第3章Hadoop分布式文件系统
- 格式:pptx
- 大小:1.15 MB
- 文档页数:32
Hadoop分布式⽂件系统(HDFS)详解HDFS简介:当数据集的⼤⼩超过⼀台独⽴物理计算机的存储能⼒时,就有必要对它进⾏分区 (partition)并存储到若⼲台单独的计算机上。
管理⽹络中跨多台计算机存储的⽂件系统成为分布式⽂件系统 (Distributed filesystem)。
该系统架构于⽹络之上,势必会引⼊⽹络编程的复杂性,因此分布式⽂件系统⽐普通磁盘⽂件系统更为复杂。
HDFS是基于流数据模式访问和处理超⼤⽂件的需求⽽开发的,它可以运⾏于廉价的商⽤服务器上。
总的来说,可以将 HDFS的主要特点概括为以下⼏点:(1 )处理超⼤⽂件这⾥的超⼤⽂件通常是指数百 MB、甚⾄数百TB ⼤⼩的⽂件。
⽬前在实际应⽤中, HDFS已经能⽤来存储管理PB(PeteBytes)级的数据了。
在 Yahoo!,Hadoop 集群也已经扩展到了 4000个节点。
(2 )流式地访问数据HDFS的设计建⽴在更多地响应“⼀次写⼊,多次读取”任务的基础之上。
这意味着⼀个数据集⼀旦由数据源⽣成,就会被复制分发到不同的存储节点中,然后响应各种各样的数据分析任务请求。
在多数情况下,分析任务都会涉及数据集中的⼤部分数据,也就是说,对HDFS 来说,请求读取整个数据集要⽐读取⼀条记录更加⾼效。
(3 )运⾏于廉价的商⽤机器集群上Hadoop设计对硬件需求⽐较低,只须运⾏在廉价的商⽤硬件集群上,⽽⽆须昂贵的⾼可⽤性机器上。
廉价的商⽤机也就意味着⼤型集群中出现节点故障情况的概率⾮常⾼。
这就要求在设计 HDFS时要充分考虑数据的可靠性、安全性及⾼可⽤性。
正是由于以上的种种考虑,我们会发现现在的 HDFS在处理⼀些特定问题时不但没有优势,⽽且有⼀定的局限性,主要表现在以下⼏个⽅⾯。
(1 )不适合低延迟数据访问如果要处理⼀些⽤户要求时间⽐较短的低延迟应⽤请求,则 HDFS不适合。
HDFS 是为了处理⼤型数据集分析任务的,主要是为达到⾼的数据吞吐量⽽设计的,这就可能要求以⾼延迟作为代价。
Hadoop大数据技术实验指导书第一章实验概述1.1 实验目的本实验旨在全面了解Hadoop大数据技术的相关概念、架构和使用方法,通过实际操作掌握Hadoop大数据技术的基本应用和管理技能。
1.2 实验内容本实验内容包括Hadoop大数据技术的基本概念、HDFS分布式文件系统的搭建和管理、MapReduce分布式计算框架的使用、Hadoop 生态系统的其他相关工具等。
1.3 实验环境本实验采用Ubuntu 18.04操作系统,Hadoop版本为3.1.3,Java 版本为1.8。
1.4 实验预备知识对Linux操作系统的基本操作有一定了解,对Java编程语言有一定的基础认识,了解分布式系统和大数据概念。
第二章 Hadoop基础概念2.1 Hadoop概述Hadoop是一个开源的分布式计算框架,用于存储和处理大规模数据。
Hadoop项目由Apache软件基金会开发,主要包括Hadoop分布式文件系统(HDFS)和MapReduce分布式计算框架。
2.2 Hadoop架构Hadoop架构包括HDFS、MapReduce和YARN(资源调度和管理),HDFS负责数据的存储和管理,MapReduce负责数据的计算和处理,YARN负责集裙资源的调度和管理。
2.3 Hadoop生态系统除了HDFS和MapReduce,Hadoop生态系统还包括其他相关工具,如HBase(分布式数据库)、Hive(数据仓库)、Pig(数据分析)、Spark(内存计算框架)等。
第三章 HDFS分布式文件系统实验3.1 HDFS搭建1) 准备Hadoop安装包,解压到指定目录2) 配置hadoop-env.sh文件,设置JAVA_HOME环境变量3) 配置core-site.xml和hdfs-site.xml文件,设置Hadoop集裙的基本信息和存储路径3.2 HDFS管理1) 使用命令行工具上传、下载、删除文件2) 查看HDFS存储空间情况3) 监控HDFS集裙状态第四章 MapReduce分布式计算实验4.1 MapReduce程序编写1) 编写Map阶段的程序2) 编写Reduce阶段的程序3) 编译打包MapReduce程序4.2 MapReduce作业提交与监控1) 将MapReduce程序提交到Hadoop集裙2) 查看作业运行状态和日志3) 监控作业的运行情况第五章 Hadoop生态系统实验5.1 HBase实验1) 安装HBase并配置2) 创建HBase表并进行CRUD操作3) 监控HBase集裙状态5.2 Hive实验1) 安装Hive并配置2) 创建Hive表并进行数据查询3) 执行HiveQL语句进行数据分析5.3 Spark实验1) 安装Spark并配置2) 编写Spark应用程序3) 提交Spark应用程序到集裙运行结语通过本实验指导书的学习,相信读者对Hadoop大数据技术有了更深入的了解,掌握了HDFS的搭建与管理、MapReduce的编程与作业监控、Hadoop生态系统的应用等相关技能。
《大数据技术基础》课程教学大纲一、课程基本信息课程代码:16176903课程名称:大数据技术基础英文名称:Fundamentals of Big Data Technology课程类别:专业课学时:48学分:3适用对象: 软件工程,计算机科学与技术,大数据管理考核方式:考核先修课程:计算机网络,云计算基础,计算机体系结构,数据库原理,JA V A/Python 程序设计二、课程简介当前在新基建和数字化革命大潮下,各行各业都在应用大数据分析与挖掘技术,并紧密结合机器学习深度学习算法,可为行业带来巨大价值。
这其中大数据处理与开发框架等大数据技术是进行数字化,数智化应用建设的核心和基础,只有努力提升大数据处理与开发技术与性能,建立行业数字化和智能化转型升级才能成功。
大数据处理与开发技术是新基建和数字化革命核心与基础。
大数据技术基础课程,为学生搭建起通向“大数据知识空间”的桥梁和纽带,以“构建知识体系、阐明基本原理、引导初级实践、了解相关应用”为原则,为学生在大数据领域“深耕细作”奠定基础、指明方向。
课程将系统讲授大数据的基本概念、大数据处理架构Hadoop、分布式文件系统HDFS、分布式数据库HBase、NoSQL数据库、云数据库、分布式并行编程模型MapReduce、基于内存的大数据处理架构Spark、大数据在互联网、生物医学和物流等各个领域的应用。
在Hadoop、HDFS、HBase、MapReduce、Spark等重要章节,安排了入门级的实践操作,让学生更好地学习和掌握大数据关键技术。
同时本课程将介绍最前沿的业界大数据处理与开发技术和产品平台,包括阿里大数据服务平台maxcompute,华为大数据云服务平台FusionInsight,华为高性能分布式数据库集群GaussDB等业界最先进技术,以及国家大数据竞赛平台网站和鲸社区。
让学生学以致用,紧跟大数据领域最领先技术水平,同时,面对我国民族企业,头部公司在大数据领域取得的巨大商业成功与前沿技术成果应用产生强烈民族自豪感,为国家数字化经济与技术发展努力奋斗,勇攀知识高峰立下志向。
《Hadoop大数据技术原理与应用》课程教学大纲课程编号:3250578学分:4学分学时:72学时(其中:讲课学时36 上机学时:36)先修课程:《Linux基础》、《关系数据库基础》、《程序设计基础》、《Java面向对象编程》后续课程:Spark,《Python编程基础》、《Python数据分析与应用》适用专业:大数据应用技术一、课程的性质与目标《大数据应用开发》本课程是软件技术专业核心课程,大数据技术入门课程。
通过学习课程使得学生掌握大数据分析的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对Hadoop平台应用与开发的一般理论有所了解,如分布式数据收集、分布式数据存储、分布式数据计算、分布式数据展示。
开设本学科的目的是让学生掌握如何使用大数据分析技术解决特定业务领域的问题。
完成本课程学习后能够熟练的应用大数据技术解决企业中的实际生产问题。
二、教学条件要求操作系统:Center OSHadoop版本:Hadoop2.7.4开发工具:Eclipse三、课程的主要内容及基本要求第1章初识Hadoop第2章构建Hadoop集群第3章 HDFS分布式文件系统第4章 MapReduce分布式计算系统第5章 Zookeeper分布式协调服务第6章 Hadoop2.0新特性第7章 Hive数据仓库第8章 Flume日志采集系统第9章 Azkaban工作流管理器第10章 Sqoop数据迁移第11章综合项目——网站流量日志数据分析系统四、学时分配五、考核模式与成绩评定办法本课程为考试课程,期末考试采用百分制的闭卷考试模式。
学生的考试成绩由平时成绩(30%)和期末考试(70%)组成,其中,平时成绩包括出勤(5%)、作业(5%)、上机成绩(20%)。
六、选用教材和主要参考书本大纲是参考教材《Hadoop大数据技术原理与应用》所设计的。
七、大纲说明本课程的授课模式为:课堂授课+上机,其中,课堂主要采用多媒体的方式进行授课,并且会通过测试题阶段测试学生的掌握程度;上机主要是编写程序,要求学生动手完成指定的程序设计或验证。
hadoop之分布式⽂件管理系统HDFS0.什么是HDFSHDFS(Hadoop Distributed File System),它是⼀个⽂件系统,⽤于存储⽂件,通过⽬录树来定位⽂件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各⾃的⾓⾊。
HDFS的使⽤场景:适合⼀次写⼊,多次读出的场景,且不⽀持⽂件的修改。
适合⽤来做数据分析,并不适合⽤来做⽹盘应⽤1.HDFS 的优缺点优点:⾼容错性(1)数据⾃动保存多个副本。
它通过增加副本的形式,提⾼容错性。
(2)某⼀个副本丢失以后,它可以⾃动恢复。
适合处理⼤数据,1)数据规模:能够处理数据规模达到GB、TB、甚⾄PB级别的数据;2)⽂件规模:能够处理百万规模以上的⽂件数量,数量相当之⼤。
可构建在廉价机器上,通过多副本机制,提⾼可靠性缺点:不适合低延时数据访问,⽐如毫秒级的存储数据,是做不到的⽆法⾼效的对⼤量⼩⽂件进⾏存储。
不⽀持并发写⼊、⽂件随机修改。
⼀个⽂件只能有⼀个写,不允许多个线程同时写;仅⽀持数据append(追加),不⽀持⽂件的随机修改2.HDFS的架构(1)NameNode:就是master他是⼀个主管,管理者。
管理HDFS的命名空间,配置副本信息,管理数据块映射信息,处理客户端读写请求。
(2)DataName:就是Slave,NameNode下达命令,DataNode执⾏实际的操作。
存储实际的数据块,执⾏数据块的读写操作(3)Client:就是客户端。
⽂件切分。
⽂件上传HDFS的时候,Client将⽂件切分成⼀个⼀个的Block,然后进⾏上传;与NameNode交互,获取⽂件的位置信息;与DataNode交互,读取或者写⼊数据;Client提供⼀些命令来管理HDFS,⽐如NameNode格式化;Client可以通过⼀些命令来访问HDFS,⽐如对HDFS增删查改操作;(4)Secondary NameNode,并⾮NameNode的热备。
《大数据技术与应用》
教案
20XX〜20XX学年第X学期
学院(部): _______________________________
教研室(系): _____________________________
授课班级: _________________________________
课程学分: _________________________________
课程学时: _________________________________
课程周学时: _______________________________
使用教材:大数据技术与应用-微视频版
•Hadoop系统的发展历程及其优点的介绍•Hadoop原理的介绍
在线帮助和相关资源
使用HBase提供的过滤类进行查询
owMatrix 类型(分布式矩阵)、IndexedRowMatrix 类型、Coordi nateMatrix 类型、BlockMatrix 类型
Hive组成模块,执行流程概述
Metastore存储模式
安装Hive,配置参数并运行测试
教学内容
Hive Beeline
了解基本数据类型与文件格式数据的定义,操作,查询
Hive编程
3、对于重点和难点,通过例题讨论讲解、师生互动、作业等来突出。
hadoop介绍讲解Hadoop是一个由Apache软件基金会开发的开源分布式系统。
它的目标是处理大规模数据集。
Hadoop可以更好地利用一组连接的计算机和硬件来存储和处理海量数据集。
Hadoop主要由Hadoop分布式文件系统(HDFS)和MapReduce两部分组成。
以下是hadoop的详细介绍。
1. Hadoop分布式文件系统(HDFS)HDFS是Hadoop的分布式文件系统。
HDFS将大量数据分成小块并在多个机器上进行存储,从而使数据更容易地管理和处理。
HDFS适合在大规模集群上存储和处理数据。
它被设计为高可靠性,高可用性,并且容错性强。
2. MapReduceMapReduce是Hadoop中的计算框架。
它分为两个阶段:Map和Reduce。
Map阶段将数据分为不同的片段,并将这些片段映射到不同的机器上进行并行处理,Reduce阶段将结果从Map阶段中得到,并将其组合在一起生成最终的结果。
MapReduce框架根据数据的并行处理进行拆分,而输出结果则由Reduce阶段组装而成。
3. Hadoop生态系统Hadoop是一个开放的生态系统,其包含了许多与其相关的项目。
这些项目包括Hive,Pig,Spark等等。
Hive是一个SQL on Hadoop工具,用于将SQL语句转换为MapReduce作业。
Pig是另一个SQL on Hadoop工具,它是一个基于Pig Latin脚本语言的高级并行运算系统,可以用于处理大量数据。
Spark是一个快速通用的大数据处理引擎,它减少了MapReduce 的延迟并提供了更高的数据处理效率。
4. Hadoop的优点Hadoop是一个灵活的、可扩展的与成本优势的平台,它可以高效地处理大规模的数据集。
同时,它的开放式和Modular的体系结构使得其在大数据环境下无论是对数据的处理还是与其他开发者的协作都非常便利。
5. 总结Hadoop是一个很好的大数据处理工具,并且在行业中得到了广泛的应用。
林子雨大数据技术原理及应用课后题答案大数据第一章大数据概述课后题 (1)大数据第二章大数据处理架构Hadoop课后题 (5)大数据第三章Hadoop分布式文件系统课后题 (10)大数据第四章分布式数据库HBase课后题 (16)大数据第五章NoSQl数据库课后题 (22)大数据第六章云数据库课后作题 (28)大数据第七章MapReduce课后题 (34)大数据第八章流计算课后题 (41)大数据第九章图计算课后题 (50)大数据第十章数据可视化课后题 (53)大数据第一章课后题——大数据概述1.试述信息技术发展史上的3次信息化浪潮及其具体内容。
第一次信息化浪潮1980年前后个人计算机开始普及,计算机走入企业和千家万户。
代表企业:Intel,AMD,IBM,苹果,微软,联想,戴尔,惠普等。
第二次信息化浪潮1995年前后进入互联网时代。
代表企业:雅虎,谷歌阿里巴巴,百度,腾讯。
第三次信息浪潮2010年前后,云计算大数据,物联网快速发展,即将涌现一批新的市场标杆企业。
2.试述数据产生方式经历的几个阶段。
经历了三个阶段:运营式系统阶段数据伴随一定的运营活动而产生并记录在数据库。
用户原创内容阶段Web2.0时代。
感知式系统阶段物联网中的设备每时每刻自动产生大量数据。
3.试述大数据的4个基本特征。
数据量大(Volume)据类型繁多(Variety)处理速度快(Velocity)价值密度低(Value)4.试述大数据时代的“数据爆炸”特性。
大数据摩尔定律:人类社会产生的数据一直都在以每年50%的速度增长,即每两年就增加一倍。
5.科学研究经历了那四个阶段?实验比萨斜塔实验理论采用各种数学,几何,物理等理论,构建问题模型和解决方案。
例如:牛一,牛二,牛三定律。
计算设计算法并编写相应程序输入计算机运行。
数据以数据为中心,从数据中发现问题解决问题。
6.试述大数据对思维方式的重要影响。
全样而非抽样效率而非精确相关而非因果7.大数据决策与传统的基于数据仓库的决策有什么区别?数据仓库以关系数据库为基础,在数据类型和数据量方面存在较大限制。
分布式存储系统及解决方案介绍1. Hadoop分布式文件系统(HDFS)HDFS是Apache Hadoop生态系统的一部分,是一个开源的分布式文件系统。
它是为大数据处理而设计的,采用了主从架构,其中一个节点是NameNode,负责管理文件系统的命名空间和文件块的映射关系;其他节点是DataNode,负责存储和提供数据。
HDFS采用了数据冗余的策略,数据会被复制到多个节点上,以实现容错性。
2. Ceph分布式存储系统Ceph是一个开源的分布式存储系统,它具有高可靠性、可扩展性和高性能。
Ceph采用了对象存储的方式,将数据存储为对象,并将对象划分为不同的PG(Placement Group)。
PG通过CRUSH算法映射到不同的OSD(Object Storage Device)上进行存储,实现数据的分布和负载均衡。
Ceph还支持数据的冗余备份和快照功能。
3. GlusterFS分布式文件系统GlusterFS是一个开源的分布式文件系统,它具有可伸缩性、弹性和高性能。
GlusterFS使用了横向扩展的方式,将多个存储节点聚合成一个统一的存储池。
客户端通过协议与存储池通信,并使用分布式Hash算法将文件分片存储在不同的节点上。
GlusterFS支持数据的冗余备份和快照功能。
4. Amazon S3分布式对象存储Amazon S3是亚马逊云计算平台(AWS)的一项服务,它是一个分布式对象存储系统。
S3采用了将数据分片存储在不同节点上的方式,实现了数据的可靠性和高可用性。
S3还提供了数据的备份和加密功能,并支持多个数据中心之间的异地备份。
以上是几种常见的分布式存储系统及其解决方案。
它们通过数据的分片、复制和备份,实现了高可用性、容错性和可扩展性。
不同的系统可根据具体的需求选择合适的解决方案。
Hadoop大数据处理技术与应用实践第一章简介Hadoop是一个由Apache开源组织开发的Java基础软件框架,用于可靠地存储和处理大规模数据集。
它可以处理来自不同来源的数据,这些数据可以是结构化或非结构化的形式。
Hadoop框架中核心的两个组件是Hadoop分布式文件系统(HDFS)和Hadoop MapReduce。
第二章 HDFSHDFS是一个分布式文件系统,它可以在多个物理机上存储文件。
在HDFS中,数据被分成块并在多台机器上复制以提高可靠性。
块的大小可以根据需要进行调整。
HDFS还提供了透明的数据访问和处理。
第三章 MapReduceHadoop MapReduce是一种计算模型,它可以将大规模数据集分解成小规模数据集。
每个小数据集可以在单独的计算节点上处理,并且可以在输出结果之前进行合并和整合。
MapReduce的目的是使数据处理并行化和可扩展化。
第四章 Hadoop应用实践Hadoop可以应用于许多不同的领域,例如:1.大数据分析:Hadoop可以对大数据集进行统计分析和数据挖掘,以提取有用的信息。
2.日志分析:Hadoop可以从大量日志文件中提取信息,以便分析应用程序的性能和排错。
3.推荐系统:Hadoop可以通过处理大量用户交互数据来构建个性化推荐系统。
4.大规模图像处理:Hadoop可以处理大型图像数据集,生成缩略图和其他有用的图像处理操作。
5.物联网:Hadoop可以处理来自传感器和其他IOT设备的数据,并提供实时反馈和控制。
第五章 Hadoop的未来Hadoop已经成为大数据处理和分析的事实标准,但是它也面临一些挑战。
随着数据集的增长,Hadoop的可扩展性成为关键问题。
虽然Hadoop可以横向扩展到成千上万台服务器,但它需要大量的管理和维护。
另外,Hadoop的安全性也需要进一步加强。
为了应对这些挑战,Hadoop社区已经开始研究一些新的技术,例如Apache Ignite、Apache Flink和Apache Spark。
1、(单选)采用多副本冗余存储的优势不包含(D)
A、加快数据传输速度
B、容易检查数据错误
C、保证数据可靠性
D、节约存储空间
2、(单选)下面关于分布式文件系统HDFS的描述正确的是:(A)
A、分布式文件系统HDFS是谷歌分布式文件系统GFS(Google File System)的一种开源实现
B、分布式文件系统HDFS比较适合存储大量零碎的小文件
C、分布式文件系统HDFS是Google Bigtable的一种开源实现
D、分布式文件系统HDFS是一种关系型数据库
3、(单选)以下对数据节点理解错误的是( B )
A、数据节点在名称节点的统一调度下进行数据块的创建、删除和复制等操作
B、数据节点通常只有一个
C、数据节点用来存储具体的文件内容
D、数据节点的数据保存在磁盘中
4、(多选)下列关于HDFS对文件分块存储的作用描述正确的是(ABCD)
A、有利于负载均衡
B、便于并行处理
C、最小化寻址开销
D、支持大规模文件存储
5、(多选)HDFS只设置一个名称节点带来的局限性包括(ABCD)
A、隔离问题
B、命名空间的限制
C、性能的瓶颈
D、集群的可用性。
1-2章Hadoop和MapReduce概述1.基本组成Hadoop-0.20.0以前Core---- 一系列分布式文件系统和通用I/O的组件和接口(序列化、Java RPC和持久化数据结构)Avro---- 一种提供高效、跨语言PRC的数据序列化系统,持久化数据存储。
MapReduce----分布式数据处理模式和执行环境,运行于大型商用机集群;HDFS----分布式文件系统,运行于大型商用机集群;ZooKeeper----一个分布式的、高可用性的协调服务;Pig---- 一种数据流语言和运行环境,用以检索非常大的数据集,运行在MapReduce和HDFS集群上;Chukwa------ 分布式数据收集和分析系统;Hive--- 分布式数据仓库,Hive管理HDFS中存储的数据,并提供基于SQL的查询语言用以查询数据;Hbase---- -一个分布式的、列存储数据库。
HBase使用HDFS作为底层存储,同时支持MapReduce的批量式计算和点查询。
2. MapReduce执行作业流程①指定作业的各种参数;②指定输入、输出路径;③指定Map和Reduce类;④指定Map和Reduce的输出类型;⑤运行作业。
第3章Hadoop分布式文件系统3-1 文件读取3-2 文件写入第4章Hadoop的I/O1.读取存储在HDFS上的文件时,为了加快速度可以禁用校验和;2.文件的压缩支持多种格式,比如zip、gzip、bzip2等;3.序列化-----将结构化的对象转为字节流以便于通过网络进行传输或者写入持久存储的过程。
反序列化------将字节流转为一系列结构化对象的过程。
Hadoop自己的序列化格式为Writables,紧凑、快速,但不易扩展java以外的语言,MapReduce程序使用Writables来序列化key/value对。
此外,short和char类型均可存储在IntWritable中;4.文件的容器SequenceFile类和MapFile类,共同点是两者都是按key排序的,区别是后者有索引。