初中数学平行线判定
- 格式:ppt
- 大小:198.50 KB
- 文档页数:27
5.2.2平行线的判定(第一课时)教学设计教法选择与学法指导教法:引导——操作法、观察法、讨论法、多媒体电化教学法学法:动手实践、自主探索与合作交流相结合.教学流程:创设情境、复习引入——动手操作、自主探索——总结归纳、得出结论——反馈应用、拓展新知——互动交流、谈谈收获——布置作业、达标检测、反思提炼.(设计意图:针对七年级学生的年龄特点和心理特征,以及他们的知识水平,本节课我以教学流程八个环节的方法进行.让学生始终处于主动的学习状态,让学生有充分的思考机会,借助小教具和多媒体演示,让学生在实践中思考,在思考、归纳总结的过程中培养其空间观念、简单的推理能力和有条理表达的能力.)教学过程(提前发导学案,让学生完成导学案的复习回顾部分,前置任务。
)一、知识回顾:1.如果a∥b,b∥c,那么___________。
理由是___________。
2.如图,请填空:①∠1与∠2是直线_____和直线_____被直线_____所截而成_____角;②∠3与∠2是直线_____和直线_____被直线_____所截而成_____角;③∠5与∠6是直线_____和直线_____被直线_____所截而成_____角;④∠4与∠7是直线_____和直线_____被直线_____所截而成_____角;⑤∠8与∠2是直线_____和直线_____被直线_____所截而成_____角。
二、前置任务:1、画图已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.反思:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用.?(设计意图:通过学生课前的复习,回顾了前一节课所学的知识,并通过对前置任务的思考,为新课的学习做了准备。
)三、动手操作、自主探索通过同学们用移动三角尺的方法画两条平行线的过程?试用这种方法过已知直线外一点画它的平行线. 请说出其中的道理(多媒体动画演示画图过程。
)方法: 一、放, 二、靠, 三、推, 四、画。
七年级数学下册《平行线判定》教学反思七年级数学下册《平行线判定》教学反思「篇一」方程是应用广泛的数学工具,它在义务教育阶段的数学课程中占有重要地位!也是代数学的核心之教学反思一!这一章主要讲了三大内容:1:一元一次方程的定义,等式的基本性质。
2:一元一次方程的解法。
3:一元一次方程的应用。
下面我想就这三个方面的教学的得与失进行反思和总结。
一:在一元一次方程的概念教学上。
对"元"和"次"的解释,对整式的理解,大多都是我讲了,学生(xuesheng)的自我建构不深,造成理解不透。
在判别的环节上,自我感觉问题设置太粗糙,学生(xuesheng)不能理解透彻。
以致在后来的《数学天地》的报纸中还要进行进一步的补充说明。
等式的基本性质我也讲得比较粗糙,但学生有小学的基础,掌握情况还比较好二:解方程学生在5年级的时候就开始接触。
学生已有的解方程的经验是以算式的方式即找出被减数,减数,差。
加数,另一个加数,和,被除数,除数,商等哪一个未知进而利用公式来进行解答的。
而现在我们是要深入学习方程,并为以后学习更复杂的方程作铺垫。
所以,我们是在学好等式的基本性质之后,利用等式的基本性质去分母,去括号,移项,化简,系数化为1来解方程,学生能从理论上理解解方程的原理。
在讲解解法时,我们采用一步一个脚印的方法让学生牢牢掌握好一元一次方程的解法,在考试中也表明了学生这一知识点学得比较好三:利用一元一次方程解应用题是数学教学中的一个重点,而对于学生来说却是学习的一个难点。
七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。
但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。
如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。
初中数学知识归纳平行线与平面的判定方法在初中数学中,平行线与平面是一个重要的概念,而对于这两个概念的判定方法也是我们必须要掌握的内容之一。
本文将全面归纳平行线与平面的判定方法,帮助初中生更好地理解与应用这两个概念。
一、平行线的判定方法1. 共线定理如果两条直线在同一个平面内且没有交点,那么这两条直线是平行线。
这个判定方法简单易懂,可以通过观察两条直线是否在同一个平面内且是否有交点来判断它们是否平行。
如果两条直线满足这个条件,那么它们就是平行线。
2. 等角定理如果两条直线被一条横截线所截,使得同侧内角或同侧外角相等,那么这两条直线是平行线。
等角定理是一种常见的几何判定方法,通过观察同侧内角或同侧外角是否相等,来判断直线的平行性。
如果满足相等的条件,则说明这两条直线是平行的。
3. 垂直定理如果一条直线与两条平行线相交,那么它与其中一条直线的内角和也与另一条直线的内角和相等。
这个判定方法主要用于判断某条直线与两条已知平行线的关系。
通过观察直线与这两条平行线的内角和是否相等,可以判断直线与平行线的关系。
二、平面的判定方法1. 三点共线定理如果三个点在同一条直线上,那么它们可以确定一个平面。
这是最常用的平面判定方法之一,通过观察三个点是否在同一条直线上来判断它们是否确定一个平面。
2. 平行直线定理如果一条直线与一个平面上的另外一条直线平行,那么这条直线与这个平面的任意一直线都平行。
平行直线定理是用于判断直线与平面的关系的重要定理,通过判断直线与平面上的另一条直线是否平行,可以推知这条直线与这个平面上的任意直线是否平行。
3. 垂直定理如果一条直线与一个平面上的两条相交直线垂直,那么这条直线与这个平面垂直。
垂直定理也是常用的平面判定方法之一,通过观察直线与平面上的两条相交直线是否垂直,可以判断这条直线与这个平面的垂直关系。
综上所述,平行线与平面的判定方法在初中数学中是非常重要的。
通过掌握这些判定方法,我们能更好地解决与平行线与平面相关的几何问题,提高自己的数学水平。
初二数学平行线与垂直线的性质及判定数学是一门重要的学科,而初中数学的学习是对学生数学基础的进一步巩固和扩展。
在初二的数学课程中,平行线和垂直线的性质及判定,是一个重要的内容,也是初步了解几何形状和定理的基础。
下面本文将详细介绍平行线和垂直线的性质及判定。
一、平行线的性质及判定平行线是指在同一个平面内,永远不相交的两条直线。
平行线具有以下性质:1. 平行线的定义:如果两条直线在同一个平面内,且不相交,那么它们就是平行线。
2. 平行线的判定:由于两条平行线永远不会相交,所以可以利用平行线的判定方法来判断两条直线是否平行。
a. 直线与平面的判定:如果一条直线与一个平面内的两条直线都平行,那么这两条直线也是平行的。
b. 角之间的判定:如果两条直线被一条直线所截,且所得的内错角或同旁内角互为补角,那么这两条直线是平行的。
c. 平行四边形的判定:如果一组四边形的对边分别平行并且相等,那么这四边形是平行四边形,其对边所在的直线也是平行线。
二、垂直线的性质及判定垂直线是指两条直线彼此相交时,互成直角的线。
垂直线具有以下性质:1. 垂直线的定义:如果两条直线相交,且相交时所成的四个角中有两个角互为直角,那么这两条直线就是垂直线。
2. 垂直线的判定:根据两条直线的判定方法,我们可以通过以下方法判断两条直线是否垂直。
a. 两条直线斜率之积为-1时,这两条直线互为垂直线。
b. 两条直线在坐标平面上的方程可以通过求解方程组的方法来判断两条直线是否垂直。
c. 如果两条直线相交所得的垂直角为直角,那么这两条直线是垂直线。
三、平行线和垂直线的应用平行线和垂直线的性质在几何形状的判断和计算中有着广泛的应用。
在实际生活中,我们可以利用这些性质来解决各种问题。
1. 平行线的应用:平行线可以用来求解两个三角形是否相似、计算平行四边形的面积和周长等问题。
2. 垂直线的应用:垂直线可以用来求解两条直线的交点、计算直角三角形的面积和周长等问题。
初中数学平行线的性质及判定知识点学校数学平行线的性质及判定学问点1平行线的性质及判定平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
通过上面对数学中平行线的性质及判定学问点的内容讲解学习,信任同学们已经能很好的把握了吧,盼望同学们会从中学习的更好。
学校数学平行线的性质及判定学问点2相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要留意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要留意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:推断对错:由于∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
( )相等的两个角互为对顶角。
( )2、垂直是两直线相交的特别状况。
留意:两直线垂直,是相互垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条相互垂直的直线的交点叫垂足。
垂直时,肯定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的全部线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
初中数学知识归纳平行线的性质与判定平行线是数学中最基础的概念之一,在初中数学中也占据了重要的地位。
平行线的性质和判定方法具有一定的规律性和逻辑性,掌握了这些知识,对于解题和推理都有很大的帮助。
本文将对初中数学中与平行线相关的性质和判定进行归纳和总结。
一、平行线的性质1. 平行线性质一:同位角性质同位角是指两条平行线被一条第三条线(称为横线)所切割所形成的内角和外角。
同位角性质可以概括为:当直线与两条平行线相交时,同位角相等。
例如,图1中的直线l与平行线m、n相交,角A和角B、C都是同位角。
根据同位角性质,可知∠A = ∠B = ∠C。
2. 平行线性质二:内错角性质内错角是指两条平行线被一条第三条线所切割所形成的内角。
内错角性质可以概括为:当直线与两条平行线相交时,内错角相等。
例如,图2中的直线l与平行线m、n相交,角A和角B是内错角。
根据内错角性质,可知∠A = ∠B。
3. 平行线性质三:同旁内角性质同旁内角是指两条直线与两条平行线相交所形成的内角。
同旁内角性质可以概括为:当两条直线与两条平行线相交时,同旁内角互补。
例如,图3中的直线a、b与平行线m、n相交,角A和角B、C是同旁内角。
根据同旁内角性质,可知∠A + ∠B = 180°和∠A + ∠C = 180°。
二、平行线的判定方法1. 直线平行判定法一:同位角相等法如果一条直线与另外两条直线相交时,同位角相等,则这两条直线平行。
例如,图4中的直线l与线段AB、CD相交,∠1 = ∠2,则可判定线段AB与线段CD是平行的。
2. 直线平行判定法二:内错角相等法如果一条直线与两条平行线相交时,内错角相等,则这条直线与这两条平行线平行。
例如,图5中的直线l与平行线m、n相交,∠A = ∠B,则可判定直线l与平行线m、n是平行的。
3. 直线平行判定法三:同旁内角互补法如果一条直线与两条平行线相交时,同旁内角互补,则这条直线与这两条平行线平行。
初中数学“利用平行线判定相似”知识点全解析一、引言在初中数学中,相似图形是一个非常重要的概念,而利用平行线判定相似是相似图形判定的一种重要方法。
掌握这种方法,可以帮助学生更好地理解相似图形的性质,提高解题能力。
本文将详细解析利用平行线判定相似的概念、方法、应用以及解题技巧,帮助学生更好地掌握这一知识点。
二、平行线与相似图形的关系1.平行线的性质:在同一平面内,不相交的两条直线叫做平行线。
平行线间距离相等,且同位角相等,内错角相等。
2.相似图形的定义:如果两个图形对应角相等,对应边成比例,那么这两个图形叫做相似图形。
3.平行线与相似图形的关系:在几何图形中,如果两条直线平行于第三条直线,那么它们之间的对应角相等。
这个性质为我们利用平行线判定相似提供了依据。
三、利用平行线判定相似的方法1.基本方法:如果两个三角形中,有两组对应角分别相等,那么这两个三角形相似。
在这种情况下,我们可以通过证明两条直线平行来判定两个三角形相似。
2.具体步骤:1.首先,确定需要证明的两条直线是否平行。
这可以通过观察图形或根据题目条件来判断。
2.其次,利用平行线的性质来证明对应角相等。
例如,如果两条直线平行于第三条直线,那么它们之间的同位角或内错角相等。
3.最后,根据相似图形的定义,如果两个三角形中有两组对应角相等,则这两个三角形相似。
四、利用平行线判定相似的应用1.几何证明:在几何证明题中,利用平行线判定相似是解决问题的一种常用方法。
通过证明两条直线平行,我们可以得出对应角相等,从而证明两个三角形相似。
2.实际问题解决:在实际生活中,很多问题可以通过建立数学模型并运用利用平行线判定相似的知识进行解决。
例如,在建筑设计中,可以利用这种方法计算建筑物的高度或距离;在地理学中,可以利用这种方法计算地球表面两点之间的距离等。
3.数学竞赛:在数学竞赛中,利用平行线判定相似也是一个常见的考点。
掌握这一方法可以帮助学生在竞赛中取得更好的成绩。
初中数学平行线以及平行公理平行线定义:在同一平面内,不相交的两条直线叫做平行线。
平行线性质:两条直线没有公共点,并且与另外两条直线没有公共点。
平行线定理:任意一对内角和为180°的角都是平行的。
平行线性质:过一条直线的两个内角和分别为60°和120°的三角形叫做平行三角形,记作 BD。
平行线定理:过一点作直线的两条平行线,这两条直线平行。
平行线定理:平行公理:一条直线与两条直线相交,如果这两条直线都在第三条直线上,那么它们一定互相平行。
平行线公理:在同一平面内,两个互相垂直的线段,如果它们相交于一点,那么它们会分别平行于这两个交点。
一、平行线的判定定理平行线的判定定理:如果两条直线被第三条直线平行,那么这两条直线一定不相交。
(1)在同一平面内,一条直线和它的两个端点所组成的图形是全等图形。
(2)平行线的性质:平行线两边和它们的夹角都相等。
二、平行公理定义:两条直线分别平行于第三条直线,并且相互垂直。
公理3:如果一条直线与它的非对边相交,那么它与这条相交边的两个内角之和仍然平行于这个交点。
公理4:过一个图形的某一点有且只有一条直线与它相交。
公理5:任何一个三角形都是等边三角形。
公理6:同延长线平行。
三、平行线的性质(包括平行线定理和平行线公理化)1、平行线的两条平行线互相平行2、平行线的性质定理:直线与另一条直线相交,并与另一条直线平行。
3、平行线公理化:将任意两条平行线的位置关系进行分类,得出如下定理,即:过两个交点,且其中一个是第三条直线上的两个点。
四、平行公理和性质的证明方法(1)平行公理的证明:在平面内,两条直线相平行,两条直线被第三条直线所截,两个内角的和为180°,过一点,有两个角相等。
(2)平行线性质的证明:在平面内,过一点,有一条直线与两条直线互相平行;如果这两条直线被第三条直线所截,那么这两个直线被第三条直线所截,并且都和第三条直线平行。
(3)证明方法:①运用平行线的性质定理;③运用平行线的性质定理。
平行线及判定知识点平行线是指在同一个平面内,永不相交的两条直线。
在几何学中,判定两条直线是否平行有多种方法,包括几何判定和代数判定。
一、几何判定1. 定义法:若两条直线在同一个平面内,且没有交点,则它们是平行线。
2. 同一斜率法:若两条直线的斜率相同,且不为无穷大,则它们是平行线。
对于一般的直线方程y = kx + b,k为斜率。
3. 平行线特性法:若两条直线分别与第三条直线相交,并且相交线与第三条直线成同样的角度,那么这两条直线是平行线。
二、代数判定在代数方法中,使用直线的方程来判定两条直线是否平行。
1. 斜率法:若两条直线的斜率分别为k1和k2,且k1 ≠ k2,则这两条直线平行。
斜率的计算方法为k = (y2 - y1) / (x2 - x1)。
注意需要确保分母不为零。
2. 一次项系数法:对于一般的直线方程Ax + By + C = 0,若两条直线的一次项系数比例相同,则是平行线。
例如,若两条直线方程分别为2x + 3y - 4 = 0和4x + 6y - 8 = 0,则它们平行。
3. 总体系数法:对于一般的直线方程Ax + By + C = 0,若两条直线的系数比例相同,则是平行线。
例如,若两条直线方程分别为2x + 3y - 4 = 0和4x + 6y - 8 = 0,则它们平行。
需要注意的是,以上方法仅在直线处于平面中时成立,且约定斜率法的直线斜率不为无穷大。
参考内容:1. 《高中数学几何一》2. 《数学分析》3. 《数学辞典》4. 《解析几何学教程》5. 《初中数学辞海》6. 《高数全书》7. 《平行线的判定》- 百度百科8. 《数学知识技巧速查手册》。