各种天线概念解析螺旋天线是一种具有螺旋形状的天线它由导电
- 格式:doc
- 大小:76.00 KB
- 文档页数:9
螺旋天线电路设计引言螺旋天线是一种常见的天线类型,具有多频段、宽带和方向性好等特点,被广泛应用于无线通信和雷达系统中。
在设计螺旋天线电路时,需要考虑天线的结构、频率范围、辐射特性以及电路参数等因素。
本文将全面、详细、完整地探讨螺旋天线电路设计的相关内容。
螺旋天线结构螺旋天线由导体线圈在平面内旋转组成,其结构可以分为两种主要类型:方形螺旋天线和圆形螺旋天线。
方形螺旋天线方形螺旋天线的导体线圈呈正方形或长方形,辐射器和馈电结构相对简单,易于制造和布局。
方形螺旋天线通常具有宽频带和宽角度覆盖等特点,适用于通信和雷达系统中的多频段应用。
圆形螺旋天线圆形螺旋天线的导体线圈呈圆形,具有较为均匀的辐射特性。
圆形螺旋天线通常在窄带应用中使用,如无线电测向和卫星通信等领域。
螺旋天线频率范围螺旋天线的频率范围受到其外形、尺寸和匝数等因素的影响。
频率范围的选择应根据具体的应用需求来确定。
方形螺旋天线频率范围方形螺旋天线的频率范围较宽,通常可覆盖数个频段。
选择适当的参数可以实现不同频段的覆盖,如调整导体线圈的长度、宽度和匝数等。
圆形螺旋天线频率范围圆形螺旋天线的频率范围较窄,通常适用于单一频段的应用。
改变导体线圈的尺寸和匝数可以微调频率范围,满足特定频段的要求。
螺旋天线辐射特性螺旋天线的辐射特性在设计过程中需要考虑,包括辐射方向图、辐射效率和极化特性等。
辐射方向图辐射方向图描述了螺旋天线在不同方向的辐射强度,通常以极坐标图的形式表示。
通过调整导体线圈的几何参数和匝数等,可以实现不同辐射方向图的设计。
辐射效率辐射效率是指天线将输入功率转化为辐射功率的能力。
提高辐射效率可以减少能量损耗,提高天线的性能。
螺旋天线的辐射效率受到导体材料、匝数、尺寸和地平面等因素的影响。
极化特性螺旋天线可以实现不同的极化方式,如线性极化和圆极化。
通过合适的设计和调整,可以实现所需的极化特性。
螺旋天线电路参数在设计螺旋天线电路时,需要考虑到电路的匹配、增益、带宽和阻抗等参数。
天线结构分类天线是一种用于接收和发送无线信号的装置,广泛应用于通信、广播、雷达等领域。
根据其结构和工作原理的不同,天线可以分为多种类型。
本文将从天线结构的角度介绍几种常见的天线分类。
一、按天线结构分类1. 线性天线线性天线是最常见的一种天线,其结构通常由一根导体构成,如直线天线、折线天线等。
直线天线是最简单的一种天线,常见的有偶极子天线、单极子天线等。
折线天线则是由多段导体组成,可以增加天线的长度和增益。
2. 环形天线环形天线是由一个或多个环形导体构成的天线,如圆环天线、螺旋天线等。
环形天线具有较宽的工作频带和较好的方向性,广泛应用于通信和雷达系统中。
3. 阵列天线阵列天线是由多个天线元件组成的天线系统,可以通过控制每个天线元件的相位和振幅来实现波束的形成和指向性的控制。
阵列天线具有高增益、高方向性和抗干扰能力强的特点,被广泛应用于通信、雷达和卫星通信等领域。
4. 反射天线反射天线是通过反射器将无线信号聚焦到天线元件上的一种天线结构,常见的有抛物面天线、半波子天线等。
反射天线具有较高的增益和较好的方向性,被广泛应用于卫星通信和雷达系统中。
5. 型宽天线型宽天线是一种具有较宽工作频带的天线,常见的有短偶极子天线、螺旋天线等。
型宽天线具有较好的频率响应和宽带性能,在通信和雷达系统中得到广泛应用。
二、不同结构天线的特点和应用1. 线性天线通常具有较简单的结构和较低的成本,适用于短距离通信和移动通信系统中。
偶极子天线常用于无线电通信、电视和移动通信系统。
2. 环形天线由于其较宽的工作频带和较好的方向性,适用于多频段通信和雷达系统中。
圆环天线常用于电子对抗和无线电测向系统。
3. 阵列天线由于其高增益和抗干扰能力强的特点,适用于远距离通信和雷达系统中。
阵列天线常用于卫星通信、雷达和无线电测向系统。
4. 反射天线由于其较高的增益和较好的方向性,适用于卫星通信和雷达系统中。
抛物面天线常用于卫星通信和微波通信系统。
螺旋天线原理
螺旋天线是一种常见的天线类型,它具有较宽的频带、较高的增益和较好的方向性,因此在通信领域得到了广泛的应用。
螺旋天线的原理主要涉及到电磁波的辐射和接收,下面将从天线结构、工作原理和特点三个方面来介绍螺旋天线的原理。
首先,螺旋天线的结构一般由金属导体制成,形状呈螺旋状。
螺旋天线的导体螺旋圈数和半径的选择直接影响着其工作频段和特性。
螺旋天线的结构使得其在接收和辐射电磁波时具有较好的性能,能够实现较高的增益和较宽的频带。
其次,螺旋天线的工作原理主要涉及到电磁波的辐射和接收。
当螺旋天线接收到电磁波时,电磁波会在导体上感应出电流,从而产生辐射磁场和电场,最终将电磁能量转化为电信号输出。
而当螺旋天线工作在发射状态时,电信号输入后会产生电流,进而产生辐射磁场和电场,将电信号转化为电磁波辐射出去。
这种工作原理使得螺旋天线能够实现双向的电磁波转换,既能够接收电磁波信号,又能够发射电磁波信号。
最后,螺旋天线具有较好的频率特性、辐射特性和极化特性。
由于其结构的特殊性,螺旋天线在工作时能够实现较宽的频带覆盖,能够满足多种频率信号的接收和发射需求。
同时,螺旋天线的辐射特性具有较高的方向性和较高的增益,能够实现远距离的通信。
此外,螺旋天线的极化特性较好,能够适应多种极化状态的电磁波信号。
综上所述,螺旋天线是一种性能优良的天线类型,其原理涉及到电磁波的辐射和接收,具有较宽的频带、较高的增益和较好的方向性等特点。
在实际应用中,螺旋天线被广泛应用于通信、雷达、导航等领域,发挥着重要的作用。
螺旋式天线设计原理及其优化方法螺旋式天线是一种常用于射频通信和雷达系统中的天线结构。
它以其良好的辐射特性和宽频带特性而闻名。
本文将介绍螺旋式天线的设计原理以及一些优化方法,以帮助读者更好地了解和应用该天线设计。
螺旋式天线的设计原理主要涉及以下几个方面:天线结构、辐射特性和宽频带特性。
首先,螺旋式天线的结构通常由螺旋线、接地板和驻波器组成。
螺旋线是以中心点为起点,沿着环形轨迹向外旋转的导体线圈。
接地板是用于支撑和固定螺旋线的平面结构,它通常与螺旋线之间有一定距离。
驻波器是用于匹配天线与射频信号源之间阻抗的装置。
其次,螺旋式天线具有良好的辐射特性。
它的辐射是通过螺旋线的旋转结构实现的,螺旋线会产生扭曲和旋转的电磁场。
这种结构使得螺旋式天线在辐射方向上具有较高的增益和较低的辐射波束宽度。
此外,螺旋线的旋转结构还赋予了螺旋式天线天线的极化特性,在设计过程中可以通过调整螺旋线的参数来实现水平、垂直或圆极化。
最后,螺旋式天线具有宽频带特性。
这是由于螺旋线的旋转结构导致了天线具有多个谐振频率。
当射频信号的频率变化时,螺旋式天线可以在不同的谐振频率下工作,从而实现较宽的工作频带。
这使得螺旋式天线成为适用于宽带通信和雷达系统的理想选择。
在螺旋式天线的优化方法中,主要包括螺旋线的尺寸、匹配网络和接地板的优化。
首先,优化螺旋线的尺寸可以改善天线的辐射特性。
通常,螺旋线的直径、圈数和间距是关键参数。
通过调整这些参数,可以实现更高的增益、更窄的波束宽度和更宽的工作频带。
其次,优化匹配网络可以提高天线与射频信号源之间的匹配性能。
匹配网络通常由扼流圈和电容器组成,以调整天线的输入阻抗。
通过调整匹配网络的参数,可以实现更低的驻波比和更高的功率传输效率。
最后,优化接地板的结构可以影响天线的辐射效果。
接地板的尺寸、形状和材料都会对螺旋式天线的辐射特性产生影响。
因此,选择合适的接地板结构是螺旋式天线设计中一个重要的优化方面。
总体而言,螺旋式天线是一种高性能的天线结构,具有良好的辐射特性和宽频带特性。
螺旋天线原理
螺旋天线是一种常见的天线类型,它具有较宽的频带和较高的增益,因此在无线通信领域得到了广泛的应用。
螺旋天线的原理基于电磁场的辐射和接收,下面将对螺旋天线的原理进行详细介绍。
首先,螺旋天线的结构特点是其辐射器为螺旋形,通常由金属丝或导电片制成。
在电磁场作用下,螺旋天线产生的电流呈螺旋状分布,从而形成螺旋状的辐射场。
这种结构使得螺旋天线在空间中形成一个较为均匀的辐射图案,具有较好的方向性和极化特性。
其次,螺旋天线的工作原理是基于螺旋结构的特殊电流分布。
当螺旋天线受到电磁波的激励时,电磁波会导致螺旋天线中的电荷产生震荡,从而产生电流。
由于螺旋天线的结构特点,这些电流会呈现出螺旋状的分布,进而产生螺旋状的辐射场。
这种辐射场具有较好的方向性和极化特性,使得螺旋天线在无线通信中能够实现较远距离的信号传输和接收。
此外,螺旋天线的工作频率范围较宽,这是由其结构特点决定的。
螺旋天线的螺旋结构使得其具有较大的频带,能够在较宽的频率范围内实现有效的辐射和接收。
这使得螺旋天线在实际应用中具
有较好的灵活性,能够适应不同频段的通信需求。
总的来说,螺旋天线的原理是基于其特殊的结构和电磁场的相互作用。
螺旋天线能够产生较为均匀的辐射图案,具有较好的方向性和极化特性,工作频率范围较宽,因此在无线通信领域具有重要的应用价值。
对螺旋天线的原理有深入的理解,有助于更好地设计和应用螺旋天线,推动无线通信技术的发展。
以上就是关于螺旋天线原理的介绍,希望对您有所帮助。
如果您对螺旋天线还有其他问题,欢迎继续探讨交流。
螺旋天线的辐射原理是什么螺旋天线是一种特殊形状的天线,具有较宽的工作频带和较好的方向性。
它的辐射原理主要涉及到电磁波的产生和辐射。
首先,了解螺旋天线的结构是很重要的。
螺旋天线由一个或多个导体螺旋绕成螺旋线形状,通常使用金属导线或箔片制成。
这些导体旋绕成螺旋线后,其形状类似于螺旋状,因此得名螺旋天线。
螺旋天线的辐射原理可以从两个方面来理解:导体的电流分布和电磁波的辐射。
首先,螺旋天线的导体上通有交流电源,导体上的电流分布对辐射特性起到重要作用。
当电源通电时,导体上的电流会随着导体的螺旋形状而分布。
在螺旋形状中,电流会在导体上形成循环的路径。
这种螺旋状的电流路径会产生磁场,而磁场和电场是紧密相关的。
其次,电磁波的辐射是螺旋天线辐射的另一个重要原理。
当导体通有电流时,会形成一个电场和磁场。
螺旋天线的结构使得电流在其中呈螺旋形分布,因此螺旋天线能够辐射出较强的电场和磁场。
螺旋天线辐射的电场和磁场具有特殊的空间分布。
电场和磁场的方向垂直于彼此,并且都围绕着螺旋线的中心轴旋转。
电场和磁场的方向会随着螺旋线的旋转而改变。
通过这种电场和磁场的分布,螺旋天线能够辐射出电磁波。
当电源送入导体上的交流电流时,电场和磁场的强弱也会随之变化,从而使得产生的电磁波可以在空间中传播。
螺旋天线的辐射特性中有几个重要的参数需要考虑,其中之一是极化方向。
由于电场和磁场的方向会随着螺旋线的旋转而改变,螺旋天线可以实现不同的极化方向,包括垂直极化和水平极化。
此外,螺旋天线还具有较宽的工作频带和较好的方向性。
螺旋结构的设计可以使得螺旋天线在辐射特性上具有较宽的带宽。
而螺旋形状的导体结构使得螺旋天线具有较好的方向性,即特定方向上的辐射功率较大。
总之,螺旋天线的辐射原理主要涉及到导体的电流分布和电磁波的辐射。
通过合理设计导体的结构和通入的电源,螺旋天线能够辐射出电磁波并实现特定的极化方向、较宽的工作频带和较好的方向性。
这使得螺旋天线被广泛应用于无线通信、卫星通信和雷达等领域。
各种天线概念解析是一种具有螺旋形状的天线。
它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。
螺旋天线的辐射方向与螺旋线圆周长有关。
当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋旋轴方向上。
全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。
全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。
所谓机械天线,即指使用机械调整下倾角度的移动天线。
所谓电调天线,即指使用电子调整下倾角度的移动天线。
移动基站BTS用的一种收发天线.也就是收发到用户(手机)的天线。
在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状天线等。
是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。
其结构如图4所示,它的终端可以开路,也可以接有电阻,其电阻的大小等于天线的特性阻抗。
V形天线具有单向性,最大发射方向在分角线方向的垂直平面内。
它的缺点是效率低、占地面积大。
介质天线是一根用低损耗高频介质材料(一般用聚苯乙烯)作成的圆棒,它的一端用同轴线或波导馈电。
图15所示的天线是用同轴线馈电的棒状介质天线。
图中1是介质棒;2是同轴线的内导体的延伸部分,形成一个振子,用以激发电磁波;3是同轴线;4是金属套筒。
套筒的作用除夹住介质棒外,更主要的是反射电磁波,从而保证由同轴线的内导体激励电磁波,并向介质棒的自由端传播。
介质天线的优点是体积小,方向性尖锐;缺点是介质有损耗,因而效率不高。
在一块大的金属板上开一个或几个狭窄的槽,用同轴线或波导馈电,这样构成的天线叫做开槽天线,也称裂缝天线。
为了得到单向辐射,金属板的后面制成空腔,开槽直接由波导馈电。
螺旋天线综述1 引言螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。
螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。
同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。
螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。
2 螺旋天线的发展螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。
许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。
20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。
此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。
2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。
天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。
该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。
在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。
图1 图23 螺旋天线的分类及特性螺旋天线可分为立体螺旋天线(helical antenna)和平面螺旋天线(spiral antenna)。
立体螺旋天线根据绕成的形状的不同,又可分成圆柱形螺旋天线、圆锥形螺旋天线等等。
圆锥形螺旋天线又称为盘旋螺线型天线,可同时在两个频率工作。
天线功能与工作原理天线是一种用来接收和传输无线电波的装置,它是电磁学中一种非常重要的器件,广泛应用于通信、导航、雷达等领域。
天线的功能是将电信号转换为电磁波,或将电磁波转换为电信号。
它通过特定的结构和工作原理来实现这些功能。
一、天线的功能1.发射功能:天线可以将电信号转换为电磁波并进行发射。
当电信号输入到天线的接口,通过天线的结构转换为电磁场,然后以电磁波的形式辐射出去。
2.接收功能:天线可以接收到周围环境中的电磁波,并将其转换为电信号输出。
当电磁波入射到天线上时,通过天线的结构转换为电信号输出到接收设备中。
二、天线的工作原理天线的工作原理基于电磁学的相关理论,包括电流在导体中的传输、电场和磁场的相互作用等。
以下是几种常见天线的工作原理。
1.零件天线:零件天线是一种较为简单的天线,适用于低频率的无线电通信。
它由一根直立的金属杆组成,当电信号输入到杆上时,电流在杆上流动产生电磁波。
根据杆的长度和天线的地面情况,可以实现不同频率的辐射。
2.扁平天线:扁平天线是一种广泛应用于移动通信设备的天线,例如手机、平板电脑等。
它主要由导电材料制成,常见的形状有板状、带状等。
扁平天线通过导电板上的电流流动来产生电磁波,电磁波的功率主要集中在导电板周围。
3.螺旋天线:螺旋天线是一种常用于卫星通信、微波通信等高频率应用的天线,它可以实现较高的增益。
螺旋天线由导线组成螺旋线圈,当电信号输入到螺旋线圈上时,电流沿螺旋线圈流动,产生电场和磁场,从而辐射出电磁波。
4.盘形天线:盘形天线是一种应用于雷达、卫星通信等领域的天线,它具有较高的方向性和增益。
盘形天线由中心驱动源和金属盘组成,中心驱动源发出的电信号经过金属盘上的结构变换为电磁波,并沿着特定的方向辐射出去。
总的来说,天线的工作原理是通过将电信号转换为电磁波或将电磁波转换为电信号来实现无线通信。
不同类型的天线根据其结构和原理的不同,能够适用于不同频率和应用环境的无线通信需求。
螺旋天线的分析什么是螺旋天线螺旋天线是一种非常重要的天线类型,它具有天线增益大、辐射方向性好、宽带性能优越等特点,适用于多种场合。
螺旋天线通常由多个圆形或椭圆形线圈构成,因此也被称为螺旋线天线或螺旋卷曲天线。
螺旋天线的设计原理螺旋天线是以馈电点为中心,将导体材料绕成多个圆形或椭圆形线圈而形成的。
不同线圈的导线都是交织在一起的,通过这种排列方式,螺旋天线就能产生较强的辐射。
螺旋天线的电磁波辐射究竟是由什么原理产生的呢?这里简单介绍一下。
当导体上有电流通过时,会产生一个磁场,这个磁场的方向垂直于电流的方向。
同时,在导体上也会产生一个磁场,这个磁场的方向垂直于导体的方向。
这两个磁场会形成一个电磁波,这个电磁波就是螺旋天线所产生的辐射。
螺旋天线的特点螺旋天线的特点可以概括为以下几个方面:•天线增益大:由于螺旋天线的辐射方式是螺旋状的,因此其天线增益比传统的线极天线要大得多。
•辐射方向性好:由于螺旋天线的辐射方式是以馈电点为中心,向外辐射,因此具备了非常好的方向性。
•宽带性能优越:螺旋天线的辐射带宽比传统的线极天线要宽得多。
•抗干扰能力强:在电磁波辐射极强的环境下,螺旋天线的性能要比其他类型的天线更加稳定。
螺旋天线的应用由于螺旋天线具备天线增益大、辐射方向性好、宽带性能优越等特点,因此它的应用场合非常广泛。
以下是几个应用实例:•气象卫星气象卫星是用来观测地球的大气变化情况以及天气预报的一种卫星。
由于气象卫星需要在红外和可见光等多个频段上进行观测,因此需要使用宽带性能优越的螺旋天线。
•无人机无人机的控制和导航都需要借助于GPS信号。
因此,无人机上需要安装GPS天线,而螺旋天线正是一种非常好的GPS天线。
•通信系统螺旋天线的辐射方式非常适合在通信系统中使用。
在电磁波辐射比较强的环境下,螺旋天线的抗干扰能力也将变得更加出色。
总结螺旋天线是一种非常重要的天线类型,因为它具备天线增益大、辐射方向性好、宽带性能优越等特点,适用于多种场合。
简述阿基米德螺旋天线的工作原理(一)简述阿基米德螺旋天线的工作引言阿基米德螺旋天线是一种常用于通信与雷达应用中的天线设计。
它以古希腊数学家阿基米德的名字命名,因为其形状类似于阿基米德螺线。
本文将从浅入深地解释阿基米德螺旋天线的工作原理及其应用。
1. 阿基米德螺旋天线的定义阿基米德螺旋天线是一种空心的金属螺旋线圈。
它通常是由导体制成,例如铜导线或印刷电路板。
阿基米德螺旋天线的形状是一个螺旋状结构,其中导线按照螺旋线的规律布置。
2. 工作原理阿基米德螺旋天线的工作原理基于电磁辐射和接收的原理。
当电流通过螺旋线圈时,会在空间中产生电磁场,并以无线电波的形式辐射出去。
同时,当无线电波传播到天线附近的时候,阿基米德螺旋天线也能够将其接收并转换成电流。
下面通过以下几点来解释阿基米德螺旋天线的工作原理:•螺旋结构:阿基米德螺旋天线的螺旋结构决定了它在接收和发射无线电波时的特性。
螺旋线圈的电流按照一个规律布置,使得电磁波能够以一种螺旋的形式在空间中传播。
•构造设计:阿基米德螺旋天线的导线长度、半径、线宽和螺旋的方向都会对其工作特性产生影响。
合理的设计可以使得天线在特定的频率范围内具有较好的工作性能。
•辐射和接收:当电流通过螺旋线圈时,会在空间中产生电磁场,并以无线电波的形式辐射出去。
这些电磁波可以穿过空间传播,达到通信或雷达的目标。
同时,当无线电波传播到螺旋线圈附近时,阿基米德螺旋天线会感应到电磁波的电场和磁场,并将其转换成电流。
3. 应用领域阿基米德螺旋天线在通信和雷达领域有广泛的应用,其中包括但不限于以下几个方面:•通信系统:阿基米德螺旋天线常被用作无线通信系统的发射和接收天线。
其特殊的辐射和接收特性使得其可以在特定频率范围内具有较高的增益和方向性。
•雷达系统:阿基米德螺旋天线也被广泛应用于雷达系统中。
通过根据雷达工作频率设计合适的螺旋结构,可以实现在特定方向上的辐射和接收,从而提高雷达系统的性能。
•天线阵列:多个阿基米德螺旋天线可以组成天线阵列,用于形成波束和进行方位解析。
螺旋天线工作原理螺旋天线是一种常见的天线类型,其工作原理是通过螺旋形状的结构来实现电磁波的辐射和接收。
螺旋天线具有较宽的频率带宽和较高的增益,广泛应用于无线通信、雷达和卫星通信等领域。
螺旋天线的工作原理可以通过以下几个方面来解释。
首先是螺旋天线的结构特点。
螺旋天线由导线或金属板材制成,呈螺旋形状。
螺旋天线可以分为右旋螺旋天线和左旋螺旋天线两种类型,其主要区别在于螺旋方向的不同。
其次是螺旋天线的辐射和接收原理。
当交变电流通过螺旋天线时,会在螺旋导线上产生电磁场。
由于螺旋导线的螺旋形状,电磁场会随着导线的螺旋而旋转,形成螺旋状的电磁场。
这种螺旋状的电磁场可以辐射出去,或者接收外部的电磁波。
螺旋天线的辐射和接收效果与其螺旋结构的参数有关。
首先是螺旋导线的半径和导线间距。
当半径和导线间距适当时,螺旋天线可以实现较宽的频率带宽。
其次是螺旋的圈数和旋转方向。
圈数越多,螺旋天线的增益越高;旋转方向的选择与应用场景有关,例如右旋螺旋天线适用于某些通信系统,左旋螺旋天线适用于其他通信系统。
螺旋天线的工作原理还与电磁波的极化方式有关。
螺旋天线可以实现线极化和圆极化两种极化方式。
线极化是指电磁波的电场矢量在一个平面内振荡,圆极化是指电磁波的电场矢量随时间旋转。
通过调整螺旋天线的结构参数,可以实现不同极化方式的辐射和接收。
螺旋天线的工作原理还涉及到电磁波在空间中的传播特性。
螺旋天线可以实现全向辐射或定向辐射。
全向辐射是指天线在水平面上实现360度的辐射,适用于无线通信中的基站天线;定向辐射是指天线在某个方向上实现辐射,适用于雷达和卫星通信等应用。
螺旋天线通过其独特的螺旋结构实现了电磁波的辐射和接收。
其工作原理与螺旋导线的形状、参数以及电磁波的极化和传播特性密切相关。
螺旋天线具有较宽的频率带宽、较高的增益以及可调的极化和辐射特性,因此在无线通信、雷达和卫星通信等领域得到了广泛的应用。
螺旋天线介绍由金属导线绕成螺旋形状的天线。
它由同轴线馈电,在馈电端有一金属板(图1)。
螺旋天线的方向性在很大程度上取决于螺旋的直径(D)与波长(λ)的比值D/λ。
当D/λ<0.18时,螺旋天线在包含螺旋轴线的平面上有8字形方向图,在垂直于螺旋轴线的平面上有最大辐射,并在这个平面得到圆形对称的方向图。
这种天线称为法向模螺旋天线(图2a),用于便携式电台。
当D/λ=0.25~0.46(即一圈螺旋周长约为一个波长)时,天线沿轴线方向有最大辐射,并在轴线方向产生圆极化波。
这种天线称为轴向模螺旋天线(图2b),常用于通信、雷达、遥控遥测等。
当D/λ进一步增大时,最大辐射方向偏离轴线方向(图2c)。
轴向模螺旋天线应用最广。
图1中,D为螺旋天线直径;S为螺距;l为一圈周长;n 为圈数;α为升角;L为轴线长。
它们的关系是l2=(πD)2+S2L=nSα=0的螺旋为平面上的单圈螺旋,取周长近似等于一个波长,并假定线上运载行波电流。
在某一瞬时线上是正弦电流分布(图3)。
在和x与y轴对称的任意四点A、B、C、D,电流存在下列关系:这些电流的方向相反,它们的作用彼此抵消,所以在z轴方向只有Ey分量起作用。
绕圈运载的是行波,电流沿线圈的分布将绕z轴旋转。
因此,在z轴方向的电场Ey也绕z轴旋转,于是在轴向产生圆极化波,并有最大辐射,故称为轴向模辐射。
这种天线具有圆极化辐射的特点,它的频带很宽,在1:1.7通频带内方向图变化不大,而且天线的输入阻抗几乎恒定,约为140欧。
朝辐射方向看,螺旋右绕产生右旋波,左绕产生左旋波。
为了进一步展宽频带,可将螺旋天线做成圆锥形(图4)。
法向模螺旋天线(D/λ<0.18)实质上是细线天线,为了缩短长度,可把它卷绕成螺旋状。
因此,它的特性与单极细线天线(见不对称天线)相仿,具有8字形方向图,并且频带很窄,一般用作小功率电台的通信天线。
边射式螺旋天线是一种法向模螺旋天线。
它是在螺旋的中心轴线上放置一根金属导体,当螺旋一圈的周长l=Mλ(M=2,3,…整数)时,也在螺旋的法向产生最大辐射(图5)。
阿基米德螺旋天线的工作原理
阿基米德螺旋天线是一种特殊形状的天线,它可以用于接收和发射无线电波。
其工作原理基于阿基米德螺线的几何特性。
阿基米德螺旋天线由一个金属丝缠绕成螺旋状,每个螺旋周期包含多个等距的圈。
这些圈的直径和间距决定了天线的工作频率。
当无线电波通过阿基米德螺旋天线时,它会在每个螺旋周期中发生相位移动。
这种相位移动的结果是,信号在天线上不同位置的元素上到达的时间略有不同。
由于相位移动的存在,阿基米德螺旋天线能够实现波束赋形和空间极化多样性。
通过调整天线的形状和参数,可以使得天线在特定方向上增强信号的接收或发射。
阿基米德螺旋天线在通信系统、雷达系统和卫星通信等领域得到广泛应用。
由于其独特的工作原理和优越的性能,它能够提供高增益、低副瓣和可调节的极化特性。
黄冈师范学院本科生毕业论文题目:螺旋天线的分析专业年级:电子信息工程(2008级)学号:学生姓名:指导教师:论文完成日期2012 年 5 月郑重声明本人的毕业论文是在指导老师的指导下独立撰写并完成的。
毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,如果有此现象发生,本人愿意承担由此产生的各种后果,直至法律责任;并可通过网络接受公众的查询。
特此郑重声明。
毕业论文作者(签名):______年月日目录摘要 (I)ABSTRACT (Ⅱ)1、绪论 (1)1.1螺旋天线的发展历史 (1)1.2螺旋天线发展前景 (2)2、螺旋天线的原理 (3)2.1相关背景与技术 (3)2.1.1 相似原理 (3)2.1.2 非频变原理 (4)2.1.3 螺旋天线工作原理 (4)2.2螺旋天线的技术指标 (5)2.3螺旋天线原理和相关计算 (8)2.3.1 平面阿基米德螺旋天线的基本形式 (8)2.3.2 螺旋天线辐射原理 (9)2.3.3 螺旋天线的藕合原理 (10)3.1HFSS简要介绍 (13)3.2天线建模、仿真及结果分析 (13)3.2.1 螺旋天线HFSS仿真流程图 (13)3.2.2 天线仿真的参数结果和分析 (14)结束语 (20)参考文献 (21)致谢 (23)螺旋天线的分析专业:电信班级:作者:指导老师:摘要本文对螺旋天线的发展历史和前景作了简要介绍,并对螺旋天线的工作原理和分析方法作了概述,包括对天线进行分析的主要指标、计算公式,螺旋天线的各项参数。
针对平面阿基米德螺旋天线进行了详细分析和论述;同时针对该工作在2.4GHZ的阿基米德螺旋天线实体用ansoft hfss13.0软件进行仿真,探究了阿基米德螺旋天线参数对方向图、增益宽度、阻抗宽度、轴比宽度的影响,并且对仿真后的输入功率、净输入功率、辐射功率、辐射效率、方向性系数、最大增益、前后向比等进行分析。
关键词:螺旋天线阿基米德螺旋天线 hfss仿真功率辐射增益Analysis of the helical antennaSpeciality: Electronic & Information EngineeringClass: 0802 Author: Song Biao Tutor: Luo ChunyaAbstractThis article briefly introduced the history of the development and prospects of the spiral antenna, and spiral antenna works and methods of analysis are summarized. Analysis of the key indicators, including the antenna calculation formula, the parameters of the helical antenna, A detailed analysis and discussion of planar Archimedean spiral antenna. The work Archimedean spiral antenna entities in 2.4GHZ of by ansoft hfss13.0 software simulation. Explore the Archimedean spiral antenna parameters on the pattern, gain width, impedance width, the influence of the axial ratio of the width,And the Incident power after the simulation, the Acceptable power, Max U, radiation efficiency, directivity, maximum gain before and after analysis to the ratio. Keywords: Helical antenna Archimedean spiral antenna HFSS simulationPower Radiation Gain1、绪论1.1 螺旋天线的发展历史德国物理学家赫兹在1887年为验证英国数学家麦克斯韦预言的电磁波设计了第一个天线,其组成是两根30cm长的金属杆,杆的终端是两块40cm2 的金属板,采用火花放电激励电磁波,而接收天线刚是环天线。
等角螺旋天线的工作原理
等角螺旋天线是一种常用于无线通信系统中的天线类型,它的
工作原理可以从几个方面来解释。
首先,等角螺旋天线利用了螺旋线的特性来实现辐射和接收电
磁波。
螺旋线是一种具有连续螺旋形状的导体,它可以有效地辐射
和接收电磁波。
当电流通过螺旋线时,会在天线上产生磁场和电场,这些场的相互作用导致电磁波的辐射。
其次,等角螺旋天线的辐射特性与其几何结构有关。
等角螺旋
天线的螺旋线圈数相等,且每个螺旋线圈的圈数和间距相等,使得
天线具有旋转对称性。
这种几何结构使得等角螺旋天线在辐射方向
上具有均匀的辐射特性,即在水平和垂直方向上具有相似的辐射图案。
这种均匀的辐射特性使得天线能够在各个方向上均匀地辐射和
接收电磁波。
此外,等角螺旋天线还具有极化特性。
极化是指电磁波的电场
振动方向。
等角螺旋天线通常被设计为具有圆极化特性,即电场振
动方向在水平和垂直方向上均匀分布。
这种圆极化特性使得天线能
够适应不同极化方式的信号,提高信号的接收和传输效果。
总的来说,等角螺旋天线利用螺旋线的特性实现电磁波的辐射和接收。
其几何结构使得天线具有均匀的辐射特性和圆极化特性,从而提高了天线在无线通信系统中的性能和适用性。
数字通信原理螺旋线
螺旋线天线是一种线圈状的天线结构,可以用于发送和接收无线电信号。
它由一个螺旋状导线组成,其外形呈螺旋形。
螺旋线天线的特点是它的指向性很强,可以产生一个非常狭窄的主瓣(主辐射方向),同时也有较低的侧瓣(侧辐射方向)。
这种天线常用于卫星通信或者其他需要强制定向的通信应用中。
在数字通信中,螺旋线天线可以用于发送和接收数字信号。
它可以通过变化导线的尺寸和形状来调节信号的频率和带宽,从而适应不同的数字通信系统。
另外,螺旋线天线还可以用于天基数据传输、雷达探测等应用中。
当然,它的性能也受到一定限制,例如在复杂的地形环境和多路径衰减的情况下可能会受到不利影响。
螺旋天线综述1 引言螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。
螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。
同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。
螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。
2 螺旋天线的发展螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。
许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。
20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。
此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。
2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。
天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。
该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。
在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。
图1 图23 螺旋天线的分类及特性螺旋天线可分为立体螺旋天线(helical antenna)和平面螺旋天线(spiral antenna)。
立体螺旋天线根据绕成的形状的不同,又可分成圆柱形螺旋天线、圆锥形螺旋天线等等。
圆锥形螺旋天线又称为盘旋螺线型天线,可同时在两个频率工作。
各种天线概念解析是一种具有螺旋形状的天线。
它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。
螺旋天线的辐射方向与螺旋线圆周长有关。
当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋旋轴方向上。
全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。
全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。
所谓机械天线,即指使用机械调整下倾角度的移动天线。
所谓电调天线,即指使用电子调整下倾角度的移动天线。
移动基站BTS用的一种收发天线.也就是收发到用户(手机)的天线。
在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状天线等。
是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。
其结构如图4所示,它的终端可以开路,也可以接有电阻,其电阻的大小等于天线的特性阻抗。
V形天线具有单向性,最大发射方向在分角线方向的垂直平面内。
它的缺点是效率低、占地面积大。
介质天线是一根用低损耗高频介质材料(一般用聚苯乙烯)作成的圆棒,它的一端用同轴线或波导馈电。
图15所示的天线是用同轴线馈电的棒状介质天线。
图中1是介质棒;2是同轴线的内导体的延伸部分,形成一个振子,用以激发电磁波;3是同轴线;4是金属套筒。
套筒的作用除夹住介质棒外,更主要的是反射电磁波,从而保证由同轴线的内导体激励电磁波,并向介质棒的自由端传播。
介质天线的优点是体积小,方向性尖锐;缺点是介质有损耗,因而效率不高。
在一块大的金属板上开一个或几个狭窄的槽,用同轴线或波导馈电,这样构成的天线叫做开槽天线,也称裂缝天线。
为了得到单向辐射,金属板的后面制成空腔,开槽直接由波导馈电。
开槽天线结构简单,没有凸出部分,因此特别适合在高速飞机上使用。
它的缺点是调谐困难。
由喇叭及装在喇叭口径上的透镜组成,故称为喇叭透镜天线。
透镜的原理参见透镜天线,这种天线具有相当宽的工作频带,而且比抛物面天线具有更高的防护度,它在波道数较多的微波干线通信中用得很广泛。
\待续我也来说两句查看全部评论相关评论•gotoblue (2006-12-04 10:36:49)在单根垂直导线的顶部,向各个方向引下几根倾斜的导体,这样构成的天线形状象张开的雨伞,故称伞形天线。
它也是垂直接地天线的一种形式。
其特点和用途与倒L形、T形天线相同。
在水平导线的中央,接上一根垂直引下线,形状象英文字母T,故称T形天线。
它是最常见的一种垂直接地的天线。
它的水平部分辐射可忽略,产生辐射的是垂直部分。
为了提高效率,水平部分也可用多根导线组成。
T形天线的特点与倒L形天线相同。
它一般用于长波和中波通信。
定向天线是指在某一个或某几个特定方向上发射及接收电磁波特别强,而在其它的方向上发射及接收电磁波则为零或极小的一种天线。
采用定向发射天线的目的是增加辐射功率的有效利用率,增加保密性;采用定向接收天线的主要目的是增加抗干扰能力。
在微波中继通信中,天线往往安置在很高的支架上,因此,给天线馈电就得用很长的馈线。
馈线过长会产生许多困难,如结构复杂,能量损耗大,由于在馈线接头处的能量反射而引起失真等。
为了克服这些困难,可采用一种潜望镜天线,结构如图16所示,潜望镜天线由安置在地面上的下镜辐射器和安装在支架上的上镜反射器组成。
下镜辐射器一般是抛物面天线,上镜反射器为金属平板。
下镜辐射器向上发射电磁波,经过金属平板反射出去。
潜望镜天线的优点是能量损耗小、失真小、效率高。
主要用于容量不大的微波中继通信中。
在单根水平导线的一端连接一根垂直引下线而构成的天线。
因其形状象英文字母L倒过来,故称倒L形天线。
俄文字母的Γ字正好是英文字母L的倒写。
故称Γ型天线更方便。
它是垂直接地天线的一种形式。
为了提高天线的效率,它的水平部分可用几根导线排在同一水平面上组成,这部分产生的辐射可忽略,产生辐射的是垂直部分。
倒L天线一般用于长波通信。
它的优点是结构简单、架设方便;缺点是占地面积大、耐久性差。
鞭状天线是一种可弯曲的垂直杆状天线,其长度一般为1/4或1/2波长。
大多数鞭状天线都不用地线而用地网。
小型鞭状天线常利用小型电台的金属外壳作地网。
有时为了增大鞭状天线的有效高度,可在鞭状天线的顶端加一些不大的辐状叶片或在鞭状天线的中端加电感等。
垂直天线是指与地面垂直放置的天线。
其结构如图1所示,它有对称与不对称两种形式,而后者应用较广。
对称垂直天线常常是中心馈电的。
不对称垂直天线则在天线底端与地面之间馈电,其最大辐射方向在高度小于1/2波长的情况下,集中在地面方向,故适应于广播。
不对称垂直天线又称垂直接地天线。
工作于超短波波段的发射和接收天线称为超短波天线。
超短波主要靠空间波传播。
这种天线的形式很多,其中应用最多的有八木天线、盘锥形天线、双锥形天线、“蝙蝠翼”电视发射天线等。
智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。
智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向DOA(DirectionofArrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。
同时,智能天线技术利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。
在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。
•gotoblue (2006-12-04 10:39:37)当计算机与无线AP或其他计算机相距较远时,随着信号的减弱,或者传输速率明显下降,或者根本无法实现与AP或其他计算机之间通讯,此时,就必须借助于无线天线对所接收或发送的信号进行增益(放大)。
无线天线有多种类型,不过常见的有两种,一种是室内天线,优点是方便灵活,缺点是增益小,传输距离短;一种是室外天线。
室外天线的类型比较多,一种是锅状的定向天线,一种是棒状的全向天线。
室外天线的优点是传输距离远。
比较适合远距离传输。
在厘米波段,许多光学原理可以用于天线方面。
在光学中,利用透镜能使放在透镜焦点上的点光源辐射出的球面波,经过透镜折射后变为平面波。
透镜天线就是利用这一原理制作而成的。
它由透镜和放在透镜焦点上的辐射器组成。
透镜天线有介质减速透镜天线和金属加速透镜天线两种。
透镜是用低损耗高频介质制成,中间厚,四周薄。
从辐射源发出的球面波经过介质透镜时受到减速。
所以球面波在透镜中间部分受到减速的路径长,在四周部分受到减速的路径短。
因此,球面波经过透镜后就变成平面波,也就是说,辐射变成定向的。
透镜由许多块长度不同的金属板平行放置而成。
金属板垂直于地面,愈靠近中间的金属板愈短。
电波在平行金属板中传播时受到加速。
从辐射源发出的球面波经过金属透镜时,愈靠近透镜边缘,受到加速的路径愈长,而在中间则受到加速的路径就短。
因此,经过金属透镜后的球面波就变成平面波。
透镜天线具有下列优点:1、旁瓣和后瓣小,因而方向图较好;2、制造透镜的精度不高,因而制造比较方便。
其缺点是效率低,结构复杂,价格昂贵。
透镜天线用于微波中继通信中。
仅在一个很窄的频带内才具有预定方向性的天线,称为调谐天线或称调谐的定向天线。
通常,调谐天线仅在它的调谐频率附近5%的波段内,其方向性才保持不变,而在其它频率上,方向性变化非常厉害,以致使通信遭到破坏。
调谐天线不适于频率多变的短波通信。
同相水平天线、折合天线、曲折天线等均属于调谐天线。
方向性、阻抗和极化特性在一个很宽的波段内几乎保持不变的天线,称为宽频带天线。
早期的宽频带天线有菱形天线、V形天线、倍波天线、盘锥形天线等,新的宽频带天线有对数周期天线等。
两部分长度相等而中心断开并接以馈电的导线,可用作发射和接收天线,这样构成的天线叫做对称天线。
因为天线有时也称为振子,所以对称天线又叫对称振子,或偶极天线。
总长度为半个波长的对称振子,叫做半波振子,也叫做半波偶极天线。
它是最基本的单元天线,用得也最广泛,很多复杂天线是由它组成的。
半波振子结构简单,馈电方便,在近距离通信中应用较多。
工作于米波、分米波、厘米波、毫米波等波段的发射或接收天线,统称为微波天线。
微波主要靠空间波传播,为增大通信距离,天线架设较高。
在微波天线中,应用较广的有抛物面天线、喇叭抛物面天线、喇叭天线、透镜天线、开槽天线、介质天线、潜望镜天线等。
卡塞格伦天线是一种在微波通信中常用的天线,它是从抛物线演变而来的。
卡塞格伦天线由三部分组成,即主反射器、副反射器和辐射源。
其中主反射器为旋转抛物面,副反射面为旋转双曲面。
在结构上,双曲面的一个焦点与抛物面的焦点重合,双曲面焦轴与抛物面的焦轴重合,而辐射源位于双曲面的另一焦点上,如下图所示。
它是由副反射器对辐射源发出的电磁波进行的一次反射,将电磁波反射到主反射器上,然后再经主反射器反射后获得方向的平面波波束,以实现定向发射。
当辐射器位于旋转双曲面的实焦点F1处时,由F1发出的射线经过双曲面反射后的射线,就相当于由双曲面的虚焦点直接发射出的射线。
因此只要是双曲面的虚焦点与抛物面的焦点相重合,就可使副反射面反射到主反射面上的射线被抛物面反射成平面波辐射出去。
卡塞格伦天线相对于抛物面天线来讲,它将馈源的辐射方式由抛物面的前馈方式改变为后馈方式,这使天线的结构较为紧凑,制作起来也比较方便。
另外卡塞格伦天线可等效为具有长焦距的抛物面天线,而这种长焦距可以使天线从焦点至口面各点的距离接近于常数,因而空间衰耗对馈电器辐射的影响要小,使得卡塞格伦天线的效率比标准抛物面天线要高。
工作于短波波段的发射或接收天线,统称为短波天线。
短波主要是借助于电离层反射的天波传播的,是现代远距离无线电通信的重要手段之一。
短波天线形式很多,其中应用最多的有对称天线、同相水平天线、倍波天线、角型天线、V型天线、菱形天线、鱼骨形天线等。
和长波天线比较,短波天线的有效高度大,辐射电阻大,效率高,方向性良好,增益高,通频带宽。
天线在通信、广播、电视、雷达和导航等无线电系统中被广泛的应用,起到了传播无线电波的作用,是有效地辐射和接受无线电波必不可少的装置。
就目前天线通信知识和技术的迅速发展,以及国际上对天线的诸多研究方向的提出,都促使了新型天线的诞生。
阵列天线就是研究的一种方向,所谓阵列天线不是将简单的将天线排成我们所熟悉的阵列的样子,而是它的构成是阵列形式的.就发射天线来说,简单的辐射源比如点源,对称振子源是常见的构成阵列天线的辐射源.它们按照直线或者更复杂的形式,根据天线馈电电流,间距,电长度等不同参数来构成阵列,以获取最好的辐射方向性.这就是阵列天线的魅力所在,它可以根据需要来调节辐射的方向性能.由此产生出了诸如现代移动通信中使用的智能天线等.我相信,在不久的将来,这些高技术含量的天线将会带给我们同样高质量的通信环境。