运筹学上机实验
- 格式:ppt
- 大小:2.58 MB
- 文档页数:70
Southwest university of science and technology实验报告LINGO软件在线性规划中的运用学院名称环境与资源学院专业名称采矿工程学生姓名学号____________________________________ 指导教师陈星明教授二◦一五年十一月实验LINGO软件在线性规划中的运用实验目的掌握LINGO软件求解线性规划问题的基本步骤,了解LINGO软件解决线性规划问题的基本原理,熟悉常用的线性规划计算代码,理解线性规划问题的迭代关系。
实验仪器、设备或软件电脑,LINGO软件实验内容1. LINGO软件求解线性规划问题的基本原理;2•编写并调试LINGO软件求解线性规划问题的计算代码;实验步骤1•使用LINGO计算并求解线性规划问题;2 •写出实验报告,并浅谈学习心得体会(线性规划的基本求解思路与方法及求解过程中出现的问题及解决方法)。
实验过程有一艘货轮,分为前、中、后三个舱位,它们的容积与允许载重量如下表所示。
现有三种商品待运,已知有关数据列于下表中。
又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
具体要求前、后舱分别与中舱之间的载重量比例偏差不超过15%,前、后舱之间不超过10%。
问货轮首先分析问题,建立数学模型:确定决策变量假设i=1,2,3分别代表商品A、B C, 8用j=1,2,3分别代表前、中、后舱,设决策变量X ij为装于j舱位的第i种商品的数量(件)。
确定目标函数商品A的件数为:x11- x12x13商品B的件数为:x21x22x23商品A的件数为:X31 - X32 - X33为使运费最高,目标函数为:确定约束条件前、中、后舱位载重限制为:前、中、后舱位体积限制为:A、B、C三种商品数量的限制条件:各舱最大允许载重量的比例关系构成的约束条件:且决策变量要求非负,即X j > 0,i=1,2;j=1,2,3。
实验报告2:P153习题1某公司在三个地方有三个分厂,生产同一种产品,其产量分别为300箱、600箱、500箱。
需要供应四个地方的销售,这四地的产品需求分别为400箱、250箱、350箱、200箱。
三个分厂到四个产地的单位运价如表所示。
应如何安排运输方案,使得总运费为最小。
在此问题中,三个分厂的总产量为1400单位,而总需求量为1200单位。
因此此问题为供求不相等的运输问题,且供大于求。
为此,除已有的四个销地外,可假设一销地,且三个分厂运往此销地的单位运费均为0。
即将假设的销地看为存储的仓库。
求解过程最优解如下********************************************起至销点发点 1 2 3 4-------- ---- ----- ----- -----1 0 250 0 502 400 0 0 03 0 0 350 150此运输问题的成本或收益为: 19800此问题的另外的解如下:起至销点发点 1 2 3 4-------- ----- ----- ----- -----1 0 250 50 02 400 0 0 03 0 0 300 200此运输问题的成本或收益为: 19800(2)如果2 分厂产量提高到600,则为产销不平衡问题最优解如下******************************************** 起至销点发点 1 2 3 4-------- ----- ----- ----- -----1 0 250 0 02 400 0 0 2003 0 0 350 0此运输问题的成本或收益为: 19050注释:总供应量多出总需求量200第1 个产地剩余50第3 个产地剩余150(3)销地甲的需求提高后,也变为产销不平衡问题最优解如下******************************************** 起至销点发点 1 2 3 4-------- ----- ----- ----- -----1 50 250 0 02 400 0 0 03 0 0 350 150此运输问题的成本或收益为: 19600总需求量多出总供应量150第1 个销地未被满足,缺少100第4 个销地未被满足,缺少50P255 习题1这是一个最短路问题,要求我们求出从v1 到v7 配送的最短距离。
lingo上机实验报告重庆交通大学学生实验报告实验课程名称专业综合实验Ⅰ开课实验室交通运输工程实验教学中心学院交通运输年级二年级专业班交通运输1班学生姓名学号631205020开课时间2013 至2014 学年第 2 学期总评成绩教师签名实验名称运筹学上机实验(一)实验类型上机实验实验时间2014.5.9—6.16 实验地点BO1机房实验目的:了解LINGO软件的基本入门知识,学习使用LINGO软件对线性规划问题进行灵敏度分析。
仪器、设备名称:LINGO9.0软件实验要求及注意事项:1.写出数学模型;2.在Lingo中输入求解的程序;3.求解得到解报告;4.写出最优解和最优值。
实验内容、操作步骤:一、数学模型:求解线性规划问题max=5*x1+4*x2+3*x3x1+x2+2*x3<=452*x1+x2+x3<=80 S.tx1+3*x2+x3<=90x1,x2,x3>=0并进行灵敏度分析。
二、模型求解:1、在lingo中输入模型如下:2、得出求解报告:(4)选择Dual Computation: Prices & Range;(5)点击OK退出;(6)在键盘上按下ctrl + R。
如图所示:2、灵敏度分析结果如下:Current coefficient—目标函数中变量系数Allowable Increase—允许增加量Allowable Decrease—允许减少量Current RHS—对偶问题系数实验结果分析(含数据、图表整理):结论:(1)该线性规划问题的最优解为:X*=(35,10,0),最优值为Z*=215.(2) c1=5c1在(4,8)内原最优解不变,但最优值是要变的c2=4c2在(2.7,5)内原最优解不变,但最优值是要变的c3=3c3在(-∞,7)内原最优解,最优值都是不变的b1=45b1在(45,50)内原最优基不变,但最优解和最优值是要变的b2=80b2在(67.5,90)内原最优基不变,但最优解和最优值是要变的b3=90b3在(65,∞)内原最优基不变,但最优解和最优值是要变的实验收获、心得及建议:通过对lingo软件的学习和使用,使我初步掌握了用lingo求解最优问题和灵敏度分析的基本方法。
运筹学与系统工程上机实验指导书机电学院工业工程专业2013-2014(1)学期上机实验五:应用Lingo 求解动态规划和排队论问题一、 实验目的在熟练编写和运行Lingo 程序的基础上,应用Lingo 进行求解动态规划和排队论等深层次优化问题的练习。
二、 实验要求1、根据本指导书学习Lingo 对典型动态规划问题进行建模和求解。
2、根据本指导书学习排队论相关函数的具体使用方法,对典型的随机服务系统问题进行建模和求解。
3、独立完成相关应用题目的分析、建模和应用Lingo 软件的求解过程。
三、 相关知识1、动态规划问题模型及典型应用动态规划(Dynamic Programming )是将一个大型、复杂的问题转换为若干阶段的子问题,从而将动态的多阶段问题简化为静态的单阶段决策问题,一般需要采用递归算法进行求解。
动态规划问题的一般模型为:{}1111()max(min)(,)(),1,,2,1()0k k k k k k k n n f S V S u f S k n n f S ++++=+=-=动态规划的典型应用包括:最短路径问题、动态生产计划问题、资源配置问题、背包问题、旅行商问题、随机性采购问题、设备更新问题等。
按照决策变量取值的不同,也可以分为连接型动态规划和离散型动态规划问题。
无论是连续问题还是离散问题,动态规划解决问题的前提条件是:可将问题划分为k 个阶段(k=1,2,…,n ),并能构建多阶段模型(最优指标函数Vk,n ,状态Sk 、决策uk 、状态转移方程Tk )。
2、随机服务系统相关Lingo 函数随机服务系统由输入过程(反映顾客总体的特征)、排队规则(反映队伍特征)及服务机构(反映服务台的特征)所组成,对随机服务系统的描述如图1所示,可用符号M/M/1表示泊松输入、负指数服务、一个服务台组成的随机服务系统。
图 1 随机服务系统的描述描述排队系统的主要数量指标有:队长L=正在服务的顾客数Ls+等待队长Lq ,顾客的平均停留时间W=顾客的平均等待时间Wq+平均服务时间Ws 。
实验一 使用LINGO 求解线性规划问题班级: 姓名: 学号: 评阅成绩: 已知如下线性规划模型:123max 303540z x x x =++1231231231233251823412229,,0x x x x x x x x x x x x ++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩ 一、利用集的方法编写上述线性规划模型的LINGO 程序。
在LINGO 软件模型中编写本题的程序如下图1-1所示所示。
图1-1 LINGO 模型窗口截图点击LINGO 菜单下的Solve 选项,LINGO 软件求解所输入的模型,得到LINGO 运行状态窗口如图1-2所示图1-2 LINGO运行状态窗口截图运行结束后,关闭LINGO运行状态窗口,获得LINGO软件的结果报告窗口,如图1-3、1-4所示。
图1-3 LINGO结果报告窗口截图(一)图1-4 LINGO结果报告窗口截图(二)二、根据编写的程序,回答以下问题:1、哪些是原始集?答:var(j), const(i)是原始集2、哪个是派生集?该派生集是稠密集还是稀疏集?该派生集有多少个成员?答:A(i,j)是派生集,属于稠密集合,共有9个成员3、属性值“5”是属于成员(b1,x3)还是(b3,x1)的属性值?答:属于成员(b1,x3)的属性值三、根据程序的运行结果,回答以下问题:1、全局最优值是否已经找到?该值是多少?答:已经找到,最优值为1652、该模型求解一共迭代了多少次?答:共迭代了2次3、在求解结果的界面中,Variable、Value、Reduced Cost、Row、Slack or Surplus 和Dual Price分别表示什么?答:Variable表示运算时各定义变量的取值;Value表示给出最优解中各变量的值;Reduced Cost表示列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率;Row表示行数;Slack or Surplus 表示给出松驰变量的值;Dual Price表示当对应约束有微小变动时, 目标函数的变化率。
一、软件下载、安装1、下载地址:ftp://2、将文件夹WinQSB拷贝到硬盘→打开硬盘中的文件夹WinQSB→运行Set.up文件安装程序二、线性规划、整数规划、0-1规划上机程序1、运行“Linear and integer programming”,出现图1所示界面2、运行file菜单下的new problem 命令,出现图2所示界面。
图 2问题名称决策变量个数约束条件个数(不含变量约束)目标函数类型数据类型输入数据格式:选择Spreadsheet Matrix From非负连续变量非负整数变量0-1整数变量不定义图 1如:秋解下面线性规划问题图2输入为:图3所示3、按图2所示输入完成确定后出现图4所示界面。
⎪⎪⎩⎪⎪⎨⎧≥≥-=--≥++-≤++-++=取值无约束321321321321321,0,063234239232min x x x x x x x x x x x x x x x z 图 3图 4目标函数系数 约束条件系数变量类型:双击改变约束形式:双击改变右端项4、输入完成后,按图5所示运行键。
5、运行结果如图6所示图6中各列的含义为:Decision Variable:决策变量Solution Value:决策方案取值Solution Value:决策变量对目标的单位贡献/目标函数系数Total Contribution:总贡献=(Solution Value)×(Solution Value)Reduced Cost:检验数Allowable Min c(j) / Allowable Man c(j):目标系数的灵敏度围Objective Function:目标函数Constraint:约束条件(C1,C2,C3分别表示约束条件1、2、3)Left Hand Side:左端项,将决策变量取值代入约束方程左端计算的结果Right Hand Side:右端项,表示目前资源的拥有量Slack or Surplus:左端项与右端项的差额:资源的不足/slack或剩余/surplusShadow Price:资源的影子价格Allowable Min. RHS/ Allowable Max. RHS:右端项的灵敏度围图 5运行键图 6P65 2.9 已知线性规划问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤+≤+≤++=0x2x1,2x21x2x1-8x22x1 62x2x12x23x1maxZ 已知用单纯形法求得最优解的单纯形表如下,试分析在下列各种条件单独变化时,最优解如何变化,看看与你的分析是否一致?(a)第1个和第2个约束条件的右端项分别由6变成7,由8变成4; (b)目标函数变为maxZ=2x1+5x2(c)增加一个变量x3,其在目标函数中系数C 3=4,在约束系数矩阵中列P3=(1,2,3,2)T ; 3)整数规划 P100 习题4.6P101 习题4.8(1),分别直接求解和用分枝定界法求解,比较结果。
管理运筹学上机实习报告实习目的:通过实习掌握线性规划的运输问题的计算机求解; 掌握“运输问题检验数”的应用和经济意义计算软件求解某建材公司所属的三个水泥厂321,,A A A ,生产水泥销往四个销售点4321,,,B B B B 。
已知水泥的日产量(百吨),各销售点的日销量(百吨)以及各工厂运往各销售点的单位运价(百元/百吨)如下表7-23所示表7-235423469429157412378 3214321销量产量产地销地A A A B B B B在QM 中的求解步骤 1、选择运输规划模块2、新建一个项目3、设置标题、产地个数、销地个数4输入单位运价、产量和销量5、选择初始调运方案的方法(西北角法、最小元素法、V ogel’s)6、点击“SoLve”进行求解7、计算的迭代过程目的:通过实习掌握纯整数线性规划和混合整数线性规划的计算机求解;掌握0-1规划的的计算机求解及实际建模应用要求:写书实习报告计算机求解以8.1的例8.2题说明QM 求解纯整数规划的过程。
⎪⎪⎩⎪⎪⎨⎧≥≤+≤++=整数,0,13522445.1020max 2121212121x x x x x x x x st x x z1、 在QM 软件包选择整数规划模块点击“Module ”按钮,在下拉式菜单中,选择“integer programming ”回车。
2、 新建一个项目(选择“New ”,并按回车键)3、设置标题、约束条件数、变量数和选择最大最小4输入目标函数系数、约束条件5点击“Slove”按钮进行求解。
6、在“Window”窗口中查看迭代过程、图形(两个变量)等信息。
目的:通过实习掌握指派问题的计算机求解;掌握指派问题的流程和应用要求:写书实习报告某高校拟开设文学、艺术、音乐、美术四个学术讲座。
每个讲座每周下午举行一次。
经调查知,每周星期一至星期五不能出席某一讲座的学生数如下表:问:座的学生总数。
目的:通过实习掌握多目标线性规划问题计算机求解步骤;学会分析多目标线性规划问题的求解结果要求:写书实习报告目标规划的计算机求解一家生产某种产品的公司在生产周期内的正常生产时间为100小时。
上机实验报告单2012-2013学年第1学期实验名称:线性规划上机日期:2013-10-23附页1上机1实验结果1. **********************最优解如下*************************目标函数最优值为: 27500变量最优解相差值------- -------- --------x1 50 0x2 250 0约束松弛/剩余变量对偶价格------- ------------- --------1 0 502 50 03 0 50目标函数系数范围:变量下限当前值上限------- -------- -------- --------x2 50 100 无上限常数项数范围:约束下限当前值上限------- -------- -------- --------1 250 300 3252 350 400 无上限3 200 250 300 2. **********************最优解如下*************************目标函数最优值为: 800变量最优解相差值------- -------- --------x1 250 0x2 100 0约束松弛/剩余变量对偶价格------- ------------- --------1 0 -42 0 1目标函数系数范围:变量下限当前值上限------- -------- -------- --------x1 无下限 2 3常数项数范围:约束下限当前值上限------- -------- -------- --------1 300 350 6002 350 600 7003. **********************最优解如下*************************目标函数最优值为: 9.999变量最优解相差值------- -------- --------x1 0 6.667x2 0 3.333x3 3.333 0x4 0 1.333约束松弛/剩余变量对偶价格------- ------------- --------1 0 -.0032 11.667 03 200 0目标函数系数范围:变量下限当前值上限------- -------- -------- --------x2 2.667 6 无上限x3 0 3 6.75x4 .667 2 无上限常数项数范围:约束下限当前值上限------- -------- -------- --------1 2475 3000 无上限2 无下限55 66.6673 无下限800 10004. **********************最优解如下*************************目标函数最优值为: 14变量最优解相差值------- -------- --------x1 4 0x2 2 0约束松弛/剩余变量对偶价格------- ------------- --------1 0 .52 0 13 0 04 4 0目标函数系数范围:变量下限当前值上限------- -------- -------- --------x1 1.5 2 3x2 2 3 4常数项数范围:约束下限当前值上限------- -------- -------- --------1 10 12 122 8 8 93 16 16 无上限4 8 12 无上限5.(1) **********************最优解如下*************************目标函数最优值为: 103000变量最优解相差值------- -------- --------x1 150 0x2 70 0约束松弛/剩余变量对偶价格------- ------------- --------1 0 502 330 04 15 0目标函数系数范围:变量下限当前值上限------- -------- -------- --------x1 400 500 无上限x2 0 400 500常数项数范围:约束下限当前值上限------- -------- -------- --------1 200 300 4402 210 540 无上限3 300 440 4604 285 300 无上限6.(1) **********************最优解如下*************************目标函数最优值为: 62000变量最优解相差值------- -------- --------x1 4000 0x2 10000 0约束松弛/剩余变量对偶价格------- ------------- --------2 0 -2.1673 700000 0目标函数系数范围:变量下限当前值上限------- -------- -------- --------x1 3.75 8 无上限x2 无下限 3 6.4常数项数范围:约束下限当前值上限------- -------- -------- --------1 780000 1200000 15000002 48000 60000 1020003 无下限300000 1000000 7. **********************最优解如下*************************目标函数最优值为: 150变量最优解相差值------- -------- --------x1 60 0x2 10 0x3 50 0x4 0 0x5 20 0x6 10 0约束松弛/剩余变量对偶价格------- ------------- --------1 10 02 0 -13 0 04 0 -15 0 06 0 -1目标函数系数范围:变量下限当前值上限------- -------- -------- --------x1 0 1 1x2 1 1 2x3 0 1 1x4 1 1 无上限x5 1 1 1x6 1 1 1常数项数范围:约束下限当前值上限------- -------- -------- --------1 无下限60 702 60 70 无上限3 50 60 704 40 50 605 0 20 306 20 30 无上限8. **********************最优解如下*************************目标函数最优值为: 36变量最优解相差值------- -------- --------x1 12 0x2 0 .333x3 11 0x4 0 0x5 5 0x6 8 0x7 0 0约束松弛/剩余变量对偶价格------- ------------- --------1 0 -.3332 9 03 0 -.3334 0 -.3335 6 06 0 -.3337 23 0目标函数系数范围:变量下限当前值上限------- -------- -------- --------x1 0 1 1.5x2 .667 1 无上限x3 0 1 1.5x4 1 1 无上限x5 0 1 1x6 0 1 1x7 1 1 无上限常数项数范围:约束下限当前值上限------- -------- -------- --------1 13 28 402 无下限15 243 15 24 424 19 25 41.55 无下限19 256 7 31 38.57 无下限0 23附页2上机2实验结果1.本公司加工件数:甲加工1600件,乙、丙不加工。
运筹学实验指导书实验目的:充分发挥WinQSB这一先进的计算机工具的强大功能,理论与应用结合,丰富教学内容,提高学习兴趣,使学生能基本掌握WinQSB软件常用命令和功能。
实验要求:能用软件求解运筹学中常见的数学模型。
实验一线性规划与对偶问题1.用软件完成求解案例1配料方案问题软件说明:(1)WinQSB软件求解LP不必化为标准型,对于有界变量及无约束变量可不转化为标准型,只要修改系统变量类型即可,对于不等式约束也不必转化为标准型,直接输入不等式符号。
(2)调用LP和ILP程序(点击开始→程序→WINQSB→Linear and Integer Programming)。
(3)打开已存在的文件(系统自动带几个典型例题供学习)。
观赏例题:点击File→Load Problem→lp.lpp,点击菜单栏Solve and Analyze→Solve the problem或点击工具栏中的图标用单纯形法求解,直接得到最终单纯形表。
观赏一下用单纯形法迭代步骤:点击菜单栏Solve and Analyze→Solve and Display steps,再在菜单栏中点击simplex iteration→next iteration则可。
(4)建立新问题,输入数据。
在选择输入格式时,选择spread sheet matrix form则以电子表格形式输入变量系数矩阵和右端常数矩阵。
2、产品产量问题某企业生产两种产品,分别使用4种原材料,4种原材料目前库存量分别为300吨,400吨,500吨和500吨,两种产品所需各种原材料数量如表示。
又知两种产品的单位利润分别为2800吨和3200吨,如何计划两种产品的产量,使利润达到最大。
(1)建立该问题的线性规划模型,并用软件求出最优解。
(2)写出该问题的对偶问题,并由原问题的最优结果(表),分析对偶解。
软件说明:(1)启动线性规划与整数规划程序,建立新问题,输入数据,存盘。
实验报告实验课程名称运筹学实验项目名称大M法或两阶段法的上机实验年级专业学生姓名学号00 学院实验时间:年月日实验内容(包括实验具体内容、算法分析、源代码等等):1.书上P97页第6题:用大M 法和两阶段法求解下列线性规划问题。
max z=5;3213x x x ++ 约束条件:102x 4x x 321≥++, 16.x 2x -x 321≤+ A :大M 法图1.1图1.2由上面的结果可知, 满足所求出的0≤j δ,得出目标函数的最优解x1=16,x2=0,x3=0,sx4=16,Rx5=0,sx=0,最优值是80。
当把M 的值改为100000后,值还是一样的,这样就可以得出当M 为100时,已经得出有效解。
B:两阶段法图1.3由图1.3可知,先进行线性规划的第一阶段,满足0≤j δ,且z 值为零,即说明存在一个可行解使得所有的人工变量都为零,此时x2=2.5,sx6=21,其余为0得出z=0。
接下来进行第二阶段,令z=5x1+x2+3x3-0sx4+0Rx5+0sx6,和大M 的分析方法一样,最终将得到满足0≤j δ时达到最优解:当x1=16,x2=0,x3=0,sx4=6,Rx5=0,sx6=0,最优值为80。
2.书上P97页第7题(4)大M 法和两阶段法求解下列线性规划问题 。
max z=;321x x 2x ++ 约束条件:,42x 2x 4x 321≥++ ,204x 2x 21≤+ ,162x 8x 4x 321≤++ A :大M 法图2.1图2.2由上面的图 2.1可知,首先先输入数据即线性规划的系数如图 2.1所示令max z=321x x 2x ++-0sx4+0sx6+0sx7-MRx5; 进行下一次迭代,以同样的方法一直下去,直到所求出的为止0≤j δ,就可以得出目标函数的最优解:x1=4,sx4=12,sx6=12,其余为0时,最优值为8。
当把M 的值改为100000后,值还是一样的,这样就可以得出当M 为100时,已经得出有效解。