ) A .24种 B .36种 C .81种 D .256种【答案】B【解析】依据题意每个停的站点至少下一个人,先按2+1+1分成三组,有24C 种分法,再分配到三个站点,有33A 种分法,所以一共有234336C A =种不同的下车方案.故选:B.2.(2020·河北)特岗教师是中央实施的一项对中西部地区农村义务教育的特殊政策.某教育行政部门为本地两所农村小学招聘了6名特岗教师,其中体育教师2名,数学教师4名.按每所学校1名体育教师,2名数学教师进行分配,则不同的分配方案有( ) A .24 B .14 C .12 D .8【答案】C【解析】先把4名数学教师平分为2组,有2242223=C C A 种方法, 再把2名体育教师分别放入这两组,有222A =种方法,最后把这两组教师分配到两所农村小学,共有223212A ⨯⨯=种方法.故选:C.3.(2020·江西高二期末)江西省旅游产业发展大会于2020年6月11日~13日在赣州举行,某旅游公司为推出新的旅游项目,特派出五名工作人员前往赣州三个景点进行团队游的可行性调研.若每名工作人员只去一个景点且每个景点至少有一名工作人员前往,则不同的人员分配方案种数为( ) A .60 B .90 C .150 D .240【答案】C【解析】根据题意,分2步进行分析: ①将五名工作人员分成3组,若分为3、1、1的三组,有3510C =种分法, 若分为2、2、1的三组,2215312215C C C A =种分法,则有101525+=种分组分法;②将分好的三组全排列,对应三个景点,有336A =种情况,则有256150⨯=种分配方法;故选:C .4.(2020·四川达州市·高二期末)公元2020年年初,19COVID -肆虐着中国武汉,为了抗击19COVID -,中国上下众志成城,纷纷驰援武汉.达州市决定派出6个医疗小组驰援武汉市甲、乙、丙三个地区,每个地区分配2个医疗小组,其中A 医疗小组必须去甲地,则不同的安排方法种数为( ) A .30 B .60 C .90 D .180【答案】A【解析】根据题意,分2步进行:①将6个医疗小组平均分成3组,每组2支医疗队,有22264233=15C C C A 种分组方法; ②将甲所在的小组安排到甲地,其他两个小组安排到乙、丙两地,有222A =种情况,则有15230⨯=种不同的安排方法. 故选:A.5.(2020·沈阳市·辽宁省实验中学分校高二期末)据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .35【答案】B【解析】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C A A A A A ⋅=种分法; 其中伯爵恰有两人的分法有2211142247532247543232C C C C C A C C A A A ⋅=种分法, ∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B .考向五 几何问题【例5】(2020·全国)如图,MON ∠的边OM 上有四点1A 、2A 、3A 、4A ,ON 上有三点1B 、2B 、3B ,则以O 、1A 、2A 、3A 、4A 、1B 、2B 、3B 中三点为顶点的三角形的个数为( )A .30B .42C .54D .56【答案】B【解析】利用间接法,先在8个点中任取3个点,再减去三点共线的情况,因此,符合条件的三角形的个数为33384542C C C --=.故选:B.【一隅三反】1.(2020·湖南高三开学考试)以长方体的顶点为顶点的三棱锥共有( )个 A .70 B .64 C .60 D .58【答案】D【解析】三棱锥有4个顶点,从长方体8个顶点中任取4个点共有488765C 704321⨯⨯⨯==⨯⨯⨯种取法,排除其中四点共面的有:长方体的面6个,对角面6个,可得不同的三棱锥有701258-=个.故选:D. 2.(2020·昆明呈贡新区中学)在圆上有6个不同的点,将这6个点两两连接成弦,这些弦将圆分割成的区域数最多为( ) A .32B .15C .16D .31【答案】D【解析】两个点可以连一条弦,将圆分为两部分,加一个点,多两条弦,将圆多分出来两部分,所以每加一条弦可以按这种方式多出一个区域,再加一个点,变成了一对相交弦和四条其他的弦,共分为8个区域,所以除去前一种方式增加的区域数,一对相交弦还会多产生一个区域,故当点数多于4个时,最多可分得总的区域数为241C C n n ++,此题6n =,所以最多可分为31个区域.故选:D .3.(2020·北京丰台区·高二期末)平面内有8个点,以其中每2个点为端点的线段的条数为( ) A .21 B .28 C .42 D .56【答案】B【解析】线段由2个端点组成,因此只需要从8个点中选取2个即可构成一条线段,所以线段条数为2828C =,故选:B.4.(2020·上海浦东新区·华师大二附中高二期中)以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492【答案】B【解析】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种,故选:B.考向六 方程不等式问题【例6】(2020·全国)方程10x y z ++=的正整数解的个数__________. 【答案】36【解析】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法. 将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球.隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36【一隅三反】1.(2021·山西太原市)三元一次方程x +y +z =13的非负整数解的个数有_____. 【答案】105【解析】由,,x y z N ∈,则13,,,x y z x y z N ++=∈设1,1,1a x b y c z =+=+=+,则,,a b c N +∈且16a b c ++=,则三元一次方程x +y +z =13的非负整数解的个数等价于16a b c ++=,,,a b c N +∈的解的个数,等价于将16个相同的小球分成3组,每组至少1个小球的不同分法,又将16个相同的小球分成3组,每组至少1个的不同分法,只需在16个球之间的15个空中选2个空用隔板隔开即可,则共有21515141052C ⨯==种分法,即三元一次方程x +y +z =13的非负整数解的个数有105个, 故答案为:105.2.(2020·四川雅安市·雅安中学高二月考)方程123412x x x x +++=的正整数解共有( )组 A .165 B .120C .38D .35【答案】A【解析】如图,将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选三个插入三块隔板,把球分成四组,每一种分法所得球的数目依次是1x 、2x 、3x 、4x ,显然满足123412x x x x +++=,故()1234,,,x x x x 是方程123412x x x x +++=的一组解,反之,方程123412x x x x +++=的每一组解都对应着一种在12个球中插入隔板的方式,11 / 12故方程123412x x x x +++=的正整数解的数目为:31111109165321C ⨯⨯==⨯⨯,故选:A.考向七 数字问题【例7】(2020·南通西藏民族中学)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( ) A .6种 B .9种 C .10种D .15种【答案】C【解析】在这六个数字中任取三个求和,则和的最小值为1236++=,和的最大值为45615++=, 所以当从1,2,3,4,5,6中任取三个数相加时,则不同结果有10种.故选:C. 【一隅三反】1.(2020·全国)在1,2,3,4,5,6,7这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的所有取法种数为( ) A .6 B .12 C .18 D .24【答案】A【解析】根据题意,数字5是取出的五个不同数的中位数,则取出的数字中必须有5、6、7,在1,2,3,4中有2个数字,则不同的取法有246C =种,故选:A . 2.(2020·广东汕尾市·高二月考)从1,3,5,7,9中任取3个数宇,与0,2,4组成没有重复数字的六位数,其中偶数共有( ) A .312个 B .1560个 C .2160个 D .3120个【答案】D【解析】从1,3,5,7,9中任取3个数宇,与0,2,4组成没有重复数字的六位偶数,可分为以下两种情况:①、0放在末位,从1,3,5,7,9中任取3个数宇,再与2,4全排列即可,共有35551200C A ⋅=个;②、0不放在末位,从1,3,5,7,9中任取3个数宇,再从2,4中选择一个作为末位数,从剩下的非首位中选择一个放置0,再将余下的数字全排列即可,共有311452441920C C C A ⋅⋅⋅=个;则满足要求的偶数共有120019203120+=个. 故选:D.3.(2020·浙江高三其他模拟)从1,2,3,4,5,6,7,8,9这9个数中取三个,所取三个数之积为偶数且能被12 / 123整除,则不同的选取方法有( ) A .55种 B .61种 C .64种 D .70种【答案】A【解析】对三个数中有没有6进行分类:①含有6时,只需从剩下的8个数中任意选两个即可,即28C 28=种; ②不含6时,则需要3与9.当3与9同时存在时,需要从剩余的3个偶数中选一个,即133C =种;当3与9有1个存在时,偶数可以选1个或2个,即()11122333C C C C 24⋅+=种. 综上所述,不同的选取方法有55种, 故选:A .。
排列组合知识点总结+ 典型例题及答案解析1.加法原理:做一件事有n类方法,那么完成这件事的方法数等于各类方法数相加.2.乘法原理:做一件事分n步完成,那么完成这件事的方法数等于各步方法数相乘.注:做一件事时,元素或位置允许重复使用,求方法数时常用根本原理求解.二.排列:从n个不同元素中,任取m (mwn)个元素,根据一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列,所有排列的个数记为A m.1.公式:1. Am =n(n-1'(n.2 )••…(n —m+1)=」^科之期〞21,那20m 那ENn - m !2.4=次=旃T)(阀-2卜21规定:0』1(1) n! =n x(n-1)!,( n+1)M n! =(n+1)!(2) n 父n! =[(n+1)-1]父n! = (n + 1)M n!—n! = (n+1)!—n!;n n 1 -1n 1111(n 1)! "(n 1)! "(n 1)! "(n 1)! "n! "(n 1)!三.组合:从n个不同元素中任取m (me n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作Cn小〞m:n-m〞右心眼…".规定:eg1.公式:c m春2.组合数性质:cm =cr, cm +cn m==c:+ c +c +……+cn =2n①g er;②O&+琛;③©"密;④4cyy:什c r/r .c r r .C r_c r1-c r .c rr .C r_c r1-c rr .C r_c r1注. c r C r1C r2C n1 C n- C r1C r1C r2C n3.口- C r2C r2C n 二.口- C n 1假设c nm1=C n m2那么m1二m2 或m〔+m2 =n四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类.2.解排列、组合题的根本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉.这是解决排列组合应用题时一种常用的解题方法.(2)分类处理:当问题总体不好解决时,常分成假设干类,再由分类计数原理得出结论.注意: 分类不重复不遗漏.即:每两类的交集为空集,所有各类的并集为全集.(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成假设干步,再由分步计数原理解决.在处理排列组合问题时,常常既要分类,又要分步.其原那么是先分类, 后分步.(4)两种途径:①元素分析法;②位置分析法.3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑〞起来,看作一“大〞元素与其余元素排列,然后再对相邻元素内部进行排列.(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两文档大全端的空隙之间插入.(5)、顺序一定,除法处理.先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数.即先全排,再除以定序元素的全排列.解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,假设定序元素要求从左到右或从右到左排列, 那么只有1种排法;假设不要求, 那么有2种排法;(6) “小团体〞排列问题一一采用先整体后局部策略对于某些排列问题中的某些元素要求组成“小团体〞时,可先将“小团体〞看作一个元素与其余元素排列,最后再进行“小团体〞内部的排列.(7)分排问题用“直排法〞把元素排成几排的问题,可归纳为一排考虑,再分段处理.(8).数字问题(组成无重复数字的整数)① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数.②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数.⑤能被5整除的数的特征:末位数是0或5.⑥能被25整除的数的特征:末两位数是25, 50, 75.⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数.4.组合应用题:(1). “至少〞“至多〞问题用间接排除法或分类法:(2). “含〞与“不含〞用间接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘.即除法处理.非均匀分组:分步取,得组合数相乘.即组合处理.混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘.4.分配问题:定额分配:〔指定到具体位置〕即固定位置固定人数,分步取,得组合数相乘.随机分配:〔不指定到具体位置〕即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘.5.隔板法:不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告, 要求首尾必须播放公益广告,那么共有种不同的播放方式〔结果用数值表示〕.解:分二步:首尾必须播放公益广告的有A2种;中间4个为不同的商业广告有A4种,从而应当填A22• A i4= 48.从而应填48.例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法解一:间接法:即A6 -A5 -A5 • A4 =720 -2 120 24 =504解二:〔1〕分类求解:按甲排与不排在最右端分类.〔1〕甲排在最右端时,有A5种排法;〔2〕甲不排在最右端〔甲不排在最左端〕时,那么甲有A4种排法,乙有A4种排法,其他人有A4种排法,共有A4A4A:种排法,分类相加得共有A5+A A4 A4 =504 种排法例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法分析一:先在7个位置上任取4个位置排男生,有A7种排法.剩余的3个位置排女生,因要求“从矮到高〞,只有1种排法,故共有A7 • 1=840种.1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,那么不同的取法共有解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机, 故不同的取法共有C;-C3 -C; = 70种,选.C解析2:至少要甲型和乙型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有C;C:+C5c2 =70台,选C.2.从5名男生和4名女生中选出4人去参加辩论比赛.31)如果4人中男生和女生各选2人,有种选法;42)如果男生中的甲与女生中的乙必须在内,有一种选法;53)如果男生中的甲与女生中的乙至少要有1人在内,有一种选法;(4)如果4人中必须既有男生又有女生,有种选法.分析:此题考查利用种数公式解答与组合相关的问题.由于选出的人没有地位的差异,所以是组合问题. 解:(1)先从男生中选2人,有C;种选法,再从女生中选2人,有C:种选法,所以共有C;C:=60 (种);(2)除去甲、乙之外,其余2人可以从剩下的7人中任意选择,所以共有C;C«21 (种);(3)在9人选4人的选法中,把甲和乙都不在内的去掉,得到符合条件的选法数:C:-C〞91〔种〕;直接法,那么可分为3类:只含甲;只含乙;同时含甲和乙,得到符合条件的方法数C1 c 3 c 1C 3c 2 c 2 c 3 c 3c 2 .C1 C7 C1C7 C2C7 -C7 C7 C7 -91.〔4〕在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数C4—C4 —C:=120 〔种〕.直接法:分别根据含男生1、2、3人分类,得到符合条件的选法为C;C H C;C2+C;C4=120〔种〕.1.6个人分乘两辆不同的汽车,每辆车最多坐4人,那么不同的乘车方法数为〔〕A. 40B. 50C. 60D. 70[解析]先分组再排列,一组2人一组4人有C6= 15种不同的分法;两组各3人共有又=10A种不同的分法,所以乘车方法数为25X 2 = 50,应选B.2.有6个座位连成一排,现有3人就坐,那么恰有两个空座位相邻的不同坐法有〔〕A 36 种B. 48 种C . 72 种D. 96 种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共66=72种排法,应选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有〔〕B. 9 个C . 18 个 D. 36 个[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C3=3〔种〕选法,即1231,1232,1233,而每种选择有&xd = 6〔种〕排法,所以共有3X6= 18〔种〕情况,即这样的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有〔〕A. 2人或3人B . 3人或4人C.3人D.4人[解析]设男生有n人,那么女生有〔8—n〕人,由题意可得CnC1 n = 30,解得n= 5或n = 6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,假设规定从二楼到三楼用8步走完,那么方法有〔〕A 45 种B. 36 种C . 28 种D. 25 种[解析]由于10 + 8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 步,那么共有C2=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,那么不同的分配方案共有〔〕A 24 种B. 36 种C . 38 种D. 108 种[解析]此题考查排列组合的综合应用,据题意可先将两名译人员分到两个部门,共有2 种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C1种分法,然后再分到两部门去共有C36种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C3种方法,由分步乘法计数原理共有2〔1大点=36〔种〕.7.集合A= {5}, B= {1,2} , C= {1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,那么确定的不同点的个数为〔〕A 33B. 34 C . 35D. 36[解析]①所得空间直角坐标系中的点的坐标中不含1的有6= 12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C1 - A3 + A3=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有0 = 3个.故共有符合条件的点的个数为12+18+3= 33个,应选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是〔〕A. 72B. 96 C . 108D. 144[解析]分两类:假设1与3相邻,有A• CA2A2 = 72〔个〕,假设1与3不相邻有A3Y = 36〔个〕故共有72+36= 108个.9.如果在一周内〔周一至周日〕安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有〔〕A. 50 种B. 60 种C . 120 种D. 210 种[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:〔1,2〕、〔2,3〕、〔3,4〕、〔4,5〕、〔5,6〕、〔6,7〕,甲任选一种为C6,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有戌种,根据分步乘法计数原理可知共有不同的安排方法CL A5=120种, 应选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有种.〔用数字作答〕[解析]先安排甲、乙两人在后5天值班,有A2=20〔种〕排法,其余5人再进行排列,有点=120〔种〕排法,所以共有20X 120= 2400〔种〕安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的排法.〔用数字作答〕[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C9 <5 <3= 1260〔种〕排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆效劳,不同的分配方案有种〔用数字作答〕.……八,,—?a一,,工心,,口八।八[解析]先将6名志愿者分为4组,共有天■种分法,再将4组人员分到4个C2 C2不同场馆去,共有A4种分法,故所有分配方案有:一忌一, A4= 1 080种.13.要在如下图的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有种不同的种法〔用数字作答〕.[解析]5有4种种法,1有3种种法,4有2种种法.假设1、3同色,2有2种种法,假设1、3不同色,2有1种种法,.•.有4X 3X2X〔1 X2+1X1〕=72种.14.将标号为1,2, 3, 4, 5, 6的6张卡片放入3个不同的信封中.假设每个信封放2张,其中标号为1, 2的卡片放入同一信封,那么不同的方法共有〔Q 36种〔酚54种0;种方法;其他四封信放入两个信封,每个信封两应选B.15 .某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,假设7位员工中的甲、乙排在相邻两天,丙不排在 10月1日,丁不排在10月7日,那么不同的安排方案 共有A. 504 种B. 960 种C. 1008 种D. 1108 种解析:分两类:甲乙排1、2号或6、7号 共有2MA 2A :A :种方法甲乙排中间,丙排7号或不排7号,共有4A ;〔A :+A 3A 3A ;〕种方法故共有1008种不同的排法排列组合二项式定理1,分类计数原理完成一件事有几类方法,各类方法相互独立每类方法又有多种不同的方法〔每一种都可以 独立的完成这个事情〕分步计数原理完成一件事,需要分几个步骤,每一步的完成有多种不同的方法2,排列排列定义:从 n 个不同元素中,任取 m 〔m< n 〕个元素〔被取出的元素各不相同〕,根据一定的 顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.排列数定义;从 n 个不同元素中,任取 m 〔me n 〕个元素的所有排列的个数 A :〔A 〕 12 种〔B 〕 18 种 【解析】标号1,2的卡片放入同一封信有 与纪0;= 13个有工〞种方法,共有「三1一,种排列组合题型总结一. 直接法1 .特殊元素法例1用1, 2, 3, 4, 5, 6这6个数字组成无重复的四位数,试求满足以下条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位.分析:(1)个位和千位有5个数字可供选择A ;,其余2位有四个可供选择AJ 由乘法原理:A ;A :=240 2 .特殊位置法(2)当1在千位时余下三位有A 3=60, 1不在千位时,千位有A 4种选法,个位有A 4种,余下的有 心 共有A 4 A 4A 42 =192所以总共有 192+60=252 二 间接法 当直接法求解类别比拟大时,应采用间接法.如上例中(2)可用间接法A4-2A3 + Af=252八一 m n!公式 A = 规定0! =13,组合组合定义 从n 个不同元素中,任取 m (m< n)个元素并成一组,叫做从n 个不同元素中取出m 个元素 的一个组合组合数 从n 个不同元素中,任取 m (m< n)个元素的所有组合个数m C m _ n!C n m!(n -m)!mn -m性质C =C mm m 1 C ni =C n C n例:有五张卡片,它的正反面分别写0与1, 2与3, 4与5, 6与7, 8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数分析::任取三张卡片可以组成不同的三位数C;M23 MA;个,其中0在百位的有C:M22M A;个,这是不合题意的.故共可组成不同的三位数C3 23A;-C2 22 A;=432例:三个女生和五个男生排成一排(1)女生必须全排在一起有多少种排法(捆绑法)(2)女生必须全分开(插空法须排的元素必须相邻)(3)两端不能排女生(4)两端不能全排女生(5)如果三个女生占前排,五个男生站后排,有多少种不同的排法二. 插空法当需排元素中有不能相邻的元素时,宜用插空法.例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有A;M A;0=100中插入方法.三. 捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法.1.四个不同的小球全部放入三个不同的盒子中,假设使每个盒子不空,那么不同的放法有种(CjA;),2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,那么植物园30天内不同的安排方法有(C29-A29)(注意连续参观2天,即需把30大种的连续两天捆绑看成一天作为一个整体来选有C;9其余的就是19所学校选28天进行排列)四. 阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种.分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入实用标准7块闸板,一种插法对应一种名额的分配方式,故有C:i种五平均分推问题例:6本不同的书按一下方式处理,各有几种分发(1)平均分成三堆,(2)平均分给甲乙丙三人(3)一堆一本,一堆两本,一对三本(4)甲得一本,乙得两本,丙得三本(一种分组对应一种方案)(5)一人的一本,一人的两本,一人的三本分析:1,分出三堆书(a i,a2),(a 3,a,,(a5,a.由顺序不同可以有8=6种,而这6种分法只算一种分堆222方式,故6本不同的书平均分成三堆方式有C6c3c2 =15种A2,六本不同的书,平均分成三堆有x种,平均分给甲乙丙三人c2c4c2就有x A3种12331233,c6c5c 3 5, A3 c6c5c 3五.合并单元格解决染色问题Eg如图1, 一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,那么不同的着色方法共有一种(以数字作答).分析:颜色相同的区域可能是2、3、4、5. 下面分情况讨论:(i)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元2,4素①③⑤的全排列数A44〔ii〕当2、4颜色不同且3、5颜色相同时,与情形〔i 〕类似同理可得A种着色法.〔iii〕当2、4 G与3.g别同色时,将2、4; 3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有C4,A;种方法• 由加法原理知:不同着色方法共有2 A4+C3 A3=48+24=72 〔种〕练习1 〔天津卷〔文〕〕将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种〔以数字作答〕〔72〕2.某城市中央广场建造一个花圃,花圃6分为个局部〔如图3〕,现要栽种4种颜色的花,每局部栽种一种且相邻局部不能栽种同一样颜色的话,不同的栽种方法有种〔以数字作答〕.〔120〕3.如图4,用不同的5种颜色分别为ABCD比局部着色,相邻局部不能用同一颜色,但同一种颜色可以反复使用也可以不用,那么符合这种要求的不同着色种数.〔 540〕4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装, 且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法5 .将一四棱锥〔图6〕的每个顶点染一种颜色,并使同一条棱的两端点异色,假设只有五种颜色可供使用,那么不同的染色方法共 种〔420〕 是 种〔84〕图5。
小学奥数排列组合解析
介绍
在小学奥数中,排列组合是一个重要的概念。
通过排列组合,我们可以确定不同物品的排列方式或组合方式。
在此文档中,我们将详细解析排列组合的概念和应用。
排列
排列指的是从一组物品中,取出一些物品按照一定的顺序进行排列的方式数。
例如,从A、B、C、D中选出两个,所有可能的排列如下:
AB、AC、AD
BA、BC、BD
CA、CB、CD
DA、DB、DC
因此,从四个不同的物品中选出两个进行排列的方式数为:4 X 3 = 12
组合
组合指的是从一组物品中,取出一些物品进行组合的方式数。
与排列不同,组合不考虑排列顺序。
例如,从A、B、C、D中选出两个,所有可能的组合如下:
AB、AC、AD、BC、BD、CD
因此,从四个不同的物品中选出两个进行组合的方式数为:4! / (2! * (4-2)!) = 6
应用
排列和组合在数学以及现实生活中有广泛应用。
例如,从一组球员中选出不同的首发阵容,从一组物品中选出特定的组合等等。
在小学奥数研究中,排列组合也是其他数学概念研究的基础,是培养逻辑思维和解决问题能力的关键部分。
结论
在小学奥数中,排列组合是重要的数学概念和应用,通过学习和理解排列组合可以帮助我们更好地理解其他有关概率和统计学的概念。
第六讲最值问题一知识精讲一、 对于种类数较少的情况,进行枚举尝试即可.二、 在枚举的过程中,注意结果的变化,在不同结果间进行比较和总结,得出一般规律,从而推广到更加复杂的情况.三、 优先考虑较为极端的情况.四、 在两个数的和一定的情况下(和同),这两个数的差越小,乘积越大(近积大).这个原则可以推广到多个数的情况.五、 当有多个因素影响最终结果时,应优先考虑较为重要的因素.例题解析【例1】 一个两位数除以它的各位数字之和,余数最大是多少?【例2】 4个小朋友,每人的体重都是整数千克,而且其中任意3人体重之和都大于99千克.这4个小朋友体重之和最小是多少千克【例3】 将1~30依次写成一排:12345"282930,形成一个多位数,从这个多位数中划掉45个数字,剩下的数最大是多少?如果要求剩下的数首位不为0,这个数最小是多少?【例4】 用1,2,3,4,6,7,8,9这8个数字组成2个四位数,使这2个数的差最小(大减小),这个差最小是多少?【例5】将2~8这7个自然数填入算式“×−÷□□□□□□□”的□中,如果算式的计算结果为整数,那么这个结果最大是多少,最小是多少?【例6】如图23-5,一只木箱的长、宽、高分别为5厘米、3厘米、4厘米.有一只甲虫从A点出发,沿棱爬行,每条棱只允许爬一次,甲虫最多能爬行多少厘米?如果要求甲虫最后回到A点,那么它最多能爬行多少厘米?【例7】如图23-6,黑板上写有一个三位数减三位数的算式,其中首位已经确定.接下来,甲每次报一个数字,乙就把它放入四个方框中的一个,甲要使得差尽量大,乙要使得差尽量小,如果两人都使用最佳的策略,那么最后的差是多少?【例8】一栋大楼共33层,电梯停在第1层,现在有32个人分别要去第2层、第3层……第33层,他们可以选择坐电梯或者走楼梯.有一天电梯坏了,电梯只能在某一层停,每个人可以选择走楼梯上楼或乘电梯到这一层再走楼梯.每个人上一层楼梯会有3分不满意,下一层楼梯会有1分不满意.请问:电梯停在哪一层,才能使得所有人不满意的总分数最小?2F F−1F F图23-6534ACHBE FD图23-5。
第六讲排列组合的综合应用
排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)
当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.
例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.
解:符合要求的选法可分三类:
不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.
因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.
注运用两个基本原理时要注意:
①抓住两个基本原理的区别,千万不能混.
不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.
不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.
②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.
③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.
例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.
分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.
解:
由此可知,排列共有如下八种:
正正正、正正反、正反正、正反反、
反正正、反正反、反反正、反反反.
例3 用0~9这十个数字可组成多少个无重复数字的四位数.
分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.
解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.
解:分两步完成:
第一步:从1~9这九个数中任选一个占据千位,有9种方法.
第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.
由乘法原理,共有满足条件的四位数9×9×8×7=4536个.
答:可组成4536个无重复数字的四位数.
解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.
解:组成的四位数分为两类:
第一类:不含0的四位数有9×8×7×6=3024个.
第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.
∴由加法原理,共有满足条件的四位数
3024+1512=4536个.
解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.
解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数
10×9×8×7-9×8×7
=9×8×7×(10-1)
=4536个.
注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.
例4 从右图中11个交点中任取3个点,可画出多少个三角形?
分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.
解:组合总数为C311,
其中三点共线不能构成的三角形有7C33,
四点共线不能构成的三角形有2C34,
∴C311-(7C33+2C34)=165-(7+8)=150个.
例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)
分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:
①7=1+1+1+4
②7=1+2+2+2
③7=1+1+2+3
其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.
第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.
第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.
第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.
∴由加法原理,可得符合题目要求的不同放法有
4+4+12=20(种)
答:共有20种不同的放法.
注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.
例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?
分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).
先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)
如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥
但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.
因此着色法共有2 C47+6 C37+3 C27+ C17=350种.
习题六
1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?
2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?
3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?
4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?
5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?
6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。