主蒸汽温度控制系统
- 格式:doc
- 大小:59.00 KB
- 文档页数:5
主蒸汽温度控制系统本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。
由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。
两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。
主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。
该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。
一、二级减温水控制系统是相互独立的,现分别予以剖析。
1.1 一级减温水控制一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。
图2为原理性框图。
这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P ,主汽压偏差△P 的函数(P1、P 、△P )。
其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。
但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。
① 最小一级减温水量限制限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。
图2中,A1为屏过出口所允许的最高汽温值。
当屏过出口汽温高于这个最高值后,PID 1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P ,高过 屏过 初过 左侧 右侧 左侧 右侧 关断阀 调节阀 调节阀 关断阀 给泵 高加 给水截止阀和逆止阀 压力调节阀 汽包图 1 逆止阀隔离阀△P ),即去降低一级减温器出口温度定值,PID 0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。
② 最大一级减温水量限制限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。
利用DCS的过热汽温系统控制系统设计一、集散控制系统分析集散控制系统是以微处理器为基础的集中分散控制系统。
自70年代中期第一套集散控制系统问世以来,集散控制系统己经在工业控制领域得到广泛的应用,越来越多的仪表和控制工程师已经认识到集散控制系统必将成为过程工业自动控制的主流。
集散控制系统的主要特性是它的集中管理和分散控制,而且,随着计算机技术的发展,网络技术己经使集散控制系统不仅主要用于分散控制,而且向着集成管理的方向发展。
系统的开放不仅使不同制造厂商的集散控制系统产品可以互相连接,而且使得它们可以方便地进行数据交换。
DCS集散式温度控制系统图二、DCS系统主要技术指标调研(1)操作员站及工程师站:CPU PⅢ850以上内存128M以上硬盘40G以上软驱 1.44M以太网卡INTEL 100M×2块加密锁组态王加密锁鼠标轨迹球键盘工业薄膜键盘显示器21寸显示器分辨率1280×1024过程控制站:CPU PⅢ850以上内存128M以上硬盘40G以上电子盘8M以上软驱 1.44M以太网卡INTEL 100M×1块串行通讯卡485卡×1块(可选)(2)I/O站技术指标1)EF4000网络EF-4000网络是多主站、双冗余高速网络,通信波特率为312.5K和1.25M可编程;EF4000网络配合EF4000系列测控站(前端),可以完成工业现场各类信号的采集、处理和各类现场对象的控制任务。
EF4000网络的主要技术指标如下:挂网主站数≤31挂网模块数≤100(不带网络中继器),最多240通讯速率 1.25MBPS和312.5KBPS可编程基本传输距离 1.2MBPS时≥500m,312.5KBPS时≥1600m允许中继级数≤4级双网冗余具备两个通信口互为冗余的功能网络通讯方式半双工同步传输介质聚乙稀双绞线网络隔离度≥500Vrms通信物理层全隔离、全浮空、平衡差动传输方式有效传输字节不小于34K字节/S(1.25MBPS通讯速率)2)通讯网卡主要技术参数型号EF-4000网络─ EF4001安装方式计算机PC总线扩展插槽插卡安装尺寸160×75mm宿主计算机具有AT插槽的IBM-PC及其兼容机I/O地址硬件任选100、120、140、160、180、1A0、1C0七种中断向量软件任意设定IRQ3、5、7、10、11、12、15或不使用耗电不大于1W工作方式连续可靠性指标MTBF80000Hr运行环境温度0~60C°,相对湿度≤80%3)模拟量输入前端模块型号EF4101输入通道数16路通道隔离电压400V(峰—峰值)网络隔离度≥500Vrms通道采样时间80mSA/D分辨率17位测量精度〈0.2%被测信号类型T/C、RTD、mV、mA4)模拟量输出前端模块型号EF4601输出通道数6路(全隔离)通道隔离电压500V网络隔离度≥500Vrms电压输出范围-10V ~ +10V电流输出范围0 ~ 20 mA控制精度0.2级5)数字量输入前端模块型号EF4201输入通道数28路通道隔离电压350V网络隔离度≥500Vrms计数速率≤500次/秒(低频通道)计数速率≤8000次/秒(高频通道)事件分辨率1mS(低频通道)计数长度24位(三字节)测频范围0 Hz ~ 8000 Hz(高频通道)6)数字量输出前端模块型号EF4203输出通道数16路(EF4203)通道隔离电压350V网络隔离度≥500Vrms结点开关电流≤100 mA结点开关电压≤350 V结点隔离电压≤350 V结点闭合时间≤0.6 mS结点断开时间≤0.15 ms7)执行器脉冲控制单元输出结点电压≤380 V输出结点电流≤5A系统网络采用国际上通用的Ethernet 网,通信速率为100Mbps,遵循IEEE 802.3协议。
660MW超临界机组过热蒸汽温度的控制系统及运行调整摘要:大型火电站当中,一项较重要的运行调整就是过热蒸汽温度控制和调整。
过热蒸汽温度控制系统,对于火电机组热效率的提升具有重要意义,能够保障机组发电过程中所产生的热量得到应有的利用,使发电效率大大提升。
因此在本文当中就将对某火力发电企业机组过热蒸汽温度控制系统设计工作进行分析,将设计工作当中对过热蒸汽温度控制系统大延迟、大惯性以及时变性和非线性内在机理问题,进行攻克的过程进行研究,同时对过热蒸汽温度的运行调整提出相关建议。
关键词:660MW;超临界机组;过热蒸汽温度;控制:调整1.前言浙能乐清一期2*660MW超临界机组,锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。
DCS系统用的是北京ABB贝利控制系统有限公司的Industrial IT Symphony 系统。
在本文当中,将主要对机组当中的过热蒸汽温度控制系统进行研究,过热蒸汽温度控制系统主要存在大延迟,大惯性以及时变性和非线性内在机理问题,并提出相应的运行调整分析。
2.过热蒸汽温度控制系统解析2.1工艺流程分析过热器喷水减温系统工艺流程:炉膛上部布置有前屏过热器和后屏过热器,水平烟道依次布置高温再热器和高温过热器,共有二级喷水减温器,将每一级减温器都进行左右两侧均匀布置。
在第一级减温器当中,主要是将减温器布置在后屏过热器的入口处,该级减温器的喷口量达到了总设计喷水量的2/3,对第一级减温器进行控制的是两个喷嘴和调节阀门。
在第二级减温器当中,主要是将其设置在末级过热器的入口处,该级减热器喷水量达到了总设计排水量的1/3。
图一过热减温水DCS画面2.2过热汽温控制系统2.2.1减温控制系统在第一级减温控制系统(以此为例)当中,进行温度调节时的被调量是前屏过热器出口处的气温,同时该控制系统还能够保护屏式过热器的管壁不会出现温度过高的现象,并与末级过热汽温控制系统进行配合协同工作,保证整体控制系统温度得以调节。
蒸汽恒温系统工作原理
蒸汽恒温系统的工作原理如下:
1. 蒸汽发生器:蒸汽发生器是系统的核心部件,其目的是将液体转化为蒸汽。
在蒸汽发生器中,液体被加热,使其温度达到沸点,从而产生蒸汽。
2. 控制装置:控制装置可以监测和控制蒸汽发生器中的温度。
当温度高于设定值时,控制装置会调节热源的加热功率,以防止温度超过设定范围。
3. 等温室:等温室是用于保持恒定温度的空间。
蒸汽会从蒸汽发生器流入等温室,并与等温室中的空气热交换,从而保持等温室内部的温度不变。
4. 散热器:散热器用于将等温室中的热量导出,以维持等温室和系统周围环境之间的热平衡。
通过传导、对流和辐射等方式,散热器将热量释放到外部环境中。
5. 水循环系统:水循环系统用于循环冷却液体,并将其导入蒸汽发生器,以提供冷却作用。
冷却液体经过蒸汽发生器吸收热量后,再经过冷却装置进行冷却,并重新循环使用。
整个蒸汽恒温系统通过控制蒸汽发生器内部温度,使其保持恒定,从而实现稳定的恒温效果。
火力发电厂600MW亚临界机组主蒸汽参数优化与应用耿彪,姚政强 ,辛锴(内蒙古京隆发电有限责任公司,内蒙古丰镇市012100)摘要:本文针对内蒙古京隆电厂主蒸汽参数控制系统中存在的不足,,分析厂用主蒸汽参数控制系统的动静态特性,从而优化PID控制器的控制参数,结果证明优化后的PID控制器提高了本厂的主蒸汽参数控制性能,使锅炉效率得以充分利用。
关键词:主蒸汽参数优化;主汽压力;主汽温度;PID控制0 引言主蒸汽压力是火电厂的一个重要的参数,因为火电厂是靠蒸汽推动汽轮机转动,汽轮机是将蒸汽的能量转化为机械功的旋转式动力机械,又称蒸汽透平。
蒸汽的压力会影响后面的整个工序,如果蒸汽的压力不够的话将是汽轮机无法正常工作。
势必会影响到蒸汽机的寿命和厂子的效益。
压力过高将可能导致锅炉超压运行。
因此,主蒸汽压力控制系统的优恶直接关系到火电厂能否安全、经济运行。
除主蒸汽压力控制系统之外,主蒸汽温度控制系统也是提高火电厂经济效益,保证机组安全运行的不可缺少的环节。
主蒸汽温度是表征锅炉特性的重要指标之一,主蒸汽温度的稳定对机组的安全经济运行有极大的作用。
1 主蒸汽参数控制系统介绍京隆发电厂机组为亚临界600MW机组,锅炉出口蒸汽压力为15.7—19.6MPa。
额定压力为16.7MPa,额定温度为547℃。
本厂主蒸汽参数控制系统主要包括压力控制和温度控制两部分。
PID控制器以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
因此主蒸汽压力及温度控制系统都采用PID控制器控制。
主蒸汽压力串级PID控制系统包括主回路和副回路两个回路。
副回路包括副调节器、执行机构、主蒸汽压力被控对象的导前区和测量导前压力的压力变送器。
副调节器一般采用比例调节器,它的任务是根据导前压力的变化调节减温水的流量,其作用是在扰动引起主蒸汽压力变化之前先进行调节,可以抑制扰动对主蒸汽压力的部分影响。
蒸汽温度调节的方法
蒸汽温度调节的方法通常取决于所使用的蒸汽发生器或蒸汽系统的类型和设计。
以下是一些调节蒸汽温度的常用方法:
1. 蒸汽发生器控制系统:蒸汽发生器通常配备了控制系统,可以通过调节燃烧器或加热元件的输出来控制蒸汽的温度。
这些系统可以使用温度传感器来监测蒸汽温度,并自动调节火焰大小或加热器功率以保持设定的温度。
2. 调节蒸汽压力:蒸汽的温度和压力之间存在固定的关系。
通过调节蒸汽系统的压力,可以间接地调节蒸汽温度。
增加蒸汽压力将增加蒸汽温度,减少蒸汽压力将降低蒸汽温度。
这可以通过调节蒸汽发生器的调压阀或调节系统中的其他压力控制装置来实现。
3. 加水量控制:向蒸汽系统中加入适量的水可以改变蒸汽的温度。
增加水量会降低蒸汽温度,因为水的蒸发需要吸收热量,从而减少蒸汽的温度。
减少水量会增加蒸汽温度。
这可以通过调节蒸汽系统中的水供应阀来实现。
4. 使用冷却器或加热器:在蒸汽系统中添加冷却器或加热器可以有效地调节蒸汽的温度。
冷却器可以通过将蒸汽与冷却介质接触来降低温度,而加热器则可以通过将蒸汽与热介质接触来提高温度。
这些方法通常可以单独或同时使用,根据需要进行调节,以实现所需的蒸汽温度。
重庆大学本科学生课程设计任务书说明:1、学院、专业、年级均填全称,如:光电工程学院、测控技术、2003。
2、本表除签名外均可采用计算机打印。
本表不够,可另附页,但应在页脚添加页码。
目录一、引言1.1课程设计的背景………………………………………………………………………………………………………………….1.2火力发电厂自动控制需求…………………………………………………………………………………………………1.3火力发电厂的单元机组蒸汽温度控制现状………………………………………………二、火力发电厂的单元机组的生产过程…………………………………………………………………………2.1燃烧系统……………………………………………………………………2.2汽水系统……………………………………………………………………2.3电气系统……………………………………………………………………三、火力发电厂的单元机组的协调控制系统……………………………………………………………………3.1单元机组协调控制系统及其组成……………………………………………………………………3.2单元机组负荷控制系统(协调控制级)……………………………………………………………………3.2.1负荷控制的原则及负荷控制方式……………………………………………………………………3.3负荷控制系统(协调级)的组成及作用……………………………………………………………………3.3.1负荷控制系统控制中心(LMCC)主要作用……………………………………………………………………3.3.2机、炉主控制器的作用……………………………………………………………………四、火力发电厂的单元机组蒸汽温度控制系统……………………………………………………………………四、火力发电厂的单元机组蒸汽温度控制系统……………………………………………………………………4.1过热蒸汽温度控制系统……………………………………………………………………4.1.1过热汽温的主要影响因素……………………………………………………………………4.1.2过热蒸汽温度对象的动态特性……………………………………………………………………4.1.3过热汽温控制系统典型方案……………………………………………………………………4.1.4过热温度控制系统模型……………………………………………………………………4.1.5MATLB仿真……………………………………………………………………4.2再热汽温控制系统……………………………………………………………………4.2.1再热汽温控制系统的任务……………………………………………………………………4.2.2再热汽温的控制手段及控制系统……………………………………………………………………五、蒸汽温控系统的仪器仪表的选型……………………………………………………………………5.1温度测量、变送器的选择……………………………………………………………………5.2喷水阀的选择……………………………………………………………………5.3执行电动机的选择……………………………………………………………………六、总结……………………………………………………………………参考文献……………………………………………………………………一、引言1.1课程设计的背景随着电力工业的快速发展,高参数、大容量的火力发电机组在电网中所占的比例越来越大。
1 蒸汽温度控制系统设计1.1 控制系统任务保证机组的安全经济运行,要求主蒸汽温度为设定值。
过热汽温调节的任务是维持过热器出口蒸汽温度再允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
过热温度过高,可能造成过热器、蒸汽管道和汽轮机的高压部分金属损坏,因而过热温度的上限不应超过额定值5C 。
过热蒸汽温度过低,又会降低全厂的热效率并影响汽轮机的安全经济运行,因而过热汽温的下限一般不低于额定值10C 。
过热汽温的额定值通常在500C 以上。
1.2 控制系统构成控制系统的构成,主要由被控对象——过热器管道,执行机构——执行器(电动喷水阀门),检测变送组件——热电偶或温度变送器,控制系统核心部件——调节器(电动控制器)组成。
其中,被调量(测量值)——主汽温度,调节量(控制信号)——喷水流量,干扰信号——炉膛燃烧情况。
1.3 控制系统结构框图图1-1汽温控制系统结构框图1.4 控制过程简要分析当主汽温度的测量值等于设定值时,喷水阀门不动,系统处在动态平衡状态。
此时,若炉膛燃烧情况发生变化,使汽温上升,造成给定值和测量值产生偏差,则偏差信号经过控制器的方向性判断及数学运算后,产生控制信号使喷水阀门以适当形式打开,喷水量增加。
测量值最终回到设定值,系统重新回到平衡状态。
2 控制系统工作原理系统中有两个调节器,构成两个闭环回路。
内回路祸福回路,包括控制对象、副参数变送器、副调节器、执行器和喷水阀,它的任务是尽快消除减水温度的干扰,在调节过程中起初调作用;外回路或主回路,包括主对象、主参数变送器、主调节器、副回路,其作用是保持过热器出口汽温等于给定值。
主调节器接受被控量出口汽温以及给定值信号,主调的输出给定汽温与喷水减温器出口汽温共同作为副调节器输入,副调节器输出汽温信号控制执行机构位移,从而控制减温水调节阀门的张开闭合程度。
当炉膛燃烧剧烈,过热器管道过热,有喷水量的自发性增加造成干扰,如果不及时加以调节,出口温度将会降低,但因为喷水干扰引起的汽温降低快于出口汽温的降低,温度测量变送器输出的汽温信号会降低,副调节器输出也降低,通过执行器使喷水阀门开度减少,则喷水量降低,使扰动引起的汽温变化波动很快消除,从而使主汽温基本上不受影响。
主蒸汽温度串级控制系统工艺流程图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!主蒸汽温度串级控制系统工艺流程详解在现代工业生产中,主蒸汽温度的精确控制对于优化热效率、保障设备安全和提高产品质量具有至关重要的作用。
蒸汽恒温系统工作原理图
抱歉,我无法提供图片。
但是,蒸汽恒温系统的工作原理如下:
- 首先,系统中的锅炉会产生高温高压的蒸汽。
- 高压蒸汽会通过管道输送到蒸汽调节阀。
- 蒸汽调节阀会根据需要调节蒸汽的流量,以控制系统的温度。
- 调节阀调节后的蒸汽会通过传热设备(例如换热器)进一步
降温,使蒸汽达到所需的恒温。
- 降温后的蒸汽会进一步通过管道输送到需要为其提供热量的
设备(例如加热器或加热炉)。
- 蒸汽在设备中释放热量后,会变成低温低压的水蒸气,并通
过排烟管道排出系统。
- 排出系统后的水蒸气会通过回流管道回到锅炉,继续进行再
次加热和循环,从而保持系统中的蒸汽温度恒定。
注意:以上是一个简化的蒸汽恒温系统工作原理的描述,实际系统可能会包含更多的组件和控制装置,用于确保系统的稳定性和安全性。
主蒸汽压力温度随负荷变化而变化的运行方式1.引言1.1 概述概述主蒸汽压力温度是蒸汽发电厂中非常重要的参数之一,它对发电机组的运行稳定性和发电效率有着关键的影响。
主蒸汽压力和温度的变化会随着负荷的变化而改变,因此了解和掌握主蒸汽压力温度随负荷变化的运行方式对于蒸汽发电厂的运行管理至关重要。
本文将详细探讨主蒸汽压力温度随负荷变化的运行方式,主要从主蒸汽压力和温度随负荷变化的影响因素、主蒸汽压力温度随负荷变化的运行方式总结以及对主蒸汽压力温度控制的建议等方面展开讨论。
通过分析主蒸汽压力和温度随负荷变化的影响因素,我们可以了解到负荷大小、锅炉燃烧调节、给水系统负荷配送以及汽轮机的特性等因素对于主蒸汽压力温度的影响程度。
通过深入研究这些因素,我们可以更好地理解主蒸汽压力温度随负荷变化的规律。
在文章的结论部分,我们将对主蒸汽压力温度随负荷变化的运行方式进行总结,提出相应的结论和建议。
通过研究和实践,我们可以得出一些有效的调控方法和控制策略,以确保主蒸汽压力温度在不同负荷条件下的稳定性和可控性。
本文旨在提供给蒸汽发电厂的管理人员、工程师以及相关从业人员一个清晰而全面的了解主蒸汽压力温度随负荷变化的运行方式,帮助他们更好地进行厂内运行管理和问题解决。
同时,对于蒸汽发电行业的研究和发展也具有一定的指导作用。
在接下来的章节中,我们将详细介绍主蒸汽压力温度随负荷变化的影响因素、运行方式总结以及对主蒸汽压力温度控制的建议等内容,以期为读者提供全面、准确的信息和思路。
1.2文章结构1.2 文章结构本文章主要分为引言、正文和结论三个部分。
在引言部分,将首先概述本文要讨论的主题,即主蒸汽压力温度随负荷变化而变化的运行方式,并给出文章的目的。
接着,会对文章的结构进行介绍,明确各个部分的内容和结构。
正文部分将详细探讨主蒸汽压力和温度随负荷变化的影响因素。
首先,会分析主蒸汽压力随负荷变化的影响因素,包括锅炉燃烧热负荷、空气预热器效果、过热器效果以及调节阀的性能等。
主蒸汽温度控制系统
本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。
由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。
两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。
主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。
该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。
一、二级减温水控制系统是相互独立的,现分别予以剖析。
1.1一级减温水控制
一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。
图2为原理性框图。
这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P)。
其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。
但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。
①最小一级减温水量限制
限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。
图2中,A1为屏过出口所允许的最高汽温值。
当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,
△P),即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。
②最大一级减温水量限制
限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。
图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。
这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。
如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P)。
实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。
由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联”在一起,但并不是串级控制系统。
1.2二级减温水控制
二级减温水的主要任务是将未级过热器出口蒸汽温度控制在某个定值上,原理框图见图3。
这个温度定值是锅炉蒸汽负荷的函数,如图4。
该控制回路是一个典型的带导前信号的串级汽温控制回路。
调节器PID0的输出作为PID1的定值,与未级过热器入口汽温求偏差后,在PID1中进行运算,其输出则为二级减温水指令的一部分。
在这里,未级过热器入口汽温实际上是一个导前信号,它能迅速地反映未级过热器全段蒸汽温度变化的趋势,因此,在系统中它能起到改善主汽温调节品质的作用。
图3中,二级减温水采用f(P1、P、△P)作为前馈指令,当锅炉负荷增加时,及主汽压力下降时,这一指令有所增加。
加入前馈指令,对于减轻锅炉负荷变化对主汽温度的扰动和由于锅炉运行压力变化对汽温特性的影响有积极作用。
前馈指令与PID1的输出相加,成为二级减温水量指令。
1.3减温水调节阀的分裂式(split)设计
如图1所示,每级每侧减温水调节阀都分成低流量调节阀和高流量调节阀,低流量调节阀的容量为该级该侧最大设计减温水量的25%,其余75%由高流量调节阀承担,这种设计有利于减小减温水调节阀体积,提高阀门的线性度和调节精度。
2.系统运行
2.1关断阀的控制
当下列条件全部满足时,自动打开关断阀。
①锅炉蒸汽流量>10%MCR。
②无主燃料跳闸MFT。
③控制系统已要求低流量阀有一定的开度(约2%)。
上述任一条件不满足(对于条件③是指开度指令小于约1%),以及当大、小调节阀都已关闭时,则关闭关断阀。
2.2调节阀的运行
当下列条件全部满足时,允许对调节阀进行控制。
①锅炉蒸汽流量>10%MCR。
②无主燃料跳闸MFT。
任一条件不成立,则关闭调节阀。
2.3手动/自动站的运行(共四只站)
2.3.1一级减温水控制站(两侧相似)
作用:控制一级减温水量。
显示:PV柱,显示本侧屏过入口汽温(测量故障时,指示为零)。
(℃)。
SP柱,显示本侧屏过入口汽温定值℃)。
下列任一条件出现,站切手动。
①本侧屏过出口温度或初过出口压力测量信号,或主汽压力、差压、流量信号测量质量不好,或传输到本系统后出现质量不好。
②本侧一级减温器出口温度测量系统发出“置手动”信号。
③本侧小流量调节阀开度已达6%,而关断阀仍处于关闭状态。
④主燃料跳闸MFT。
⑤主蒸汽流量小于10%MCR。
操作;
①无SP操作。
②手动方式时,可手操CO按扭,以改变减温水,但若由于MFT或主蒸汽流量小于10%MCR的原因而导致手动,站的输出将跟踪零,“TRACK”灯亮,此时不可手动改变控制输出。
2.3.2二级减温水控制站(两侧相似)
作用:控制二级减温水量。
显示:PV柱,显示未级过热器出口蒸汽温度(℃)。
SP柱,显示未级过热器出口温度定值(℃)。
下列任一条件出现,站切手动。
①未级过热器出口蒸汽温度测量系统发出“置手动”信号。
②主蒸汽流量、一级压力、压力、差压信号测量系统发出“置手动”信号或者在传输到本系统后发现质量不好。
③本侧未过入口汽温信号质量不好。
④本侧小流量调节阀开度已达6%,而关断阀仍处于关闭状态。
⑤主燃料跳闸MFT。
⑥主蒸汽流量小于10%MCR。
操作:
①无SP操作。
②手动方式时,可手操CO按扭,以改变减温水,但若由于MFT或主蒸汽流量小于10%MCR的原因而导致手动,站的输出将跟踪零,“TRACK”灯亮,此时不可手动改变控制输出。