土壤中总铬的测定.
- 格式:ppt
- 大小:905.00 KB
- 文档页数:18
2022年西北大学环境科学与工程专业《环境监测》科目期末试卷B(有答案)一、填空题1、酸雨的pH<______。
2、水中溶解氧的测定通常采用______法及其修正法,其中叠氮化钠修正法主要消除______的干扰,高锰酸钾修正法主要消除______的干扰。
3、从土壤和水体中吸收污染物的植物,其污染物分布量和残留量最多的部位是______。
4、若正常人说话的声压级(Lp1)为60dB,如果20人同时说话(均为60dB,n=20),则计算总声压级公式为______,总声压级为______。
5、利用遥感技术研究水环境化学包括______、______两种方法。
6、第一类污染物:指能在环境或动植物内______,对人体健康______。
7、在土样制备过程中,风干的土样碾碎后,先过______尼龙筛,然后用______弃取样品至足够分析用的数量,最后全部通过______的尼龙筛。
8、在质量控制图中,当测定值落在上控制线以上时,表示测定过程______,测定值中连续7个点递升,表示测定______,当空白试验值连续四个点落于中心线以下时,说明试验______。
二、判断题9、对大气固定污染源进行监测时要求生产设备处于正常运转状态下。
()10、降水样品分析时,可以用测完pH的样品测定电导率和离子组分。
()11、根据盐酸萘乙二胺比色法测定大气中NO x的化学反应方程式,对大气中NO x的测定主要是指NO2,不包括NO。
()12、环境样品预处理目的:使欲测组分达到测定方法和仪器要求的形态、浓度,消除共存组分的干扰。
()13、GC-MS选择固定相除了与气相色谱相同的要求之外,要着重考虑高温时固定液的流失问题。
()14、污水中BOD测定时,所用稀释水应含有能分解该污水的微生物。
()15、“分贝”(dB)是计算噪声的一种物理量。
()16、核辐射损伤能产生远期效应、躯体效应和遗传效应。
()17、可以用去离子水配制有机分析试液。
土壤中铬(Ⅵ)测定方法的探讨作者:甘文静左小秋王金箐来源:《科学与财富》2018年第29期摘要:研究通过加入碱性消解液、氯化镁、磷酸缓冲溶液浸提,再用二苯碳酰二肼分光光度法测定,方法简单、快速。
方法在0.0mg/L-0.2mg/L范围内线性良好,检出限为0.025mg/kg (以2.5g样品计),土壤样品测定的RSD为10%,加标回收率为87%-97%。
关键词:六价铬、分光光度法、土壤铬是一种重要的环境污染物,在一些地方,对土壤及地下水造成了严重的污染。
铬有6种不同的化合价态,在自然界主要以三价铬Cr(Ⅲ)和六价铬Cr(Ⅵ)的形式存在,三价铬多以氢氧化物或氧化物的形态存在,不溶于水,一般不会对环境产生严重污染;但六价铬极易在土壤中迁移扩散,是我国多发,铬(Ⅵ)污染地下水事故的主要原因[1]。
三价铬是人体所需的一种微量元素,不易进入细胞。
六价铬可通过氧阴离子通道进入细胞,具有免疫毒性、神经性、生殖毒性、肾脏毒性及致癌性。
目前国内主要是对土壤中的总铬监测分析[2],土壤中六价铬尚未颁布国家或者行业测定标准。
今采用碱性消解剂[3],防止土壤中的三价铬被氧化成六价铬,对土壤中的六价铬进行浸提实验,浸提出的溶液,用二苯碳酰二肼分光光度法测定其中的六价铬的含量,方法简便、快速。
1试验1.1主要仪器与试剂2100分光光度计、pH酸度计、电子天平、电磁加热搅拌器;实验所用试剂重铬酸钾、丙酮、硫酸、磷酸、氢氧化钠、氯化镁、氯化钾、磷酸氢二钾、磷酸二氢钾、高锰酸钾、尿素、亚硝酸钠、硫酸锌、二苯碳酰二肼都是符合实验要求的基准、优级纯、分析纯试剂;铬标准储备液:称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。
此溶液1ml含0.10mg六价铬。
铬标准使用液:吸取1.00ml铬标准储备液置于100ml容量瓶中,用水稀释至标线,摇匀。
环境监测土壤中总铬的监测目录一、背景资料 (2)1、土壤中铬的来源 (2)2、土壤中铬的存在形态 (3)3、铬对人体的作用及危害 (3)二、土壤中总铬的测定原理 (3)三、监测方案设计 (3)1、现场取样方案 (3)2、实验室测定方案 (4)四、监测数据分析 (5)五、参考文献 (5)一、背景资料1、土壤中铬的来源1、1城市郊区的铬主要来源于工业“三废”与城市生活废弃物的污染1、1、1随着大气沉降进入土壤大气中的重金属主要来源于能源、运输、冶金与建筑材料生产产生的气体与粉尘。
除汞以外,重金属基本上就是以气溶胶的形态进入大气,经过自然沉降与降水进入土壤。
据报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg,这类燃料在燃烧时,部分悬浮颗粒与挥发金属随烟尘进入大气。
运输,特别就是汽车运输对大气与土壤造成严重污染。
主要以Pb、Zn、Cd、Cr、Cu等的污染为主。
它们来自于含铅汽油的燃烧与汽车轮胎磨损产生的粉尘,据有关材料报道,汽车排放的尾气在公路两侧的土壤中形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。
经自然沉降与雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重。
1、1、2随污水灌溉重金属进入农田土壤利用污水灌溉就是灌区农业的一项古老的技术,主要把污水作为灌溉水源来利用。
天津市就是全国水资源最为缺乏的大城市之一,人均水资源占有量不足200m3,农业用水资源更为缺乏,致使我市近郊大面积引用污水灌溉。
我市在40多年的污灌历程中,已形成大沽、北塘、北京三条排污河,由此形成的三大污水灌溉区就是我市近郊农田土壤重金属污染的主要来源,造成近郊农田土壤大面积污染。
污水中Cr有4种形态,一般以3价与6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr, 随之被吸附固定。
土壤总铬的测定火焰原子吸收法以土壤总铬的测定火焰原子吸收法为标题,下面将介绍该方法在土壤环境中测定总铬含量的原理、步骤和应用。
一、引言土壤中的重金属污染已成为世界各地环境保护的重要问题之一。
铬是一种常见的重金属元素,它在土壤中的存在形式和含量与土壤性质、人类活动等因素密切相关。
因此,准确测定土壤中总铬含量对于评估土壤质量、环境风险以及制定土壤修复策略具有重要意义。
二、原理火焰原子吸收光谱法(FAAS)是一种常用的分析方法,可用于测定土壤中的重金属元素含量。
该方法的原理是利用重金属元素吸收特定波长的光线的特性,通过测量光线的吸收强度来定量分析样品中的重金属含量。
三、步骤1. 样品的制备:取一定量的土壤样品,经过粉碎、筛分等预处理步骤,得到均匀的土壤样品。
2. 酸溶解:将土壤样品与稀酸(如硝酸)进行酸溶解,以将土壤中的总铬转化为可溶性形态。
3. 过滤:将溶解后的样品通过滤纸过滤,去除固体杂质。
4. 原子化:将过滤后的溶液喷入预热的火焰中,使样品中的铬原子蒸发和激发。
5. 吸收测量:利用火焰原子吸收光谱仪,选择铬的吸收波长,测量样品中铬原子吸收光线的强度。
6. 定量计算:根据吸收光线的强度,利用标准曲线或标准加入法,计算样品中总铬的含量。
四、应用火焰原子吸收法广泛应用于土壤环境中铬含量的测定。
通过该方法可以快速、准确地测定土壤中的总铬含量,为评估土壤质量、环境风险以及制定土壤修复策略提供科学依据。
此外,火焰原子吸收法还可用于其他环境样品中重金属元素的测定,具有广泛的应用前景。
火焰原子吸收法是一种常用的分析方法,可用于土壤中总铬含量的测定。
通过合理的样品制备、酸溶解、过滤、原子化和吸收测量等步骤,可以准确地测定土壤中的总铬含量。
该方法具有快速、准确、灵敏度高的特点,被广泛应用于土壤环境监测和评估中。
未来,随着技术的不断发展和改进,火焰原子吸收法在土壤重金属元素分析领域的应用前景将更加广阔。
土壤总铬的测定土壤中总铬的测定是环境科学中一项重要的分析技术,它可以帮助我们评估土壤中的铬污染程度,从而采取相应的环境保护措施。
本文将介绍土壤总铬的测定方法以及其在环境监测和土壤污染治理中的应用。
我们需要了解土壤中总铬的含量。
土壤中的铬主要来自于工业废水、农药和肥料的使用以及其他人类活动。
高浓度的铬污染会对土壤生态系统和人类健康造成严重影响,因此准确测定土壤中的总铬含量至关重要。
测定土壤总铬的方法有多种,其中常用的方法包括原子吸收光谱法、电感耦合等离子体质谱法和荧光光谱法。
这些方法各有优缺点,选择合适的方法需要考虑样品的特性、分析的准确性和成本效益等因素。
原子吸收光谱法是一种常用的土壤总铬测定方法。
该方法基于铬原子对特定波长的吸收能力,通过测量吸收光的强度来确定土壤中总铬的含量。
这种方法准确度高,但需要专业的仪器设备和操作技术。
电感耦合等离子体质谱法是一种高灵敏度的分析方法,可以测定土壤中微量的铬含量。
该方法利用等离子体产生的高温和高能量条件,将土壤样品中的铬原子激发成离子,并通过质谱仪测量其质量-电荷比。
这种方法对于铬含量较低的土壤样品非常适用。
荧光光谱法是一种快速、无损的土壤总铬测定方法。
该方法基于土壤中铬离子与荧光试剂之间的化学反应,通过测量荧光强度来确定土壤中总铬的含量。
这种方法操作简便,适用于大批量样品的快速分析。
除了测定土壤中总铬的含量,我们还可以通过分析土壤中铬的形态来评估其生物有效性和环境风险。
土壤中的铬主要以三价和六价形态存在,其中六价铬对生物毒性更高。
因此,了解土壤中不同形态铬的含量和分布情况对于评估土壤污染程度和制定治理策略非常重要。
土壤中总铬的测定是环境科学中一项重要的分析技术。
通过选择合适的测定方法和分析土壤中铬的形态,我们可以准确评估土壤中的铬污染程度,为环境保护和土壤污染治理提供科学依据。
希望本文对读者了解土壤总铬的测定方法和应用有所帮助。
十七、全锰酸消解-电感耦合等离子体发射光谱法,同十六。
十八、全铜(一)酸消解-电感耦合等离子体质谱法18.1.1编制依据本方法依据《固体废物金属元素的测定电感耦合等离子体质谱法》(HJ 766-2015)编制。
18.1.2适用范围本方法规定了测定土壤中金属元素的电感耦合等离子体质谱法。
本方法适用于土壤中铅(Pb)、镉(Cd)、铬(Cr)、铜(Cu)、镍(Ni)、锌(Zn)、锰(Mn)、钼(Mo)等金属元素的测定。
当样品质量在0.1 g时,金属元素的方法检出限和测定下限见表18-1。
表18-1 各元素的方法检出限和测定下限(mg/kg)元素检出限测定下限元素检出限测定下限镉(Cd)0.03 0.1 铅(Pb) 2.0 8.0 铬(Cr)0.4 1.6 钼(Mo)0.1 0.4 铜(Cu)0.6 2.4 锌(Zn) 2.0 8.0 镍(Ni)0.3 1.2 锰(Mn) 1.8 7.218.1.3方法原理土壤样品经微波消解预处理后,采用电感耦合等离子体质谱仪进行检测,根据元素的质谱图或特征离子进行定性,内标法定量。
18.1.4试剂和材料除非另有说明,分析时均使用符合国家标准的优级纯化学试剂,实验用水为新制备的二级水。
(1)盐酸[ρ(HCl)=1.19 g/mL]:优级纯或高纯。
(2)硝酸[ρ(HNO3)=1.42 g/mL],优级纯或高纯。
(3)氢氟酸[ρ(HF)=1.49 g/mL]。
(4)双氧水[ω(H2O2)=30%]。
(5)硝酸溶液(2+98)。
(6)硝酸溶液(5+95)。
(7)单元素标准储备液[ρ=1000 mg/L]:可用高纯度的金属(纯度大于99.99%)或金属盐类(基准或高纯试剂)配制成1000 mg/L含硝酸溶液[18.1.4(5)]的标准贮备液。
或可直接购买有证标准溶液。
(8)多元素标准储备液[ρ=100 mg/L]:用硝酸溶液[18.1.4(5)]稀释单元素标准储备液[18.1.4(7)],或可直接购买多元素混合有证标准溶液。
土壤中铬形态分析摘要:综述了分析铬在土壤中形态的几种方法,介绍了土壤中铬形态分析的研究方法。
讨论了土壤中铬的常见存在形态和转化,概括了土壤中铬的分析方法,介绍了铬的危害。
展望了土壤中铬的形态分析的发展前景。
关键字:土壤铬形态分析1、引言铬在自然界广泛存在,铬是 VIB 族元素,它在土壤中的含量一般为 10~150mg/kg,但在某些蛇纹岩发育的土壤中,铬含量可高达 12.5%。
工业上主要用于制造各种优质合金,也广泛用于皮革、印染、电镀、制药、油漆和涂料制造业等工业,受腐蚀后以各种排放液进入环境,使土壤环境受到不同程度污染。
土壤中铬通常是以 Cr(Ⅵ)和 Cr(Ⅲ)2 种价态存在的,两者的毒性和化学行为相差甚大,Cr(Ⅵ)以阴离子的形态存在,一般不易被土壤所吸附,具有较高的活性,对植物易产生毒害,Cr(Ⅵ)被认为具有致癌作用;而 Cr(Ⅲ)极易被土壤胶体吸附和形成沉淀,其活动性差,产生的危害相对较轻,对动植物和微生物的毒性一般 Cr(Ⅵ)比 Cr(Ⅲ)大得多。
但单从价态来区分并不能反映土壤环境中铬的真实存在形态。
环境中的铬分为无机铬和有机铬,其中无机铬的含量远比有机铬大得多。
无机铬中常见的形态为 Cr(Ⅵ)和 Cr(Ⅲ)。
三价铬是人体必需的微量元素,是葡萄糖耐量因子( GTF)的主要组成部分。
人体缺铬会使糖代谢紊乱,导致糖耐量异常及糖尿病。
六价铬由于其氧化性和对皮肤的高渗透性,毒害很大,被确认有致癌作用。
另外铬形态分布也影响铬在环境中的迁移转化规律。
因此铬的形态分析在环境科学、生命科学和生理医学等方面都具有重要的意义。
土壤是一个多组分多相的复杂体系,存在着各种结合态的铬,它们对环境的毒性和植物的有效性也是不一样的,所以,必须选用合适的提取剂把不同结合态逐级提取区分开来进行研究。
当前已有大量的文献报道了铬的形态分析,目前铬形态分析方法主要包括原子吸收光谱法、分子光谱法、电化学法和质谱法等。
2、土壤中铬的常见形态及其转化土壤中铬通常是以 Cr(Ⅵ)和 Cr(Ⅲ)2 种价态存在,除此之外土壤中还存在着各种结合态的铬。