人教版九年级下册数学第2课时 方向角和坡角问题教案与教学反思
- 格式:doc
- 大小:185.00 KB
- 文档页数:3
方位角、坡度、坡角掌握方位角的定义及表示方法教学目标:重点:理解坡度、坡比等相关概念在实际问题中的含义难点:与方位角有关的实际问题1.掌握方位角的定义及表示方法指或指方向线与目标方向线所成的小于90°的水平角,叫方位角,如图,目标方向线OA、OB、OC、OD的方位角分别表示, , , .2.理解坡度、坡比等相关概念在实际问题中的含义(1)坡度、坡比①如图,我们把坡面的高度h和宽度l的比叫做坡度(或叫做坡比),用字母i表示,即i=.坡度一般写成1∶m的形式.②坡面与的夹角α叫做坡角,坡角与坡度之间的关系为i==tanα.(2)水平距离、垂直距离(铅直高度)、坡面距离如图, 代表水平距离, 代表铅直高度, 代表坡面距离.重点一:与方位角有关的实际问题解答与方位角有关的实际问题的方法(1)弄清航行中方位角的含义,根据题意画出图形,画图时要先确定方向标,把实际问题转化为数学问题是解题的关键所在.(2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,关键在于确定基准点.当船在航行时,基准点在转移,画图时要特别注意.1. (2013河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )(A)40海里(B)60海里 (C)70海里(D)80海里2.(2013荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB的高速公路是否穿过风景区,请说明理由.3. 如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°方向.若一艘渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点二:与坡度、坡角有关的实际问题(1)坡度是坡角的正切值,坡度越大,坡角也越大.(2)与坡度有关的问题常与水坝有关,即梯形问题,常用的方法一般是过上底的顶点作下底的垂线,构造直角三角形和矩形来求解.4.(2014丽水)如图,河坝横断面迎水坡AB的坡比是1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5. (2013安徽)如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所示,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少立方米土石进行加固.1. 河堤横断面如图所示,迎水坡AB的坡比为1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),则坡角α为( )(A)30° (B)45° (C)50° (D)60°2.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地( )(A)150 m(B)50 m (C)100 m (D)100 m3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )(A)5cos α(B)(C)5sin α(D)4.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8 cm(如箭头所示),则木桩上升了( )(A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5. (2013潍坊)如图,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )(A)10海里/小时 (B)30海里/小时 (C)20海里/小时(D)30海里/小时6.在一次自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么由此可知,B,C两地相距m.7. 如图所示,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8. 如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时灯塔与渔船的距离是海里.9. (2013湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013新疆)如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2 km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离(结果精确到0.1 km).11.(2013烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米参考数据:sin 67°≈,cos 67°≈,tan67°≈,si n 37°≈,cos 37°≈,tan 37°≈. 13.如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin 36.5°=0.6,cos 36.5°=0.8, tan 36.5°=0.75).(1)求M,N两村之间的距离;(2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。
方位角、坡度、坡角1.掌握方位角的定义及表示方法指或指方向线与目标方向线所成的小于90°的水平角,叫方位角,如图,目标方向线OA、OB、OC、OD的方位角分别表示, , , .2.理解坡度、坡比等相关概念在实际问题中的含义(1)坡度、坡比①如图,我们把坡面的高度h和宽度l的比叫做坡度(或叫做坡比),用字母i表示,即i=.坡度一般写成1∶m的形式.②坡面与的夹角α叫做坡角,坡角与坡度之间的关系为i==tanα.(2)水平距离、垂直距离(铅直高度)、坡面距离如图, 代表水平距离, 代表铅直高度, 代表坡面距离.重点一:与方位角有关的实际问题解答与方位角有关的实际问题的方法(1)弄清航行中方位角的含义,根据题意画出图形,画图时要先确定方向标,把实际问题转化为数学问题是解题的关键所在.)1. (2013河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )(A)40海里(B)60海里 (C)70海里(D)80海里2.(2013荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB的高速公路是否穿过风景区,请说明理由.3. 如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°方向.若一艘渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点二:与坡度、坡角有关的实际问题(1)坡度是坡角的正切值,坡度越大,坡角也越大.4.(2014丽水)如图,河坝横断面迎水坡AB的坡比是1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5. (2013安徽)如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所示,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少立方米土石进行加固.1. 河堤横断面如图所示,迎水坡AB的坡比为1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),则坡角α为( )(A)30° (B)45° (C)50° (D)60°2.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地( )(A)150 m(B)50 m (C)100 m (D)100 m3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )(A)5cos α(B)(C)5sin α(D)4.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8 cm(如箭头所示),则木桩上升了( )(A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5. (2013潍坊)如图,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )(A)10海里/小时 (B)30海里/小时 (C)20海里/小时(D)30海里/小时6.在一次自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么由此可知,B,C两地相距m.7. 如图所示,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8. 如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时灯塔与渔船的距离是海里.9. (2013湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013新疆)如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2 km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离(结果精确到0.1 km).11.(2013烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米参考数据:sin 67°≈,cos 67°≈,tan 67°≈,si n 37°≈,cos 37°≈,tan 37°≈. 13.如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin 36.5°=0.6,cos 36.5°=0.8,tan 36.5°=0.75).(1)求M,N两村之间的距离;(2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。
初中数学人教版九年级下册优质说课稿28-2-2 第2课时《方向角和坡角问题》一. 教材分析《方向角和坡角问题》是人教版九年级下册数学的一节课。
本节课的主要内容是让学生理解方向角和坡角的概念,掌握它们的计算方法,并能够运用这些知识解决实际问题。
教材通过丰富的实例和图示,引导学生探究方向角和坡角的特点,培养学生的空间想象能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和空间想象有一定的基础。
但是,对于方向角和坡角这两个概念,学生可能比较陌生,需要通过具体的实例和图示来帮助他们理解和掌握。
此外,学生可能对角度的计算方法不熟悉,需要通过练习来提高计算能力。
三. 说教学目标1.知识与技能:学生能够理解方向角和坡角的概念,掌握它们的计算方法,并能够运用这些知识解决实际问题。
2.过程与方法:学生通过观察实例和图示,培养空间想象能力和解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,增强对数学学科的兴趣和自信心。
四. 说教学重难点1.重点:学生能够理解方向角和坡角的概念,掌握它们的计算方法。
2.难点:学生能够运用方向角和坡角的知识解决实际问题。
五. 说教学方法与手段本节课采用问题驱动的教学方法,通过实例和图示引导学生探究方向角和坡角的特点。
同时,运用多媒体教学手段,展示清晰的图像和动画,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考方向角和坡角的概念。
2.新课导入:介绍方向角和坡角的定义,并通过图示和实例让学生理解它们的概念。
3.计算方法讲解:讲解方向角和坡角的计算方法,并通过练习让学生巩固知识点。
4.实际问题解决:引导学生运用方向角和坡角的知识解决实际问题,培养学生的应用能力。
5.总结与拓展:对本节课的内容进行总结,并提出相关的拓展问题,激发学生的思考。
七. 说板书设计板书设计主要包括方向角和坡角的定义、计算方法以及实际问题解决的方法。
初中九年级数学下册《方位角》教案及反思一、教学目标1.了解方位角的概念和性质,掌握它的计算方法。
2.能够应用方位角的知识解决实际问题。
3.培养学生观察能力,提高学生的逻辑思维和计算能力。
二、教学重难点1.学生理解方位角的概念和方法,能够正确计算出方位角。
2.学生能够应用方位角的知识解决实际问题。
三、教学过程1. 导入引出导入问题:“如果我们要按照地图上的标志找到某处,应该怎么办?”引起思考。
2. 学习1.定义方位角并讲解它的概念和性质。
方位角是二维平面上的一条射线与水平方向的夹角。
介绍北、东、南、西等基本方向,让学生了解:当射线落在第{k}象限(k=1,2,3,4)时,方位角为第{k}象限的负补角,其中第2象限的负补角要加$360^\\circ$,第3、4象限的负补角要加$180^\\circ$。
2.讲解方位角的计算方法,如将角度归约到$0^\\circ-360^\\circ$以内,以及使用补角计算法、共线三点法计算方位角。
3.带领学生进行方位角计算的练习,在黑板上用具体的图形进行演示,让学生更好地理解和掌握方位角的计算方法。
3. 拓展让学生结合现实生活中的例子进行练习,比如在校园里寻找某处地点,计算方位角、计算两个点之间的距离等。
通过案例的练习,让学生更好地理解方位角的概念及应用。
4. 总结总结该课程的学习内容,对学生进行回顾。
要求学生在课后完成相关的练习,加深对方位角的认识。
四、教学反思1.教学方式不够多样化,应该增加以游戏、讨论等方式加深学生对方位角的理解。
2.教学过程中,应该引导学生进行一些关于方位角的实际探讨和应用,这样能够更好地加深学生对方位角的理解和应用能力。
3.教案中,缺乏实际例子的应用,以后教学中应该加强实际案例的讲解和练习。
4.考虑到一些学生数学基础较差,教学中可以采取加强对于基础知识的巩固再进行新知识的讲授。
针对以上的教学不足,我会在今后的教学教案中进行更加完善的安排,能够加深学生对于知识的理解和认识,教学效果更加明显。
初中数学人教版九年级下册同步教学设计28-2-2 第2课时《方向角和坡角问题》一. 教材分析《方向角和坡角问题》是人教版初中数学九年级下册的一章内容。
本节课主要学习了方向角和坡角的概念,以及它们在实际问题中的应用。
通过本节课的学习,学生能够理解方向角和坡角的概念,掌握计算方法,并能运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认知和空间想象能力有一定的提升。
但是,对于方向角和坡角这两个概念,学生可能较为陌生,需要通过具体的实例和练习来理解和掌握。
此外,学生可能对于实际问题中的方向角和坡角的计算存在一定的困难,需要教师进行详细的讲解和指导。
三. 教学目标1.知识与技能:学生能够理解方向角和坡角的概念,掌握计算方法,并能运用所学知识解决实际问题。
2.过程与方法:通过观察实例,学生能够培养空间想象能力,提高解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂活动,增强对数学学科的兴趣和自信心。
四. 教学重难点1.重点:方向角和坡角的概念及计算方法。
2.难点:实际问题中方向角和坡角的计算。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等教学方法。
通过具体的实例和练习,引导学生观察、思考、讨论和解决问题,提高学生的空间想象能力和解决问题的能力。
六. 教学准备1.教师准备:准备相关的实例和练习题,制作PPT课件。
2.学生准备:预习相关内容,了解方向角和坡角的概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如“小明从A地出发,向正北方向行进了2公里,然后向右转,继续行进了3公里,问小明现在的位置是哪里?”让学生思考并回答问题,引发学生对方向角和坡角的兴趣。
2.呈现(10分钟)教师通过PPT课件呈现方向角和坡角的定义和计算方法,结合实例进行讲解,让学生直观地理解这两个概念。
3.操练(10分钟)教师给出一些具体的练习题,让学生独立完成。
28.2.2 应用举例第2课时方向角和坡角问题一、新课导入1.课题导入情景:如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile 的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?问题:怎样由方向角确定三角形的内角?2.学习目标(1)能根据方向角画出相应的图形,会用解直角三角形的知识解决方位问题.(2)知道坡度与坡角的含义,能利用解直角三角形的知识解决与坡度有关的实际问题.3.学习重、难点重点:会用解直角三角形的知识解决方向角、坡度的相关问题.难点:将实际问题转化为数学问题(即数学建模).二、分层学习1.自学指导(1)自学内容:教材P76例5.(2)自学时间:10分钟.(3)自学方法:独立探索解题思路,然后同桌之间讨论,写出规范的解题过程.(4)自学参考提纲:①如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果取整数,参考数据:cos25°≈0.91,sin25°≈0.42,tan25°≈0.47,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)a.根据已知在图中标出方向角:如图所示.b.根据方向角得到三角形的内角:在△PAB中,∵海轮沿正南方向航行,∴∠A= 65°,∠B= 34°,PA= 80 .c.作高构造直角三角形:如图所示.d.写出解答过程:在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈72.505(n mile).在Rt△BPC中,∠B=34°,PB=72505sin sin34.PCB=︒≈130(n mile).②如图,海中有一个小岛A,它周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°的方向上,航行12海里到达D点,这时测得小岛A在北偏东30°的方向上,如果渔船不改变航向继续向东航行,有没有触礁的危险?解:过A作AE⊥BD于E.由题意知:∠ABE=30°,∠ADE=60°.∴∠BAD=60°-30°=30°=∠ABD.∴AD=BD=12.∴AE=AD·sin60°=12×32=63(海里)>8海里.∴无触礁的危险.2.自学:结合自学指导进行自学.3.助学(1)师助生:①明了学情:观察学生自学提纲的答题情况.②差异指导:根据学情对学习有困难的学生进行个别或分类指导. (2)生助生:小组内互相交流、研讨.4.强化:利用解直角三角形的知识解方向角问题的一般思路.1.自学指导(1)自学内容:教材P77.(2)自学时间:5分钟.(3)自学方法:先独立归纳利用解直角三角形的知识解决实际问题的一般思路,然后对照课本P77的内容归纳,进行反思总结.(4)自学参考提纲:①利用解直角三角形的知识解决实际问题的一般思路:a.将实际问题抽象为数学问题;b.根据问题中的条件,适当选用锐角三角函数等解直角三角形;c.得到数学问题的答案;d.得到实际问题的答案.②练习:如图,拦水坝的横断面为梯形ABCD,斜面坡度i=1∶1.5是指坡面的铅直高度AF与水平宽度BF的比,斜面坡度i=1∶3是指DE与CE的比,根据图中数据,求:a.坡角α和β的度数;b.斜坡AB的长(结果保留小数点后一位).2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:明了学生解答问题的情况.②差异指导:根据学情进行相应指导.(2)生助生:小组内互相交流、研讨.4.强化(1)坡度、坡角的含义及其关系,梯形问题的解题方法.(2)在自学参考提纲第②题中,若补充条件“坝顶宽AD=4 m”,你能求出坝底BC的长吗?(3)利用解直角三角形的知识解决实际问题的一般思路:三、评价1.学生自我评价:在这节课的学习中你有哪些收获?掌握了哪些解题技巧和方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动性、小组交流协作情况、解题方法的掌握情况等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应先认知“方向角”“坡度”及其所代表的实际意义,添作适当的辅助线,构建直角三角形.然后结合解直角三角形的有关知识加以解答,层层展开,步步深入.一、基础巩固(70分)1.(10分)已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的(D)A.南偏东50°B.南偏东40°C.北偏东50°D.北偏东40°2.(10分)如图,某村准备在坡度为i=1∶1.5的斜坡上栽树,要求相邻两棵树之间的水平距离为5 m,则这两棵树在坡面上的距离AB为5133m.(结果保留根号)3.(10分)在菱形ABCD中,AB=13,锐角B的正弦值sinB=513,则这个菱形的面积为65 .4.(20分)为方便行人横过马路,打算修建一座高5 m的过街天桥.已知天桥的斜面坡度为1∶1.5,计算斜坡AB的长度(结果取整数).解:∵i=115.ACBC=,AC=5,∴BC=1.5×5=7.5.∴AB=228125.AC BC+=≈9(m).5.(20分)一轮船原在A处,它的北偏东45°方向上有一灯塔P,轮船沿着北偏西30°方向航行4 h到达B处,这时灯塔P正好在轮船的正东方向上.已知轮船的航速为25 n mile/h,求轮船在B处时与灯塔的距离(结果可保留根号).解:过点A作AC⊥BP于点C.由题意知:∠BAC=30°,∠CAP=45°,AB=25×4=100.在Rt△ABC中,BC=12AB=50,AC=32AB=503.在Rt△ACP中,CP=AC=503.∴BP=BC+CP=50(3+1)(n mile).二、综合应用(20分)6.(20分)某型号飞机的机翼形状如图所示.根据图中数据计算AC,BD和AB 的长度(结果保留小数点后两位).解:如图所示,在Rt△BDE中,BE=5.00,∠DBE=30°,∴DE=BE·tan30°=533,BD=103cos303BE=︒≈5.77(m).在Rt△ACF中,CF=BE=5.00,∠FCA=45°,∴AF=CF=5.00,∴AC=2CF=52≈7.07(m).∴AB=BF-AF=DE+CD-AF=533+3.40-5.00≈1.29(m).三、拓展延伸(10分)7.(10分)海中有一小岛P,在以P为圆心、半径为162 n mile的圆形海域内有暗礁,一艘船自西向东航行,它在A处时测得小岛P位于北偏东60°方向上,且A,P之间的距离为32 n mile.若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.若有危险,轮船自A处开始至少沿东偏南多少度的方向航行,才能安全通过这一海域?解:如图,∠PAB=30°,AP=32.∴PB=12AP=16(n mile).∴PB<16n mile.∴轮船有触礁危险.假设轮船沿东偏南α恰好能安全通过,此时航线AC与⊙P相切,即PC⊥AC.又∵AP=32,,∴∠PAC=45°,∴α=15°.∴轮船自A处开始至少沿东偏南15度方向航行,才能安全通过这一海域.。
方位角、坡度、坡角教学掌握方位角的定义及表示方法目标:重点:理解坡度、坡比等相关概念在实际问题中的含义难点:与方位角有关的实际问题指或指方向线与目标方向线所成的小于90°的水平角,叫方位角,如图,目标方向线OA、OB、OC、OD 的方位角分别表示,,,.2.理解坡度、坡比等相关概念在实际问题中的含义(1)坡度、坡比①如图,我们把坡面的高度h和宽度l的比叫做坡度(或叫做坡比),用字母i表示,即i=.坡度一般写成1∶m的形式.②坡面与的夹角α叫做坡角,坡角与坡度之间的关系为i==tan α.(2)水平距离、垂直距离(铅直高度)、坡面距离如图,代表水平距离,代表铅直高度,代表坡面距离.重点一:与方位角有关的实际问题解答与方位角有关的实际问题的方法(1)弄清航行中方位角的含义,根据题意画出图形,画图时要先确定方向标,把实际问题转化为数学问题是解题的关键所在.(2)船在海上航行,在平面上标出船的位置、灯塔或岸上某目标的位置,关键在于确定基准点.当船在航行时,基准点在转移,画图时要特别注意.1.(2013某某)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( ) (A)40海里(B)60海里(C)70海里 (D)80海里2.(2013某某)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB的高速公路是否穿过风景区,请说明理由.3.如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点二:与坡度、坡角有关的实际问题(1)坡度是坡角的正切值,坡度越大,坡角也越大.(2)与坡度有关的问题常与水坝有关,即梯形问题,常用的方法一般是过上底的顶点作下底的垂线,构造直角三角形和矩形来求解.4.(2014某某)如图,河坝横断面迎水坡AB的坡比是1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5.(2013某某)如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所示,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF 的坡比i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少立方米土石进行加固.1.河堤横断面如图所示,迎水坡AB的坡比为1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),则坡角α为( )(A)30° (B)45° (C)50° (D)60°°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A 地( )(A)150 m(B)50 m(C)100 m (D)100 m3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( ) (A)5cos α(B)(C)5sin α(D)4.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8 cm(如箭头所示),则木桩上升了( ) (A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5.(2013潍坊)如图,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )(A)10海里/小时(B)30海里/小时(C)20海里/小时(D)30海里/小时6.在一次自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么由此可知,B,C两地相距m.7.如图所示,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8.如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时灯塔与渔船的距离是海里.9.(2013湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C 与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013某某)如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2 km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离(结果精确到0.1 km).11.(2013某某)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C 两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市.CD与AB 所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B 相距62米,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D →C→B到达超市比直接横穿马路多走多少米参考数据:sin 67°≈,cos 67°≈,tan 67°≈,sin 37°≈,cos 37°≈,tan 37°≈.°方向上,距离5千米°方向上,距离10千米°°=0.8,°=0.75).(1)求M,N两村之间的距离; (2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。
28.2.2 解直角三角形及其应用 -------方向角问题哈密市第四中学:刘楠教学目标:1.了解什么是方位角,了解方向角的命名特点,能准确熟练地解决有关方向角的问题。
2.巩固用解直角三角形有关知识解决实际问题的方法,学会解决现实生活中的航海问题。
过程与方法:1.通过实际问题的解决,逐步培养学生分析问题、解决问题的能力.2.渗透建模的数学思想和方法,学会用数学的思维方式解决问题.情感目标:体验线上微课带来的便利,增强学生的学习兴趣。
教学重难点:重点:用解直角三角形的方式、方法解决方向角问题和有关航海问题难点:学会准确分析问题并将实际问题转化成数学模型,从而加以解决。
教学过程:1.回提出本节课所要解决的问题,让学生做到有目标的学习。
2.顾复习方向角的概念,定义:一般是指以观测者的位置为中心,将正北或正南方向作为起始A北45°B O东西南方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度。
若目标方向线与指北或指南的方向线成45°的角,又叫东北方向,东南方向,西北方向,西南方向。
认识方向角:如图点A在O 的北偏东30°,点B在点O的南偏西45°(西南方向)温馨提示:(1)方向角通常是以南北方向线为主,一般习惯说成“南偏东(西)”或“北偏东(西)”。
(2)观测点不同,所得的方向角也不同。
(设计意图:(1)通过地理知识引出方向角,让学生容易接受,从心理上认为这是旧知识,并做好用旧知识解决新知识的方法准备。
(2)通过一道简体的题目的练习和对易错点的温馨提示,让学生了解方向角的命名特点,能准确熟练地解决有关方向角的问题。
)3.例题精讲例1. 如图,海中有一个小岛A,该岛四周10海里内有暗礁.现有货轮由西向东航行,开始时在A岛南偏西55°的B处,向正东行驶20海里后到达该岛的南偏西25°的C处。
货轮继续向东航行,会有触礁的危险吗?提出问题:问题1、已知条件与所求条件分别是什么?问题2、如何构造直角三角形?问题3、如何解直角三角形?问题4、如何判断有无触礁危险?(教师点拨:应先求出点A距BC的最近距离,若大于10则无危险,若小于或等于10则有危险。
第2课时方向角和坡角问题
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!
举世不师,故道益离。
柳宗元
上大附中何小龙
【知识与技能】
进一步掌握用解直角三角形的知识解决实际问题的方法,体会方位角、仰角、俯角、坡度(坡比)的含义及其所代表的实际意义,能用它们进行有关的计算. 【过程与方法】
通过实际问题的求解,总结出用解直角三角形的知识解决实际问题的一般过程,增强分析问题和解决问题的能力.
【情感态度】
渗透数形结合的思想方法,增强学生的数学应用意识和能力.
【教学重点】
用三角函数有关知识解决方位角问题.
【教学难点】
学会准确分析问题,并将实际问题转化为数学模型.
一、复习回顾,新知导引
1.仰角、俯角概念;
2.方位角的意义.
【教学说明】教师提出问题顾,为后继学习作好准备.
二、典例精析,掌握新知
例1 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B 处.这时,海轮所在的B处距离灯塔P有多远 (结果取整数)?
分析与解易知P点正东方向与AC具有垂直关系,即图中
PC丄AB,若记垂足为C,则图中出现了两个直角三角形APC和直角三角形BPC.
而在Rt △APC 中,知AP=80,∠APC=90°-65°=25°,故可求出线段PC 的长,即由AP PC =∠APC cos ,得PC=AP · cos25°=80·cos25°≈72.505,因此在Rt △BPC 中,由PB PC PB =∠C cos ,得,13056cos 505.7256cos ≈︒=︒=PC PB 从而可得知海轮在B 处时距离灯塔P 约130海里.
【教学说明】本例的设计较上节课所学过的应用问题不同之处在于用其中一个直角三角形中所获得的结论来作为另一个直角三角形的条件而获得问题的解答,这正是学生感到困难的地方,因而教师应作为引导,帮助学生进行观察思考.
例2 如图,拦水坝的横断面是梯形ABCD (图中i=1:3是指坡面的铅直高度DE 与水平宽度CE 的比,也称为坡度、坡比),根据图中数据求:
(1)坡角α和β;
(2)斜坡AB 的长(结果保留小数点后一位).
【教学说明】本例可由学生独立完成,教师巡视指导,让学生在自探究中体会用解直角三角形的知识来解决史记问题的方法,在完成上述例题后,教师引导学生完成优作业中本课时的“名师导学”部分.
三、师生互动,课堂小结
问题 通过学习用解直角三角形知识解决实际问题过程中,你有哪些收获?
【教学说明】师生共同探索,完善知识体系.
1.布置作业:从教材P77〜79习题28.2中选取.
2.完成创优作业中本课时的“课时作业”部分.
本课时应首先认知“方位角、仰角、俯角、坡度”及其所代表的实际意义,然后结合解直角三角形的有关知识加以论证,层层展开,步步深入.
【材积累】
1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的格。
倘若你想达成目标,便得摘心中描绘出目标达成后的景象;那么,梦想必会成真。
求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失意不灰心;得意莫忘形。
桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。
你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。
、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。
倘若你想成目标,便得摘心中描绘出目标达成的景象;那么,梦想必会成真。
求人不如求己;贫穷志不移;吃得苦中苦;方为人上人;失不灰心;得意莫忘形。
桂冠上的飘带,不是用天才纤维捻制而成的,而是用痛苦,磨难的丝缕纺织出来的。
你的脸是为了呈现上帝赐给人类最贵重的礼物——微笑,一定要成为你工作醉大的资产。
1、天,一层薄薄的白雪,巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒冷的银光。
2、抬眼望去,雨后,青山如黛,花木如洗,万物清新,青翠欲滴,绿意径直流淌摘心里,空气中夹杂着潮湿之气和泥土草木的混合气味,扑面而来,清新而湿热的气流迅疾钻入人的身体里。
脚下,雨水冲刷过的痕迹跃然眼前,泥土地上,湿湿的,软软的。