平行四边形定义
- 格式:pptx
- 大小:2.04 MB
- 文档页数:11
一、平行四边形知识结构及要点小结平行四边形定义:有两组对边分别平行的四边开形是平行四边形。
性质:1、平行四边形的两组对边分别平行。
2、平行四边形的两组对边分别相等3、平行四边形的两组对角分别相等4、平行四边形的两条对角线互相平分。
判定方法:1、两组对边分别平行的四边形是平行四边形。
2、两组对边分别相等的四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
4、两条对角线互相平分的四边形是平行四边形。
5、两组对角分别相等的四边形是平行四边形。
三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线。
定理;三角形的中位线平行于三角形的第三边,且等于第三边的一半。
二、解题方法及技巧小结:证明线段相等或角相等的问题用过去所学的全等知识也可完成,但相对比而言,应用平行四边形的性质求证较为简单。
另外平行四边形对角线是很重要的基本图形,应用它的性质解题可开辟新的途径。
特殊的平行四边形知识结构及要点小结矩形:定义:有一个角是直角的平行四边形叫做矩形。
性质:1、具有平行四边形的所有性质。
2、矩形有四个角都是直角。
3、矩形有对角线相等。
4、矩形是轴对称图形,有两条对称轴。
判定方法:1、定义2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形:定义:有一组邻边相等的平行四边形叫菱形。
性质;1、具有平行四边形所有性质。
2、菱形有四条边都相等。
3、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角4、菱形是轴对称图形。
判定方法:1、定义2、对角线互相垂直的平行四边形3、四边相等的四边形正方形:定义;一组邻边相等的矩形性质:具有平行四边形、矩形、菱形的所有性质判定:1、定义2、有一个内角是直角的菱形3、对角线相等的菱形4、对角线互相垂直的矩形解题方法及技巧小结菱形、矩形、正方形都是特殊的平行四边形。
它们的性质既有区别又有联系,它们的判定方法虽然不同,但有许多相似之处,因此要用类比的思想,将学到的知识总结出相关规律。
平行四边形的特征平行四边形的定义和性质平行四边形的特征平行四边形是一种特殊的四边形,具有一些独特的定义和性质。
本文将详细探讨平行四边形的定义以及相关的性质,以便读者更好地理解和应用这一几何形状。
一、平行四边形的定义平行四边形是指具有两对相对平行的边的四边形。
换句话说,如果一个四边形的对边是平行的,那么它就是平行四边形。
二、平行四边形的性质1. 对边性质:平行四边形的对边相等。
这意味着,平行四边形的相邻边长度相等,且对角线相等。
例如,如果ABCD是一个平行四边形,那么AB = CD,AD = BC。
2. 对角线性质:平行四边形的对角线互相等分。
也就是说,平行四边形的对角线的中点连接在一起,且长度相等。
如果ABCD是一个平行四边形,那么AC = BD,并且中点M在AC和BD上。
3. 同位角性质:平行四边形的同位角(相邻的内角或相邻的外角)相等。
例如,如果ABCD是一个平行四边形,那么∠A = ∠C,∠B =∠D。
4. 内角性质:平行四边形的内角和为360度。
换句话说,ABCD的四个内角∠A、∠B、∠C、∠D之和等于360度。
5. 对角线垂直性:平行四边形的对角线互相垂直。
也就是说,平行四边形的对点线AC和BD垂直相交。
这是平行四边形独有的性质之一。
6. 等腰性质:具有一对对等长度的边的平行四边形是等腰平行四边形。
也就是说,如果ABCD是一个平行四边形,且AB = CD,那么就可以称之为等腰平行四边形。
通过上述性质,我们可以更深入地理解平行四边形的特征和性质。
在实际应用中,平行四边形经常出现在建筑、工程、设计以及数学等领域,因其稳定性和美学特点而备受青睐。
总结:平行四边形是一种具有两对平行边的四边形。
它具有对边相等、对角线互相等分、同位角相等、内角和为360度、对角线垂直、等腰等性质。
这些性质使得平行四边形在实际生活中具有重要的应用价值。
通过了解和应用平行四边形的定义和性质,我们能够更好地解决与其相关的问题。
平行四边形的概念与性质平行四边形是几何学中常见的四边形。
本文将介绍平行四边形的概念以及其一些重要性质,以帮助读者更好地理解和使用平行四边形。
概念:平行四边形是指具有两对边分别平行的四边形。
即,如果四边形的两对边分别平行,则该四边形可以被称为平行四边形。
性质1:相对边在平行四边形中,两对相对的边是平行的。
这意味着如果我们有一个平行四边形ABCD,那么AB和CD是平行的,同时AD和BC也是平行的。
性质2:相对角平行四边形中相对的两个内角是相等的。
也就是说,如果我们有一个平行四边形ABCD,那么∠A = ∠C,∠B = ∠D。
性质3:对角线平行四边形的对角线互相平分。
即,如果我们有一个平行四边形ABCD,那么对角线AC和BD相交于点O,并且AO = CO,BO = DO。
性质4:邻边补角平行四边形中邻接的内角互为补角。
也就是说,如果我们有一个平行四边形ABCD,那么∠A + ∠B = 180°,∠B + ∠C = 180°,∠C + ∠D = 180°,∠D + ∠A = 180°。
性质5:对角线长度关系平行四边形的对角线长度关系为:对角线AC² + 对角线BD² = 2(边AB² + 边AD²)。
这是一个重要的性质,可以在解决平行四边形相关问题时提供便利。
性质6:面积计算平行四边形的面积可以通过底边长和高的乘积来计算,即面积 = 底边长 ×高。
性质7:重心、中点和垂心的共线性平行四边形的重心、中点和垂心三个点共线。
重心是平行四边形对角线交点的中点,中点是边的中点,垂心是通过连接对边中点的线段与对角线的交点。
以上是一些关于平行四边形的基本概念和重要性质。
这些性质可以用于解决平行四边形的证明题、计算题以及相关应用题。
在解决这些题目时,我们可以根据平行四边形的定义和这些性质来进行推理和计算。
总结:平行四边形是具有两对平行边的四边形,具有一些特殊的性质。
平行四边形的定义与性质平行四边形是几何学中的一种特殊四边形,它具有独特的定义和性质。
本文将详细介绍平行四边形的定义以及与其相关的性质,以加深对这一概念的理解。
一、平行四边形的定义平行四边形是指具有两对对边分别平行的四边形。
换句话说,对于任意一个平行四边形ABCD来说,AB || CD 且 AD || BC。
其中,“||”表示两条线段之间的平行关系。
除了两对对边平行外,平行四边形还有其他重要的性质。
二、平行四边形的性质1. 对角线互相平分平行四边形的两条对角线互相平分。
具体而言,对角线AC和BD 的交点E将对角线AC和BD分成两等分,即AE = CE,BE = DE。
这是平行四边形的一个重要性质,也是其与其他四边形的区别之一。
2. 对边相等平行四边形的对边相等,即AB = CD,AD = BC。
这个性质是由平行线的性质决定的,由于AB || CD 且 AD || BC,所以ABCD的两对对边分别相等。
3. 内角和为180°平行四边形的内角和等于180°。
对于平行四边形ABCD来说,∠A + ∠B + ∠C + ∠D = 180°。
这是由于平行四边形的对边是平行的,所以它的内角和必然等于180°。
4. 相对角相等平行四边形的相对角相等,即∠A = ∠C,∠B = ∠D。
这是平行四边形的一个重要性质,也是在推导平行四边形的性质时常用到的关键。
以上是平行四边形的一些基本性质,它们共同构成了这一特殊四边形的定义与特征。
三、应用举例平行四边形的性质在解决几何问题时经常被应用。
以下是一些应用举例:1. 判断线段平行通过观察四边形的对边是否平行,可以判断特定线段是否平行。
如果已知两对对边分别平行,则可以得出这两条线段平行。
2. 证明图形全等当两个四边形都为平行四边形,并且对应的边长相等时,可以推导出这两个四边形全等。
这是因为平行四边形的性质保证了边长相等,而对应角相等的证明则可参考相对角相等的性质。
平行四边形的定义性质与判定
1.定义:两组对边分别平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边平行且相等;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分;
(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
4.两条平行线间的距离:
定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.
性质:夹在两条平行线间的平行线段相等.
5.平行四边形的面积:
1.平行四边形的面积=底×高;
2.同底(等底)同高(等高)的平行四边形面积相等.
如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.。
一、平行四边形知识结构及要点小结之迟辟智美创作平行四边形界说:有两组对边分别平行的四边开形是平行四边形.性质:1、平行四边形的两组对边分别平行.2、平行四边形的两组对边分别相等3、平行四边形的两组对角分别相等4、平行四边形的两条对角线互相平分.判定方法:1、两组对边分别平行的四边形是平行四边形.2、两组对边分别相等的四边形是平行四边形.3、一组对边平行且相等的四边形是平行四边形.4、两条对角线互相平分的四边形是平行四边形.5、两组对角分别相等的四边形是平行四边形.三角形中位线界说:连接三角形两边中点的线段叫三角形的中位线.定理;三角形的中位线平行于三角形的第三边,且即是第三边的一半.二、解题方法及技巧小结:证明线段相等或角相等的问题用过去所学的全等知识也可完成,但相比较而言,应用平行四边形的性质求证较为简单.另外平行四边形对角线是很重要的基本图形,应用它的性质解题可开辟新的途径.特殊的平行四边形知识结构及要点小结矩形:界说:有一个角是直角的平行四边形叫做矩形.性质:1、具有平行四边形的所有性质.2、矩形有四个角都是直角.3、矩形有对角线相等.4、矩形是轴对称图形,有两条对称轴.判定方法:1、界说2、对角线相等的平行四边形是矩形.3、有三个角是直角的四边形是矩形.菱形:界说:有一组邻边相等的平行四边形叫菱形.性质;1、具有平行四边形所有性质.2、菱形有四条边都相等.3、菱形的两条对角线互相垂直,而且每一条对角线平分一组对角4、菱形是轴对称图形.判定方法:1、界说2、对角线互相垂直的平行四边形3、四边相等的四边形正方形:界说;一组邻边相等的矩形性质:具有平行四边形、矩形、菱形的所有性质判定:1、界说2、有一个内角是直角的菱形3、对角线相等的菱形4、对角线互相垂直的矩形解题方法及技巧小结菱形、矩形、正方形都是特殊的平行四边形.它们的性质既有区别又有联系,它们的判定方法虽然分歧,但有许多相似之处,因此要用类比的思想,将学到的知识总结出相关规律.。
平行四边形的定义:两组对边分别平行的四边形叫平行四边形。
平行四边形的性质:平行四边形的(两组)对边(分别)平行。
平行四边形的(两组)对边(分别)相等。
平行四边形的(两组)对角(分别)相等。
平行四边形的(两条)对角线互相平分。
平行四边形是中心对称图形,对称中心是两条对角线的交点。
平行四边形的判定:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
(两条)对角线互相平分的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
矩形的定义:有一个角是直角的平行四边形叫做矩形。
矩形的性质:矩形是特殊的平行四边形,具有平行四边形的所有性质。
矩形的四个角都是直角。
矩形的对角线相等。
矩形是轴对称图形,对称轴是两组对边的垂直平分线。
菱形的定义:有一组邻边相等的平行四边形叫做菱形。
菱形的性质:菱形是特殊的平行四边形,具有平行四边形的所有性质。
菱形的四条边都相等。
菱形的对角线互相垂直,且每一条对角线平分一组对角。
菱形是轴对称图形,对称轴是两条对角线所在直线。
思考题:判断下列命题的真假,并考虑证明方法。
1、一组对边平行,另一组对边相等的四边形是平行四边形。
…………()2、一组对边平行,一组对角相等的四边形是平行四边形。
……………()3、一组对边相等,一组对角相等的四边形是平行四边形。
……………()4、一组对边平行,一条对角线被另一条平分。
…………………………()5、一组对边相等,一条对角线被另一条平分。
…………………………()6、一组对角相等,一条对角线被另一条平分。
(分成两种情况)(1)连结相等的这组对角的顶点所得的对角线被平分。
……………()(2)连结另一组对角的顶点所得的对角线被平分。
…………………()。
平行四边形的定义性质及判定方法SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#一、平行四边形知识结构及要点小结平行四边形定义:有两组对边分别平行的四边开形是平行四边形。
性质:1、平行四边形的两组对边分别平行。
2、平行四边形的两组对边分别相等3、平行四边形的两组对角分别相等4、平行四边形的两条对角线互相平分。
判定方法:1、两组对边分别平行的四边形是平行四边形。
2、两组对边分别相等的四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
4、两条对角线互相平分的四边形是平行四边形。
5、两组对角分别相等的四边形是平行四边形。
三角形中位线定义:连接三角形两边中点的线段叫三角形的中位线。
定理;三角形的中位线平行于三角形的第三边,且等于第三边的一半。
二、解题方法及技巧小结:证明线段相等或角相等的问题用过去所学的全等知识也可完成,但相对比而言,应用平行四边形的性质求证较为简单。
另外平行四边形对角线是很重要的基本图形,应用它的性质解题可开辟新的途径。
特殊的平行四边形知识结构及要点小结矩形:定义:有一个角是直角的平行四边形叫做矩形。
性质:1、具有平行四边形的所有性质。
2、矩形有四个角都是直角。
3、矩形有对角线相等。
4、矩形是轴对称图形,有两条对称轴。
判定方法:1、定义2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形:定义:有一组邻边相等的平行四边形叫菱形。
性质;1、具有平行四边形所有性质。
2、菱形有四条边都相等。
3、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角4、菱形是轴对称图形。
判定方法:1、定义2、对角线互相垂直的平行四边形3、四边相等的四边形正方形:定义;一组邻边相等的矩形性质:具有平行四边形、矩形、菱形的所有性质判定:1、定义2、有一个内角是直角的菱形3、对角线相等的菱形4、对角线互相垂直的矩形解题方法及技巧小结菱形、矩形、正方形都是特殊的平行四边形。
平行四边形的定律平行四边形是一种具有特殊性质的四边形。
在平行四边形中,有一些重要的定律可以帮助我们解决与其相关的几何问题。
本文将介绍平行四边形的定律以及它们的应用。
一、平行四边形的定义平行四边形是指具有两组对边分别平行的四边形。
根据平行四边形的定义,我们可以得出以下定律。
二、平行四边形的性质1. 相对边相等定律:在平行四边形中,对边是平行的,因此相对边相等。
2. 对角线互相平分定律:平行四边形的对角线互相平分。
也就是说,平行四边形的对角线相交于一点,并且将对角线分成两段相等的线段。
3. 相邻角互补定律:在平行四边形中,相邻角互补,即相邻的两个内角的和等于180度。
4. 同位角相等定律:平行四边形中,同位角相等。
同位角是指两组平行线中位于同一边的对应角。
5. 余角相等定律:平行四边形中,余角相等。
余角是指两组平行线中位于同一边的非对应角。
三、平行四边形的应用平行四边形的定律在解决几何问题时有着广泛的应用。
下面我们将通过一些具体例子来说明它们的应用。
例1:已知平行四边形ABCD中,AB=6cm,BC=8cm,求对角线AC的长度。
解:根据平行四边形的对角线互相平分定律,我们知道AC将对角线BD平分。
因此,AC的长度等于BD的长度。
根据相对边相等定律,我们知道AB=CD,BC=AD,所以BD=AB+BC=6+8=14cm。
因此,AC的长度也为14cm。
例2:已知平行四边形ABCD中,AB=6cm,AD=10cm,角BAD=60度,求平行四边形的面积。
解:我们可以通过计算平行四边形的高和底边的乘积来求解面积。
在平行四边形ABCD中,我们可以通过绘制高BE,使其与AD垂直相交。
由于角BAD=60度,所以角BAE也为60度。
根据三角形的性质,我们可以得知三角形BAE是一个等边三角形,即BE=AE=6cm。
因此,平行四边形的高为6cm。
底边的长度为AD=10cm。
所以,平行四边形的面积为6cm×10cm=60cm²。
平行四边形的定义及特殊四边形的性质及判定平行四边形是指四边形的对边两两平行,且对边相等的四边形。
其特殊性质有以下几点:1. 对边平行:平行四边形的定义中已经提到,其对边两两平行。
这意味着它有两对平行的边,且它的对边相等。
2. 对角线平分:平行四边形的两条对角线互相平分。
这意味着从顶点到顶点的线段长相等。
且对角线长度之和等于两倍的中线长度。
3. 内角和为360度:平行四边形的内部角度之和为360度。
这是由于它可以看作是一个由两个相反的等腰三角形组成的四边形。
4. 相邻角互补:平行四边形相邻两个角互补。
即相邻的两个内角之和为180度。
5. 对角线重心:平行四边形的对角线的交点是平行四边形的重心。
这意味着,从平行四边形的任意一个顶点出发,连接对角线交点的线段长度均相等。
如何判定是否是平行四边形?为了判定一个四边形是否为平行四边形,我们需要注意以下几点:1. 同位角是否相等:如果四边形的对边相等,且同位角相等,则它是一个平行四边形。
2. 对角线是否互相平分:如果四边形的对角线互相平分,则它是一个平行四边形。
3. 内角是否和为360度:如果四边形的内角和为360度,则它是一个平行四边形。
4. 相邻角是否补角:如果四边形的相邻两个角互补,则它是一个平行四边形。
总之,平行四边形不仅有着独特的特性,而且在日常生活中随处可见。
我们可以通过了解它的性质和判定方法,来更好地理解和应用它在实际问题中的作用。
平行四边形在几何中的重要性不言而喻。
它具有许多基本的性质,在解决几何问题时能够发挥重要的作用。
因此,对于学习者来说,理解和掌握平行四边形及其相关性质是非常重要的。
首先,平行四边形经常用于测量和设计。
例如,平面中的平行线和平行四边形常常被用来构建建筑和道路。
在测量中,以平行四边形为基础可以利用三角函数法求其面积。
当然,求解时需要知道两个相邻的边长和它们之间夹角的大小。
这也是平行四边形的另一个重要性质,它的相邻角互补。
其次,平行四边形经常用于计算图形的重心及其他几何量。