反渗透设备设计基础知识-29页精选文档
- 格式:doc
- 大小:46.00 KB
- 文档页数:28
反渗透培训资料目录第一章反渗透系统预处理第二章反渗透膜元件的操作与维护第三章反渗透系统的化学清洗第四章反渗透系统的运行监控与故障分析第五章、反渗透运行与纯水取样的注意事项第一章反渗透系统预处理第一节预处理的作用及目标一、预处理系统的重要性反渗透系统包括原水的预处理、反渗透装置、后处理三部分。
RO 系统对原水的预处理有它特定的要求。
由于原水的种类繁多,其成分也非常复杂,针对原水水质情况及RO 系统回收率等主要工艺设计参数的要求,选择合适的预处理工艺系统,减少对RO 膜的污堵、结垢,防止RO 膜脱盐率、产水率的降低,尤其是针对目前水源日趋匮乏、水质日趋恶化,选择一个正确的预处理系统,将直接影响整个水处理系统的功能。
众所周知,RO 系统运行失败,多数情况是由于预处理系统功能不完善造成的。
为了确保反渗透过程的正常进行,必须对原水进行严格的预处理。
二、反渗透系统的水源反渗透原水的种类很多,有各种天然水、市政水和工业废水等。
天然水包括地表水和地下水两种。
地表水的范围很广,包括江河、湖泊、水库、海洋等。
地下水则存在于土壤和岩石内,由雨水和地表水经过地层的渗流而形成。
市政二级污水、电厂冷却排污水等工业水源将成新的途径。
水源的选择将直接影响到水处理工艺的确定和水处理成本。
三、预处理的目的使反渗透膜性能降低的主要因素有:(1)膜发生化学降解,如芳香族聚酰胺受氯等氧化剂及强酸强碱的破坏;(2)膜表面难溶盐结垢;(3)膜受进水悬浮物、胶体污堵;(4)膜受微生物、菌藻等黏附、侵蚀后造成污堵与膜降解;(5)大分子有机物对膜污堵以及小分子有机物被膜吸附。
反渗透效率与寿命与原水预处理效果密切相关,预处理的目的就是要把进水对膜的污染、结垢、损伤等降到最低,从而使系统产水量、脱盐率、回收率及运行成本最优化。
因此,良好的预处理对RO 装置长期安全运行是十分重要的。
其目的细分为:(1)除去悬浮固体,降低浊度;(2)控制微生物的生长;(3)抑制与控制微溶盐的沉积;(4)进水温度和pH 的调整;(5)有机物的去除;(6)金属氧化物和硅的沉淀控制。
反渗透技术培训资料全一、反渗透技术概述反渗透技术是一种用于水处理和海水淡化的高效膜分离技术。
它通过在高压下将水通过半透膜,使溶质分子无法通过膜孔洞,从而实现水的纯化和浓缩。
本文将介绍反渗透技术的原理、应用领域以及培训资料的内容。
二、反渗透技术原理反渗透技术的核心是反渗透膜。
这种膜具有微孔结构,能够选择性地阻挡溶质分子的通过,而允许水分子通过。
利用高压作用下的逆渗透力,水分子被迫通过膜孔,而溶质分子则被拦截在膜表面。
通过这种方式,可以将水中的杂质、盐分、重金属等有害物质去除,实现水的纯化。
三、反渗透技术的应用领域1. 水处理:反渗透技术广泛应用于饮用水处理、工业用水处理、污水处理等领域。
它可以有效去除水中的细菌、病毒、有机物、重金属、盐分等,提供清洁安全的水源。
2. 海水淡化:由于地球上绝大部分水资源是海水,海水淡化技术对于解决淡水资源短缺问题具有重要意义。
反渗透技术在海水淡化中起到关键作用,可以将海水转化为可供人类使用的淡水。
3. 医药制药:反渗透技术在医药制药中用于纯化药物、去除杂质、浓缩药液等。
它能够提高药物的纯度和质量,确保药品的安全性和有效性。
4. 食品加工:反渗透技术可用于果汁浓缩、乳制品浓缩、酒精浓缩等食品加工过程中。
它能够去除水分,提高产品的浓度和口感。
四、反渗透技术培训资料内容1. 反渗透技术基础知识:介绍反渗透技术的原理、工作原理、膜材料选择等基础知识,帮助学员了解反渗透技术的基本概念。
2. 反渗透设备介绍:详细介绍反渗透设备的组成、工作原理、操作步骤等,包括膜组件、泵、压力容器等设备的功能和使用方法。
3. 反渗透膜的选择与维护:讲解反渗透膜的种类、特点以及如何选择适合的膜材料。
同时,介绍膜的清洗、消毒、保养等维护方法,以保证膜的使用寿命和性能。
4. 反渗透工艺设计:介绍反渗透系统的工艺设计方法,包括流程设计、设备配置、操作参数的确定等。
通过实例分析,帮助学员掌握反渗透工艺设计的要点和技巧。
反渗透设备设计基础知识膜分离:物质世界是由原子、分子和细胞等微观单元构成的,然而这些很小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。
膜分理技术得基础是分离膜。
分离莫是具有选择性透过性的薄膜,某些分子(或微粒)可以透过薄膜,而其他的则被阻隔。
这种分离总是依赖于不同的分子(或微粒)之间的某种区别,最简单的区别就是尺寸大小,三维空间之中,什么都有大上巨细而膜有孔径。
全量过滤:全量过滤也称为直流过滤、死端过滤、与常规的滤布过滤相似,被处理物料进入模组件,等量透过液流出模组件,截流物留在模组件内。
为了保证膜性能的可恢复性,必须及时从模组件内卸载截留物,因此需要定时反冲洗(过滤的反过程)等措施来去除膜面沉积物、恢复膜通量。
模组件污染后不能拆开清洗,通常使用在线清洗方式(CIP)超滤/微滤水处理过程一般采用全量过滤模式。
错流过滤被处理料液以议定的速度流过膜面,透过液以垂直方向透过膜,同时大部分截留物被浓缩液夹带出模组件。
错流过滤模式减小了膜面浓度极化层的厚度,可以有效降低膜污染,反滲透、纳滤均采用错流过滤方式。
膜系统:膜系统是指膜分离装置单元。
压力驱动膜系统主要由预处理系统、升压泵、模组件(压力容器和膜元件)、管道阀门和控制系统构成。
膜污染:各种原水中均含有一定浓度的悬浮物和溶解性物质。
悬浮物主要由无机颗粒物、胶体和微生物、藻类等生物性颗粒。
溶解性物质主要是易溶盐(如氯化物)和难溶盐(如碳酸盐、硫酸盐和硅酸盐)。
再反渗透过程中,进水的体积在减少,悬浮物和溶解性物质的浓度在增加。
悬浮颗粒会沉积在膜上,堵塞进水流道、增加摩擦阻力(压力降)。
难溶盐会从浓水中沉淀出来,在磨面上形成结垢,降低RO膜的通量。
这种在膜面上形成沉积层的现象叫膜污染,膜污染是膜系统性能的劣化。
反滲透/纳滤基本原理:半透膜:是具有选择性透过性能的薄膜。
当液体或气体透过半透膜时,一些组分透过,而另外一些组分被截留。
技术资料由莱特莱德北京水处理设备公司提供 反渗透设备基础常识
反渗透,简称RO(英文名称Reverse Osmosis 的缩写),是近年来普遍的在反渗透设备上采用的一种先进的高新膜技术。
它主要依靠压力差来完成推动力,因其简单高效、分离度高和无变相等特点,被广泛应用在生活和工农业等各行各业的水处理上。
反渗透膜一般很薄,它的孔径用纳米这个单位来衡量,而纳米很小,可以换算成厘米来看一下,1纳米等于10.9毫米,只有在特制的显微镜下也可能看不到反渗透膜的用作过滤用的小孔径。
在一般行业使用的反渗透膜根据不同的水质需求选用不同孔径的反渗透膜。
反渗透设备的工作原理简单地说,就是我们需要净化的水需要经过巨大的压力,而这个压力需要比原水渗透压要高,使得原水通过反渗透膜以后,一些大分子如有机物、微生物、无机离子、胶体、热源等等杂质就会被过滤下来,通过的分子较小的水就是水质较高的纯水。
反渗透膜技术广泛应用于水行业。
一、反渗透技术的先进性1. 膜孔小反渗透(Reverse Osmosis/RO)是于20世纪60年代发展起来的一项膜分离技术。
反渗透膜的孔径大都小于等于10x10-10m。
2. 厚度薄且耐压高反渗透膜的厚度比普通纸张还薄,而同时它能够承受高达数个或十多个MPa的压力。
3. 反渗透膜的组成反渗透膜由三部分组成:a. 膜涂层为按一定比例配制的高分子浆液用高精密度的刮膜机均匀涂于膜基材上,经恒温恒湿高洁净的环境下,浆液中的溶剂气化后形成均匀一致无任何瑕疵的膜孔。
该膜涂层成形后厚度一般为0.02~0.08um(2~8×10-5mm)。
b. 多孔支撑层由于膜表皮层超薄状态,其机械强度极差,故将该膜表皮层复合于抗压性能较强的多孔材料上作为支撑之用。
c. 织物增强层起到保护和加强支撑作用,为膜的基础材料,用特制的无纺布材料制成。
4. 膜元件的组成使反渗透膜制成可使用的膜元件还必须经过卷膜的过程。
膜元件是以12层的中间夹有纯水导流网双面反渗透膜,加上12层浓水导流网,平整环绕在中间有2排小孔的硬质中心管上组成(如图所示)。
其中每张膜的长度有1.2米。
如上所述,反渗透膜的孔径要求、材料要求、加工要求、组成元件要求及使用要求均相当严格。
到目前为止,国内还未能达到该项技术的加工水平,只有美国、日本等少数发达国家能制造出合格并有使用价值的膜元件,故反渗透技术是社会发展至今在水质净化方面最先进、最尖端的技术,同时具有其它处理手段所无法达到的优点。
5. 反渗透膜使用的注意事项l 避免接触氧化剂反渗透膜是由高分子材料制成的,如果遇到氧化性较强的物质,可能会造成膜原料的分解,进水中的余氯就是强氧化剂,所以,膜技术的预处理必须有活性碳吸附余氯的过程。
此外,膜消毒所使用的消毒剂次氯酸钠,也是一种强氧化剂。
不当的消毒有可能使膜完全失效,膜消毒必须由专业人员完成。
l 避免低温操作反渗透膜类似于人体体细胞,会产生热胀冷缩,在低温情况下,反渗透膜的产量会随膜孔缩小而降低。
技术岗基本知识1.腐蚀速度又称为腐蚀速率或腐蚀率 SI制的单位是mm/n um/n2.反渗透系统预处理通常采用杀菌、混凝沉降、多介质过滤、活性炭过滤、微滤等工艺3.反渗透装置是反渗透脱盐系统的核心部分,在反渗透装置中进水中的大部分盐类被除去,同时除去的还包括有机物、细菌等4.SDI:污泥密度指数。
指在一定的压力和标准间隔时间内,一定体积的水样通过微孔滤膜(在207KPa下 0.45um)的阻塞率5.回收率:淡水与供水之比,用百分比表示6.脱盐率(R)反渗透装置或膜元件对盐分的脱出能力7.淡水:又称渗透水产水是反渗透系统的净化水8.浓水:又称盐水是反渗透系统的浓缩废液9.缓蚀阻垢剂:用于腐蚀介质中抑制金属腐蚀的添加剂10.反渗透:当半透膜隔开溶液与纯溶剂时,加在溶液上的压力超过了渗透压,则反而使溶液中的溶剂向纯溶剂方向流动,这个过程叫做反渗透一、工业用水质的要求1、水温尽量低一些2、水的浊度要低3、水质不易结垢4、水质对金属设备不易产生腐蚀5、冷却水质不易滋生菌藻二、循环冷却水系统中常见的沉积物有:水垢、污垢水垢的控制:1.从冷却水中除去成垢的钙离子(离子交换树脂法石灰软化法)2.加酸(H2SO4)或通CO2气体,降低 PH值,稳定重碳酸盐3.投加阻垢剂污垢的控制:1.降低补充水浊度一般要求循环水中的浊度不大于20mg/L2.投加分散剂3.增加旁流过滤4.做好循环冷却水水质处理三、常见的缓蚀阻垢剂的种类有哪些1.按用途分:冷却水缓蚀剂、油气井缓蚀剂、酸洗缓蚀剂、锅炉水缓蚀剂2.按化学组成:有机缓蚀剂和无机缓蚀剂3.按保护金属的种类:钢铁缓蚀剂、铜及铜合金缓蚀剂、铝及铝合金缓蚀剂4.按使用时的相态:气相缓蚀剂、液相缓蚀剂、固相缓蚀剂5.按使用介质的PH值:酸性介质的缓蚀剂、中性介质的缓蚀剂、碱性介质的缓蚀剂冷却水属中性PH6.0—9.5四、循环水系统中常见的微生物有:细菌、真菌和藻类,它们产生生物黏泥附着在换热器管壁上,除了会引起腐蚀外还会引起冷却水的流量减少,从而降低换热效率,严重时,这些生物黏泥会将管子堵死,迫使停产清洗如何控制这些危害:1. 选用耐腐蚀材料2.控制水质3.采用杀生涂料4.阴极保护5.清洗6.防止阳光照射7.旁流过滤8.混凝沉降9.噬菌体法 10.添加杀生剂 11.静电水处理与电子水处理微生物的五大共性:体积小、面积大,吸收多、转化快,生长旺、繁殖快,变异易、适应强,种类多、分布广五、优良的冷却水杀生剂应具备的条件1.是一种广谱的杀生剂2.易于分解或被生物降解3.在游离活性氯存在时,具有抗氧化性,以保持其杀生效率不受损失4.在使用浓度下,与冷却水中的一些缓蚀剂和阻垢剂能彼此相容5.在冷却水系统运行的PH值范围内有效而不易分解6.具有穿透黏泥和分散或剥离黏泥的能力如何选择杀生剂:1.能抑制微生物的活动2.经济实用3.如果冷却水系统中有木质构件,则建议使用非氧化性杀生剂4.能否为当地环境保护部门所容纳5.是否适用于该冷却水系统的PH值、温度以及换热器的材质六、日常运行中如何对水质运行监测和控制1.PH通常控制在 7.0-9.22.悬浮物浓度与浊度不应大于20mg/L 当使用板式翘片管式或螺旋板式,不宜大于10mg/L3.盐含量小于等于2500mg/L4.钙离子浓度大于30、小于200mg/L5.镁离子浓度小于60 mg/L6.铝离子浓度小于0.5 mg/L7.铜离子浓度小于0.1 mg/L8.总铁(二价铁和三价铁)小于0.5 mg/L9.碱度小于500 mg/L10.氯离子浓度不锈钢换热设备小于300 mg/L碳钢换热设备小于1000 mg/L11.硫酸根浓度小于1500 mg/L12.硅酸小于175 mg/L13.油小于5 mg/L14.游离余氯浓度15.磷酸盐浓度16.浓缩倍数七、反渗透膜的分离技术特点有哪些1.可以对溶质和水进行分离2.杂志去除范围广3.较高的除盐率和水的回用率,可截留粒径几纳米以上的溶质4.装置简单、容易操作、自控和维修5.由于反渗透装置要在高压下运转,因此必须配备高压泵和耐高压的管路6.达到一定的指标才能正常运行八、循环冷却水系统中金属腐蚀常见的腐蚀种类均匀腐蚀、选择性腐蚀、缝隙腐蚀、空腐蚀、电偶腐蚀、磨损腐蚀、应力腐蚀破裂腐蚀的控制:添加缓蚀剂、提高冷却水的PH值 8.0-9.5选用耐腐蚀材料制造的换热器用防腐阻垢材料覆涂至金属表面。
家用反渗透产品剖析●零部件原理●机器流程图●故障诊断责任编辑:高红阳前言一个企业的发展与售后工作到位与否,有着密切的联系。
而长期以来我们总认为售后工作总是由企业本身来承担。
事实上却并非如此,因为一个企业就算有足够庞大的经济实力,也无法解决由整个销售网络所带来的一系列售后问题。
而真正能够保证企业形象的售后工作,应该由各地的分公司和经销商去化整为零,分别去担当该地或其负责区域的售后工作。
所以,提高各分公司员工对产品认知度,是做好售后工作的一个大前提。
在对产品没有足够了解的情况下,可能会导致终端客户、经销商、甚至我们自己对公司产品产生怀疑。
而我坚信,只要我们能够充分了解产品,就会减少很多由于我们所认为的产品“质量”问题所带来的烦恼。
本书就产品的分类、零部件的原理与分析、特殊机器的流程与工作原理、故障诊断的方法等作了详尽的描述。
编者话第一章家用水处理设备的分类目前在中国市场上存在着琳琅满目的水处理设备,其中大体以三种形式存在,一为软水器;一是过滤器;另一个就是纯净水机。
软水器的目的是通过树脂进行离子交换,把水中的钙镁离子去除,从而达到使水软化的目的。
目前软水器大都用于一些用水频繁的企业,及锅炉设备中。
也有一些对生活品质要求比较高的人会在家庭终端安装软水器,它可以很好的保护家庭中的用水器具,使用水器具在使用水的过程中不会产生水垢的现象。
另外软水对人体的皮肤及毛发也有很好的保护和清洁作用。
长期使用软水洗澡、洗头会让皮肤和毛发避免因水中的硬度而造成大的伤害,但仅用软水器处理的水并不适宜直接饮用。
软水器主要有三部分组成,控制头,(控制制水,冲洗,吸盐等过程),罐体(放树脂)和盐箱(放盐和盐溶液,注:软水器在使用过程中需要通过吸入饱和盐水,使树脂再生)过滤器进入中国市场比较早,所以目前在国内市场依然占有很大的地位,其结构简单,使用方便等优点深受广大消费者的青睐。
一般的过滤器可分为一级过滤,二级过滤,三级过滤等。
其主要使用的过滤材料均为PPF(聚丙烯)和活性炭,部分产品会使用KDF(铜锌合金)作为其过滤主材。
反渗透设备设计基础知识膜分离:物质世界是由原子、分子和细胞等微观单元构成的,然而这些很小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。
膜分理技术得基础是分离膜。
分离莫是具有选择性透过性的薄膜,某些分子(或微粒)可以透过薄膜,而其他的则被阻隔。
这种分离总是依赖于不同的分子(或微粒)之间的某种区别,最简单的区别就是尺寸大小,三维空间之中,什么都有大上巨细而膜有孔径。
全量过滤:全量过滤也称为直流过滤、死端过滤、与常规的滤布过滤相似,被处理物料进入模组件,等量透过液流出模组件,截流物留在模组件内。
为了保证膜性能的可恢复性,必须及时从模组件内卸载截留物,因此需要定时反冲洗(过滤的反过程)等措施来去除膜面沉积物、恢复膜通量。
模组件污染后不能拆开清洗,通常使用在线清洗方式(CIP)超滤/微滤水处理过程一般采用全量过滤模式。
错流过滤被处理料液以议定的速度流过膜面,透过液以垂直方向透过膜,同时大部分截留物被浓缩液夹带出模组件。
错流过滤模式减小了膜面浓度极化层的厚度,可以有效降低膜污染,反滲透、纳滤均采用错流过滤方式。
膜系统:膜系统是指膜分离装置单元。
压力驱动膜系统主要由预处理系统、升压泵、模组件(压力容器和膜元件)、管道阀门和控制系统构成。
膜污染:各种原水中均含有一定浓度的悬浮物和溶解性物质。
悬浮物主要由无机颗粒物、胶体和微生物、藻类等生物性颗粒。
溶解性物质主要是易溶盐(如氯化物)和难溶盐(如碳酸盐、硫酸盐和硅酸盐)。
再反渗透过程中,进水的体积在减少,悬浮物和溶解性物质的浓度在增加。
悬浮颗粒会沉积在膜上,堵塞进水流道、增加摩擦阻力(压力降)。
难溶盐会从浓水中沉淀出来,在磨面上形成结垢,降低RO膜的通量。
这种在膜面上形成沉积层的现象叫膜污染,膜污染是膜系统性能的劣化。
反滲透/纳滤基本原理:半透膜:是具有选择性透过性能的薄膜。
当液体或气体透过半透膜时,一些组分透过,而另外一些组分被截留。
实际上半透膜对任何组分都有透过性,只是透过的速率相差很大。
在反渗透过程中,溶剂(水)的透过速率远远大于溶解在水中的溶质(盐分)。
通过半透膜实现了溶剂和溶质的分离,得到纯水以及浓缩的盐溶液。
渗透:是当流体在跨越半透膜屏障时的一种自然过程。
如果将一箱纯水用一张半透膜垂直分为两部分,纯水于理想的半透膜的两面以相同的温度和压力接触,在这样的条件下没有跨越半透膜的水的流动产生,因为在膜两侧的化学势完全相等。
如果在其中一侧加入溶解性盐,盐溶液一边的化学势降低了。
纯水便会向盐溶液一侧渗透,从而产生一个渗透流,直到化学势的平衡重新建立为止。
渗透压:按照科学术语在半透膜的两侧存在一个‘化学势’(离子或溶解分子的浓度差)的差值,通过溶液的渗透过程对化学势差进行补偿。
当平衡重新建立时,在半透膜的两侧形成一个水位差即静压差,这个压力差便是渗透压。
渗透压是溶液本生的性质,取决于溶液浓度,于半透膜没有关系。
渗透压与溶质浓度之间的关系为:Posm = 1.19 (T + 273) * Σ(mi) (1)其中Posm=渗透压(psi),T为温度(℃), Σ(mi)是溶液中所有溶质的总摩尔浓度。
TDS为1000ppm的水溶液的近似渗透压约为11 psi (0.76 bar)。
反渗透设备在图-6a的箱子中,水通过渗透作用流向盐溶液一侧,直到达到新的平衡建立。
在盐溶液一边施加一个额外的压力与渗透压相等,原有的平衡会受到影响(图-6b)。
外加压力将会使盐溶液一边的化学势增加,使溶剂流向纯水一边。
这种现象便是反渗透。
反渗透过程的驱动力是外加压力,反渗透分离所需能量与溶液的难度直接相关。
因此,从盐溶液中生产同样体积的水,盐的浓度越高,所需能耗也越高。
图-6 反渗透原理对于反渗透过程分离水和盐的机理还没有一个公认的统一解释。
目前一般推荐两种传递模型:毛细孔流模型和溶解扩散模型。
水通过膜有两种方式,一种是通过膜上存在的孔,另外一种是通过膜中的分子节点之间的扩散。
根据理论,膜的化学性质是,在固液界面上水优先吸附并通过,盐被截留。
水与膜表面之间有弱的化学结合力,使得水能够在膜的结构中分散。
膜的物理和化学性质决定了在传递过程中水比盐的优先地位。
水的传递水通过半透膜的速率由方程(2)确定。
Qw = ( ΔP - ΔPosm) × Kw × S/d (2)其中Qw为苏水透过膜的速率,ΔP为膜两侧压力差,ΔPosm为膜两侧的渗透压差,Kw为膜的纯水渗透系数,S为膜面积。
(2)式通常被简化为:Qw = A × (NDP) (3)其中A为膜常数,NDP为跨过膜的水传质净驱动压力或净驱动力。
盐的传递透过膜的盐流量定义为:Qs = ΔC × Ks × S/d (4)其中Qs为膜的透盐量,Ks为膜的盐渗透系数,ΔC为膜两侧盐浓度差,S 为膜面积,d为膜厚度。
该方程可简化为:Qs = B×(ΔC) (5)其中B代表膜常数,ΔC为盐传质驱动力。
从方程(4)和(5)可以看出。
对于一个已知的膜来说:●膜的水通量与总驱动压力差成比例;●膜的透盐量与膜两侧的浓度差成比例,与操作压力无关。
透过液的盐浓度Cp,取决于透过反渗透膜的盐量和水量的比:Cp = Qs/Qw (6)膜对水和盐的传质系数不同,所以才有脱盐率。
没有什么理想的膜具有对盐完全的脱除性能,实际上是传质速率的差别早就了脱盐率。
方程(2)、(4)和(5)给出了设计反渗透系统必须考虑的一些主要因素。
比如操作压力的增加会提高水通量,但对盐的透过没有影响,所以透过液的盐度会更低。
透盐率原水中溶解性杂质透过膜的百分率,计算公式为:SP = 100% × (Cp/Cfm) (7)其中SP为透盐率(%),Cp为透过液盐浓度,Cfm为料液的平均盐浓度。
水通量和透盐率的基本关系式是反渗透的基本原理。
可以看出,透盐率随操作压力增加而降低,其原因是水通量随压力增加,但盐的透过速率在压力变化情况下保持不变。
脱盐率通过反渗透膜从原水中脱除总可溶性杂质浓度或特定溶质浓度的百分率。
计算公式为:SR = 100% - SP (8)其中SR为脱盐率(%),SP为透盐率(见7式)。
产水-透过液反渗透、纳滤膜的透过液为净化水,因此也称为系统产水。
浓水-浓缩液未透过膜的溶液,原水中的溶质在其中被浓缩。
在水处理反渗透系统中浓水作为废水排出。
回收率(转化率)料液转化为透过液的百分率。
回收率是反渗透系统设计和运行的重要参数,计算公式为:R = 100%×(Qp/Qf) (9)其中R为回收率(%),Qp为产水流量,Qf为原水流量。
回收率影响透盐量和产水量。
回收率增加时料液侧中的盐浓度也会增加,致使透盐量增加、渗透压上升以及NDP降低,产水量降低。
浓差极化比(b系数)膜透过水并截留盐时,在膜表面附近会形成一个边界层,边界层中的盐浓度比本体溶液浓度高,这种盐浓度在膜面附近的增加叫做浓差极化。
浓差极化会使实际的产水通量和脱盐率低于理论估算值。
浓差极化效应如下:◆膜面上的渗透压比本体溶液中高,从而降低NDP(净驱动压力);◆降低水通量(Qw);◆增加透盐量(Qs);◆增加难溶盐在膜面上超过其溶度积形成沉淀结垢的可能性。
浓差极化因子(CPF)被定义为膜面浓度(Cs)与本体浓度(Cb)的比:CPF = Cs/Cb (10)水通量的增加会增加离子向膜面的输送量,从而增加Cs。
料液流速的增加加剧了紊流效果,减少了膜面高浓度层的厚度。
因此CPF与透过通量(Qp)成正比,与平均料液流量(Qfavg)成反比:CPF = Kp×exp(Qp/ Qfavg) (11)其中Kp是取决于系统结构的比例常数。
料液平均流量采用料液和浓缩液的算术平均数,CPF可以表达为膜元件透过液回收率(r)的函数:CPF = Kp×exp[2R/(2-R)] (12)海德能推荐的浓差极化因子极限值为1.20,对于40英寸长的膜元件来说,相当于18%的回收率。
纳滤膜及其主要应用理想的反渗透膜只对水有透过性能,任何溶质都会被阻留。
纳滤膜早期称为松散反渗透(Loose RO)膜,纳滤膜可以让部分溶质透过,根据膜和溶质的种类不同,溶质的透过率也不同。
纳滤膜的一个很大特征是膜本体带有电荷性。
这是它在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因。
纳滤主要应用于以下几个介面:(1) 软化水处理对苦咸水进行软化、脱盐是纳滤膜应用的最大市场。
(2) 饮用水中有害物质的脱除。
传统的饮用水处理主要通过絮凝、沉降、砂滤和加氯消毒来去除水中的悬浊物和细菌,而对各种溶解性化学物质的脱除作用很低。
纳滤膜可用于脱除河水及地下水中含有的三卤甲烷中间体THM(加氯消毒时的副产物为致癌物质)、低分子有机物、农药、异味物质、硝酸盐、硫酸盐、氟、硼、砷等有害物质。
(3) 中水、废水处理。
(4) 食品、饮料、制药行业。
各种蛋白质、氨基酸、维生素、奶类、酒类、酱油、调味品等的浓缩、精制。
(5) 化工工艺过程水溶液的浓缩、分离。
3 膜性能的影响因素反渗透以及纳滤过程的主要指标是产水通量和脱盐率。
对于一定的膜元件,产水量和脱盐率受到给水水质条件和系统运行参数的影响,最基本的给水水质因素有含盐量(浓度)、温度和pH值等,运行参数有压力、给水流量和回收率等。
下面就关于对产水量和脱盐率产生影响的各操作因子做一般论述。
给水浓度浓度对产水量和截留率的影响如图-7所示。
一定压力下当供给的原水浓度增高时,产水量就会减少。
这是因为供给水的渗透压变高,有效压力降低的缘故。
脱盐率受浓度影响非常大。
通常浓度提高,产水量就会降低的同时,脱盐率也会降低。
但是当非常低的浓度下,起初浓度增加,脱盐率率也会稍许增加。
随后,随着浓度的不断增加脱盐率就变的低下。
图-7 原水浓度对透水量及脱盐率的影响膜元件CPA3-8040 原水浓度氯化钠1500mg/L 操作压力1.55MPa 温度25℃温度的影响温度对脱盐率和产水量的影响如图-8所示。
温度变高,水的粘度降低,水的扩散性增加,产水量也随着温度上升而增加。
在同一压力下,温度上升一摄氏度,产水量可增大3~4%。
另一方面对于不同类型的膜,温度对于脱盐率率的影响的差别较大。
一般来讲温度增高脱盐率降低。
这是因为温度上升,盐的扩散速度就会增大的原因。
pH依存性进水pH值对膜分离性能有较大影响,但对于不同的膜材质和原水水质有一定差别。
采用氯化钠测试溶液, CPA3膜的pH依存性如图-9所示。
聚酰胺系列的反渗透膜是拥有氨基(-NH2)和羧基(-COOH)的两性电荷膜。
在低pH值时,膜面电位比等电点(膜电位图-8 给水温度对透水量及脱盐率的影响膜元件CPA3-8040 操作压力1.55MPa 回收率15%图-9 pH对透水量及脱盐率的影响CPA3-8040 原水浓度1500mg/L 操作压力1.55MPa 回收率15% 温度25℃图-10 操作压力对透水量及脱盐率的影响膜元件CPA3-8040 原水浓度氯化钠1500ppm 回收率15%图-11 浓水流量对透水量及脱盐率的影响CPA3-8040 原水浓度1500mg/L 操作压力1.55MPa 温度25℃=0)要高,氨基吸收质子(-NH2+ H+ = -NH3+),膜表面现正电性;在高pH值时,膜面电位比等电点要低,羧基失去质子(COOH = COO- + H+)表现为阴性。