2014届高三数学(理)第一轮《直线、平面平行的判定及性质》
- 格式:ppt
- 大小:6.34 MB
- 文档页数:43
2014届高考数学理科试题大冲关:直线、平面平行的判定及性质一、选择题1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 ( ) A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α2.如图边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE是△ADE绕DE旋转过程中的一个图形,则下列命题中正确的是 ( )①动点A′在平面ABC上的射影在线段AF上;②BC∥平面A′DE;③三棱锥A′FED的体积有最大值.A.①B.①②C.①②③D.②③3.设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n ⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β, m⊂γ.可以填入的条件有 ( ) A.①或②B.②或③C.①或③D.①或②或③4.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面,其中使“x⊥z且y⊥z⇒x∥y”为真命题的是 ( )A.③④B.①③C.②③D.①②5.已知m,n是两条不同的直线,α,β是两个不同的平面,有下列命题:①若m⊂α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;③若m⊥α,m⊥n,则n∥α;其中真命题的个数是 ( ) A.1 B.2C.3 D.06.若α、β是两个相交平面,点A不在α内,也不在β内,则过点A且与α和β都平行的直线( ) A .只有1条B .只有2条C .只有4条D .有无数条二、填空题 7.已知l ,m 是两条不同的直线,α,β是两个不同的平面,下列命题:①若l ⊂α,m ⊂α,l ∥β,m ∥β,则α∥β;②若l ⊂α,l ∥β,α∩β=m ,则l ∥m ;③若α∥β,l ∥α,则l ∥β;④若l ⊥α,m ∥l ,α∥β,则m ⊥β.其中真命题是________(写出所有真命题的序号).8.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =____________.9.已知a 、b 、l 表示三条不同的直线,α、β、γ表示三个不同的平面,有下列四个命题:①若α∩β=a ,β∩γ=b ,且a ∥b ,则α∥γ;②若a 、b 相交,且都在α、β外,a ∥α,a ∥β,b ∥α,b ∥β,则α∥β;③若α⊥β,α∩β=a ,b ⊂β,a ⊥b ,则b ⊥α;④若a ⊂α,b ⊂α,l ⊥a ,l ⊥b ,则l ⊥α.其中正确命题的序号是________.三、解答题10.如图,在正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1、BC 1上分别有两点E 、F ,且B 1E =C 1F .求证:EF ∥平面ABCD .11.如图,已知α∥β,异面直线AB 、CD 和平面α、β分别交于A、B、C、D四点,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)E、F、G、H共面;(2)平面EFGH∥平面α.12.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE∶ED=2∶1,在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.详解答案一、选择题1.解析:l∥α时,直线l上任意点到α的距离都相等,l⊂α时,直线l上所有的点到α的距离都是0,l⊥α时,直线l上有两个点到α距离相等,l与α斜交时,也只能有两点到α距离相等.答案:D2. 解析:①中由已知可得面A′FG⊥面ABC,∴点A′在面ABC上的射影在线段AF上.②BC∥DE,∴BC∥平面A′DE.③当面A′DE⊥面ABC时,三棱锥A′FED的体积达到最大.答案:C3.解析:由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.答案:C4.解析:根据空间中的直线、平面的位置关系的判断方法去筛选知②、③正确.答案:C5.解析:①错,两直线可平行或异面;②两平面可相交,只需直线m 平行于两平面的交线即可,故命题错误;③错,直线n 可在平面内;答案:D6.解析:据题意如图,要使过点A 的直线m 与平面α平行,则据线面平行的性质定理得经过直线m 的平面与平面α的交线n 与直线m 平行,同理可得经过直线m 的平面与平面β的交线k 与直线m 平行,则推出n∥k ,由线面平行可进一步推出直线n 与直线k 与两平面α与β的交线平行,即要满足条件的直线m 只需过点A 且与两平面交线平行即可,显然这样的直线有且只有一条.答案:A二、填空题7.解析:当l ∥m 时,平面α与平面β不一定平行,①错误;由直线与平面平行的性质定理,知②正确;若α∥β,l ∥α,则l ⊂β或l ∥β,③错误;∵l ⊥α,l ∥m ,∴m ⊥α,又α∥β,∴m ⊥β,④正确,故填②④.答案:②④8.解析:∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a 3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a . 答案:223a 9.解析:①如图,在正方体ABCD -A 1B 1C 1D 1中,可令平面A 1B 1CD 为α,平面DCC 1D 1为β,平面A 1B 1C 1D 1为γ,又平面A 1B 1CD ∩平面DCC 1D 1=CD ,平面A 1B 1C 1D 1∩平面DCC 1D 1=C 1D 1,则CD 与C 1D 1所在的直线分别表示a ,b ,因为CD ∥C 1D 1,但平面A 1B 1CD 与平面A 1B 1C 1D 1不平行,即α与γ不平行,故①错误.②因为a 、b 相交,假设其确定的平面为γ,根据a ∥α,b ∥α,可得γ∥α.同理可得γ∥β,因此α∥β,②正确.③由两平面垂直,在一个平面内垂直于交线的直线和另一个平面垂直,易知③正确.④当a ∥b 时,l 垂直于平面α内两条不相交直线,不可得出l ⊥α,④错误.答案:②③三、解答题10. 证明:分别过E 、F 作EM ∥BB 1,FN ∥CC 1,分别交AB 、BC 于点M 、N ,连结MN . 因为BB 1∥CC 1,所以EM ∥FN .因为B 1E =C 1F ,AB 1=BC 1,所以AE =BF .由EM ∥BB 1得AEAB 1=EM BB 1,由FN ∥CC 1得BFBC 1=FN CC 1.所以EM =FN ,于是四边形EFNM 是平行四边形.所以EF ∥MN .又因为MN ⊂平面ABCD ,所以EF ∥平面ABCD .11. 证明:(1)∵E 、H 分别是AB 、DA 的中点,∴EH ∥BD 且EH =12BD .同理,FG ∥BD 且FG =12BD ,∴FG ∥EH 且FG =EH .∴四边形EFGH 是平行四边形,即E 、F 、G 、H 共面.(2)平面ABD 和平面α有一个公共点A ,设两平面交于过点A 的直线AD ′.∵α∥β,∴AD ′∥BD .又∵BD ∥EH ,∴EH ∥BD ∥AD ′.∴EH ∥平面α,同理,EF ∥平面α,又EH ∩EF =E ,EH ⊂平面EFGH ,EF ⊂平面EFGH ,∴平面EFGH ∥平面α.12.证明:存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD . 设BD ∩AC =O .连接BF ,MF ,BM ,OE .∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD 的中点,∴MF∥EC,BM∥OE.∵MF⊄平面AEC,CE⊂平面AEC,BM⊄平面AEC,OE⊂平面AEC,∴MF∥平面AEC,BM∥平面AEC.∵MF∩BM=M,∴平面BMF∥平面AEC.又BF⊂平面BMF,∴BF∥平面AEC.。
直线、平面平行的判定与性质2014高考会这样考 1.考查空间平行关系的判定及性质有关命题的判定;2.解答题中证明或探索空间的平行关系.复习备考要这样做 1.熟练掌握线面平行、面面平行的判定定理和性质,会把空间问题转化为平面问题,解答过程的叙述步骤要完整,避免因条件书写不全而失分;2.学会应用“化归思想”进行“线线问题、线面问题、面面问题”的互相转化,牢记解决问题的根源在“定理”.知识点梳理1.直线与平面平行的判定与性质2.[1.证明线面平行是高考中常见的问题,常用的方法就是证明这条线与平面内的某条直线平行.但一定要说明一条直线在平面外,一条直线在平面内.2.在判定和证明直线与平面的位置关系时,除熟练运用判定定理和性质定理外,切不可丢弃定义,因为定义既可作判定定理使用,亦可作性质定理使用.3.辅助线(面)是解(证)线面平行的关键.为了能利用线面平行的判定定理及性质定理,往往需要作辅助线(面).基础自测1.已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α.上面命题中正确的是________(填序号).2.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的____________条件.3.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.4.(2011·浙江)若直线l不平行于平面α,且l⊄α,则() A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交5.(2012·四川)下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行题型分类题型一直线与平面平行的判定与性质例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.思维启迪:证明直线与平面平行可以利用直线与平面平行的判定定理,也可利用面面平行的性质.如图,在四棱锥P—ABCD中,底面ABCD是菱形,∠BAD =60°,AB=2,P A=1,P A⊥平面ABCD,E是PC的中点,F是AB的中点.求证:BE∥平面PDF.证明取PD中点为M,连接ME,MF,题型二平面与平面平行的判定与性质例2如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.思维启迪:要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.探究提高证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.题型三平行关系的综合应用例3如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?思维启迪:利用线面平行的性质可以得到线线平行,可以先确定截面形状,再建立目标函数求最值.探究提高利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?立体几何中的探索性问题B1C1D1中,E是棱DD1的典例:(12分)如图所示,在正方体ABCD—A中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.审题视角(1)可过E作平面ABB1A1的垂线、作线面角;(2)先探求出点F,再进行证明B1F∥平面A1BE.注意解题的方向性.规范解答方法与技巧1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.随堂练A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知直线a,b,c及平面α,β,下列条件中,能使a∥b成立的是()A .a ∥α,b ⊂αB .a ∥α,b ∥αC .a ∥c ,b ∥cD .a ∥α,α∩β=b3. 在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .平行和异面C .平行和相交D .异面和相交4. 设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( )A .若m ∥α,m ∥n ,则n ∥αB .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥βC .若α∥β,m ∥α,m ∥n ,则n ∥βD .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β 二、填空题(每小题5分,共15分)5. 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. 如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边 形EFGH 及其内部运动,则M 满足条件______________时,有 MN ∥平面B 1BDD 1.三、解答题(共22分)8. (10分)如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面,交平面BDM 于GH . 求证:P A ∥GH .9. (12分)如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F—ABCD的体积.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是() A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l22.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④3.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为() A.3 B.2 C.1 D.0m∥n,正确.二、填空题(每小题5分,共15分)4.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D且P A=6,AC=9,PD=8,则BD的长为________.5. 一个正方体的展开图如图所示,B、C、D为原正方体的顶点,A为原正方体一条棱的中点.在原来的正方体中,CD与AB所成角的余弦值为________.6.已知正方体ABCD-A1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.三、解答题7.(13分)如图,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A—PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.。
第四节直线、平面平行的判定及其性质[全盘巩固]1.平面α∥平面β,点A,C∈α,点B,D∈β,则直线AC∥直线BD的充要条件是() A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面解析:选D充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.2.(2014·嘉兴模拟)设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件解析:选A A错误,应为既不充分也不必要条件,B,C,D易知均正确,故选A.3.在空间中,下列命题正确的是()A.若a∥α,b∥a,则b∥αB.若a∥α,b∥α,a⊂β,b⊂β,则α∥βC.若α∥β,b∥α,则b∥βD.若α∥β,a⊂α,则a∥β解析:选D若a∥α,b∥a,则b∥α或b⊂α,故选项A错误;B中当a∥b时,α、β可能相交,故选项B错误;若α∥β,b∥α,则b∥β或b⊂β,故选项C错误;选项D为两平面平行的性质,故选D.4.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A.3 B.2 C.1 D.0解析:选C当异面直线l、m满足l⊂α,m⊂β时,α、β也可以相交,故①错;若α∥β,l⊂α,m⊂β,则l、m平行或异面,故②错;如图所示,设几何体三个侧面分别为α、β、γ.交线为l、m、n,若l∥γ,则l∥m,l∥n,则m∥n,故③正确.5. 如图所示,正方体ABCD-A1B1C1D1中,E、F分别为棱AB、CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A .不存在B .有1条C .有2条D .有无数条解析:选D 平面ADD 1A 1与平面D 1EF 有公共点D 1,由平面的基本性质中的公理知必有过该点的公共线l ,在平面ADD 1A 1内与l 平行的线有无数条,且它们都不在平面D 1EF 内,由线面平行的判定定理知它们都与平面D 1EF 平行,故选D.6.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A .①③B .①④C .②③D .②④解析:选B ①如图1,由平面ABC ∥平面MNP ,可得AB ∥平面MNP . 图1 图2④如图2,由AB ∥CD ,CD ∥NP ,得AB ∥NP ,又AB ⊄平面MNP ,NP ⊂平面MNP ,所以AB ∥平面MNP .7.在四面体A -BCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.解析:如图所示,取CD 的中点E .则EM ∶MA =1∶2,EN ∶BN =1∶2,所以MN ∥AB .又MN ⊄平面ABD ,MN ⊄平面ABC ,AB ⊂平面ABD ,AB ⊂平面ABC , 所以MN ∥平面ABD ,MN ∥平面ABC .答案:平面ABD 与平面ABC8.(2014·台州模拟)考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l ,m 为不同直线,α、β为不重合平面),则此条件为________.① ⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α;③⎭⎪⎬⎪⎫l⊥βα⊥β⇒l∥α.解析:线面平行的判定中指的是平面外的一条直线和平面内的一条直线平行,故此条件为:l⊄α.答案:l⊄α9.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题:①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.其中真命题的是________(写出所有真命题的序号).解析:当l∥m时,平面α与平面β不一定平行,①错误;由直线与平面平行的性质定理,知②正确;若α∥β,l∥α,则l⊂β或l∥β,③错误;∵l⊥α,l∥m,∴m⊥α,又α∥β,∴m⊥β,④正确,故填②④.答案:②④10. 在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,三角形CDE是等边三角形,棱EF∥BC且EF=12BC.求证:FO∥平面CDE.证明:如图所示,取CD中点M,连接OM,EM,在矩形ABCD中,OM∥BC且OM=12BC,又EF∥BC且EF=12BC,则EF∥OM且EF=OM.所以四边形EFOM为平行四边形,所以FO∥EM.又因为FO⊄平面CDE,EM⊂平面CDE,所以FO∥平面CDE.11. 如图所示,直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC =90°,AB=2AD=2CD=2.(1)证明:AC⊥平面BB1C1C;(2)在A1B1上是否存在一点P,使得DP与平面ACB1平行?证明你的结论.解:(1)证明:在直棱柱ABCD-A1B1C1D1中,BB1⊥平面ABCD,∴BB1⊥AC.又∵∠BAD=∠ADC=90°,AB=2AD=2CD=2,∴AC=2,∠CAB=45°,在△ABC中,由余弦定理可得BC=AC2+AB2-2AC·AB·cos∠CAB= 2.∴BC2+AC2=AB2,∴BC⊥AC.又BB1∩BC=B,BB1,BC⊂平面BB1C1C,∴AC⊥平面BB1C1C.(2)存在点P ,P 为A 1B 1的中点可满足要求.由P 为A 1B 1的中点,有PB 1∥AB ,且PB 1=12AB , 又∵CD ∥AB 且CD =12AB ,∴CD ∥PB 1且CD =PB 1,∴CDPB 1为平行四边形, ∴DP ∥CB 1.又CB 1⊂平面ACB 1,DP ⊄平面ACB 1,∴DP ∥平面ACB 1.12. 如图所示,在正四棱锥P -ABCD 中,底面是边长为2的正方形,侧棱P A =6,E 为BC 的中点,F 为侧棱PD 上的一动点.(1)求证:AC ⊥BF ;(2)当直线PE ∥平面ACF 时,求三棱锥F -ACD 的体积. 解:(1)证明:连接BD ,设AC ∩BD =O ,连接PO ,则PO ⊥平面ABCD .∴AC ⊥PO .∵四边形ABCD 为正方形,∴AC ⊥BD .又BD ∩PO =O ,BD ,PO ⊂平面PBD ,∴AC ⊥平面PBD .又BF ⊂平面PBD ,∴AC ⊥BF .(2)连接DE ,交AC 于点G ,连接FG .∵PE ∥平面ACF ,∴PE ∥FG ,∴DG DE =DF DP. 又CE =12BC =12AD ,BC ∥AD ,∴CE AD =GE DG =12,∴DG DE =23,∴DF DP =23. 过F 作FH ⊥DB ,垂足为H ,则FH ∥OP ,∴FH OP =DF DP =23,∴FH =23OP , ∵正方形ABCD 的边长为2,∴AO = 2.∴OP =P A 2-AO 2=2.∴FH =43.∴三棱锥F -ACD 的体积V F -ACD =13S △ACD ·FH =13×12×22×43=89. [冲击名校]如图所示,在棱长均为4的三棱柱ABC -A 1B 1C 1中,D ,D 1分别是BC 和B 1C 1的中点.(1)求证:A 1D 1∥平面AB 1D ;(2)若平面ABC ⊥平面BCC 1B 1,∠B 1BC =60°,求三棱锥B 1-ABC 的体积.解:(1)证明:如图所示,连接DD 1, 在三棱柱ABC -A 1B 1C 1中,因为D ,D 1分别是BC 与B 1C 1的中点,所以B 1D 1∥BD 且B 1D 1=BD .所以四边形B 1BDD 1为平行四边形,所以BB 1∥DD 1,且BB 1=DD 1.又因为AA 1∥BB 1,且AA 1=BB 1,所以AA 1∥DD 1,且AA 1=DD 1,所以四边形AA 1D 1D 为平行四边形,所以A 1D 1∥AD .又A 1D 1⊄平面AB 1D ,AD ⊂平面AB 1D ,所以A 1D 1∥平面AB 1D .(2)在△ABC 中,因为AB =AC ,D 为BC 的中点,所以AD ⊥BC .因为平面ABC ⊥平面BCC 1B 1,且交线为BC ,AD ⊂平面ABC ,所以AD ⊥平面BCC 1B 1,即AD 是三棱锥A -B 1BC 的高.在△ABC 中,由AB =AC =BC =4,得AD =2 3.在△B 1BC 中,B 1B =BC =4,∠B 1BC =60°,所以S △B 1BC =34×42=43, 所以三棱锥B 1-ABC 的体积,即三棱锥A -B 1BC 的体积V =13S △B 1BC ×AD =13×43×23=8. [高频滚动]1.α、β、γ是三个平面,a 、b 是两条直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填上你认为正确的所有序号).解析:①a ∥γ,a ⊂β,b ⊂β,β∩γ=b ⇒a ∥b (线面平行的性质).②如图所示,在正方体中,α∩β=a ,b ⊂γ,a ∥γ,b ∥β,而a 、b 异面,故②错. ③b ∥β,b ⊂γ,a ⊂γ,a ⊂β,β∩γ=a ⇒a ∥b (线面平行的性质).答案:①③2.过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.解析:过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC、BC、A1C1、B1C1的中点分别为E、F、E1、F1,则直线EF、E1F1、EE1、FF1、E1F、EF1均与平面ABB1A1平行,故符合题意的直线共有6条.答案:6。
第3讲直线、平面平行的判定与性质一、知识梳理1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,aα,l⊆/α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,lβ,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,aα,bα,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线因为α∥β,α∩γ=a,β∩γ=b,平行所以a∥b常用结论牢记线面平行、面面平行的七个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)夹在两个平行平面之间的平行线段长度相等.(4)经过平面外一点有且只有一个平面与已知平面平行.(5)两条直线被三个平行平面所截,截得的对应线段成比例.(6)如果两个平面分别平行于第三个平面,那么这两个平面互相平行.(7)如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.二、教材衍化1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊆/α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,bα,cα,所以b∥α.2.平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,aα,a∥βC.存在两条平行直线a,b,aα,bβ,a∥β,b∥αD.存在两条异面直线a,b,aα,bβ,a∥β,b∥α解析:选D.若α∩β=l,a∥l,aα,aβ,a∥α,a∥β,故排除A.若α∩β=l,aα,a∥l,则a∥β,故排除B.若α∩β=l,aα,a∥l,bβ,b∥l,则a∥β,b∥α,故排除C.3.如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.解析:连接BD,设BD∩AC=O,连接EO,在△BDD1中,E为DD1的中点,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊆/平面ACE,EO平面ACE,所以BD1∥平面ACE.答案:平行一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()答案:(1)×(2)×(3)×(4)√(5)×(6)×二、易错纠偏常见误区|K(1)对空间平行关系的转化条件理解不够致误;(2)对面面平行判定定理的条件“平面内两相交直线”认识不清致误;(3)对面面平行性质定理理解不深致误.1.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一的与a平行的直线解析:选A.当直线a在平面β内且过B点时,不存在与a平行的直线.故选A.2.下列条件中,能判断两个平面平行的是________.①一个平面内的一条直线平行于另一个平面;②一个平面内的两条直线平行于另一个平面;③一个平面内有无数条直线平行于另一个平面;④一个平面内任何一条直线都平行于另一个平面.解析:由两个平面平行的判定定理可知,如果一个平面内的两条相交直线与另外一个平面平行,那么这两个平面平行.显然只有④符合条件.答案:④3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形线面平行的判定与性质(多维探究)角度一直线与平面平行的判定如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1的中点.(1)证明:AD1∥平面BDC1;(2)证明:BD∥平面AB1D1.【证明】(1)因为D1,D分别为A1C1,AC的中点,四边形ACC1A1为平行四边形,所以C1D1綊DA,所以四边形ADC1D1为平行四边形,所以AD1∥C1D,又AD1⊆/平面BDC1,C1D平面BDC1,所以AD1∥平面BDC1.(2)连接D1D,因为BB1∥平面ACC1A1,BB1平面BB1D1D,平面ACC1A1∩平面BB1D1D=D1D,所以BB1∥D1D,又因为D1,D分别为A1C1,AC的中点,所以DD1綊AA1,所以BB1=AA1=DD1,故四边形BDD1B1为平行四边形,所以BD∥B1D1,又BD⊆/平面AB1D1,B1D1平面AB1D1,所以BD∥平面AB1D1.角度二直线与平面平行的性质如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC ∥平面GEFH.(1)证明:GH∥EF;(2)若EB =2,求四边形GEFH 的面积.【解】 (1)证明:因为BC ∥平面GEFH ,BC 平面PBC ,且平面PBC ∩平面GEFH=GH ,所以GH ∥BC .同理可证EF ∥BC , 因此GH ∥EF .(2)连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK . 因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面ABCD 内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊆/平面GEFH ,所以PO ∥平面GEFH .因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,所以GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,且G 是PB 的中点,所以GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3. 易得EF =BC =8,故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a ⊆/α,b α,a ∥b ⇒a ∥α).(3)利用面面平行的性质定理(α∥β,aα⇒a ∥β).(4)利用面面平行的性质(α∥β,a ⊆/α,a ⊆/β,a ∥α⇒a ∥β).1.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )解析:选A.对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊆/平面MNQ ,MQ 平面MNQ ,所以AB ∥平面MNQ .同理可证选项C ,D 中均有AB ∥平面MNQ .故选A.2.如图,四棱锥P -ABCD 中AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .证明:(1)连接EC ,因为AD ∥BC ,BC =12AD ,所以BC 綊AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP , FO平面BEF ,AP ⊆/平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,所以FH ∥平面P AD . 又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,所以OH ∥平面P AD . 又FH ∩OH =H , 所以平面OHF ∥平面P AD . 又因为GH平面OHF ,所以GH ∥平面P AD .面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊆/平面BCHG,BC平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G綊EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊆/平面BCHG,GB平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊆/平面A1B1BA,A1B平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B平面A1BD1,DM⊆/平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊆/平面A1BD1,BD1平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM平面AC1D,所以平面A1BD1∥平面AC1D.证明面面平行的常用方法(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用垂直于同一条直线的两个平面平行.(4)如果两个平面同时平行于第三个平面,那么这两个平面平行.(5)利用“线线平行”“线面平行”“面面平行”的相互转化进行证明.1.如图,AB ∥平面α∥平面β,过A ,B 的直线m ,n 分别交α,β于C ,E 和D ,F ,若AC =2,CE =3,BF =4,则BD 的长为( )A.65 B .75C.85D .95解析:选C.由AB ∥α∥β,易证 AC CE =BD DF .即AC AE =BD BF, 所以BD =AC ·BF AE =2×45=85.2.如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E ,F ,G 分别是BC ,DC ,SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1. 证明:(1)如图,连接SB ,因为E ,G 分别是BC ,SC 的中点, 所以EG ∥SB .又因为SB平面BDD 1B 1,EG ⊆/平面BDD 1B 1, 所以直线EG ∥平面BDD 1B 1. (2)连接SD ,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD平面BDD1B1,FG⊆/平面BDD1B1,所以FG∥平面BDD1B1,又EG平面EFG,FG平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B1.平行关系中的探索性问题(师生共研)如图,已知斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点.(1)当A1D1D1C1等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求ADDC的值.【解】(1)如图,取D1为线段A1C1的中点,此时A1D1D1C1=1,连接A1B交AB1于点O,连接OD1.由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1∥BC1.又因为OD1平面AB1D1,BC1⊆/平面AB1D1,所以BC 1∥平面AB 1D 1. 所以当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由已知,平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BDC 1=BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O . 因此BC 1∥D 1O ,同理AD 1∥DC 1. 因为A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD.又因为A 1O OB =1,所以DC AD =1,即AD DC=1.解决探索性问题的方法(1)根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)按类似于分析法的格式书写步骤:从结论出发“要使……成立”“只需使……成立”.(一题多解)如图,四棱锥E -ABCD ,平面ABCD ⊥平面ABE ,四边形ABCD为矩形,AD =6,AB =5,BE =3,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段DE 上,且满足EM =2MD ,试在线段AB 上确定一点N ,使得MN ∥平面BCE ,并求MN 的长.解:(1)证明:因为四边形ABCD 为矩形,所以BC ⊥AB . 因为平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,且BC 平面ABCD ,所以BC ⊥平面ABE .又AE平面ABE ,所以BC ⊥AE .因为BF ⊥平面ACE ,AE 平面ACE ,所以BF ⊥AE .又因为BC ∩BF =B ,BC 平面BCE ,BF 平面BCE ,所以AE ⊥平面BCE , 因为BE平面BCE ,所以AE ⊥BE .(2)法一:如图,在△ADE 中过M 点作MG ∥AD 交AE 于G 点,在△ABE 中过G 点作GN ∥BE 交AB 于N 点,连接MN ,因为NG ∥BE ,NG ⊆/平面BCE ,BE 平面BCE ,所以NG ∥平面BCE . 同理可证,GM ∥平面BCE . 因为MG ∩GN =G , 所以平面MGN ∥平面BCE , 又因为MN平面MGN ,所以MN ∥平面BCE ,因为N 点为线段AB 上靠近A 点的一个三等分点, AD =6,AB =5,BE =3,所以MG =23AD =4,NG =13BE =1,所以MN =MG 2+NG 2=42+12=17.法二:如图,过M 点作MG ∥CD 交CE 于G 点,连接BG ,在AB 上取N 点,使得BN =MG ,连接MN ,因为MG ∥CD ,EM =2MD ,所以MG =23CD ,因为AB ∥CD ,BN =MG , 所以四边形MGBN 是平行四边形, 所以MN ∥BG ,又因为MN ⊆/平面BCE ,BG平面BCE ,所以MN ∥平面BCE ,又MG =23CD ,MG =BN ,所以BN =23AB ,所以N 点为线段AB 上靠近A 点的一个三等分点. 在△CBG 中,因为BC =AD =6,CG =13CE =1362+32=5,cos ∠BCG =255,所以BG 2=36+5-2×6×5×255=17, 所以MN =BG =17.[基础题组练]1.(2020·河北衡水模拟一)已知m ,n 为两条不重合直线,α,β为两个不重合平面,下列条件中,α∥β的充分条件是( )A .m ∥n ,mα,n β B .m ∥n ,m ⊥α,n ⊥βC .m ⊥n ,m ∥α,n ∥βD .m ⊥n ,m ⊥α,n ⊥β解析:选B.对于A ,两个平面内分别有一条直线,这两条直线互相平行,这两个平面可能平行, 也可能相交,因此A 中条件不是α∥β的充分条件;对于B ,因为m ∥n ,m ⊥α,所以n ⊥α,结合n ⊥β,知α∥β,因此B 中条件是α∥β的充分条件;对于C ,由m ⊥n ,m ∥α知nα,或n ∥α,或n 与α相交,结合n ∥β,知α,β可能平行,也可能相交,所以C中条件不是α∥β的充分条件;对于D,由m⊥n,m⊥α知nα,或n∥α,结合n⊥β,知α⊥β,所以D中条件不是α∥β的充分条件.综上可知.选B.2.(2020·江西红色七校联考)设m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m∥n,nα,则m∥αB.若mα,nβ,α∥β,则m∥nC.若α∥β,m⊥α,则m⊥βD.若mα,nβ,m∥β,n∥α,则α∥β解析:选C.若m∥n,nα,则m∥α或mα,所以选项A不正确;若mα,n β,α∥β,则m∥n或m与n异面,所以选项B不正确;若mα,nβ,m∥β,n∥α,则α∥β或α与β相交,所以选项D不正确.故选C.3.(2020·湖南长沙模拟)设a,b,c表示不同直线,α,β表示不同平面,下列命题:①若a∥c,b∥c,则a∥b;②若a∥b,b∥α,则a∥α;③若a∥α,b∥α,则a∥b;④若aα,bβ,α∥β,则a∥b.其中真命题的个数是()A.1 B.2C.3 D.4解析:选A.由题意,对于①,根据线线平行的传递性可知①是真命题;对于②,根据a∥b,b∥α,可以推出a∥α或aα,故②是假命题;对于③,根据a∥α,b∥α,可以推出a与b 平行,相交或异面,故③是假命题;对于④,根据aα,bβ,α∥β,可以推出a∥b或a与b异面,故④是假命题.所以真命题的个数是1.故选A.4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B.由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,又EF ⊆/平面BCD ,所以EF ∥平面BCD .又H ,G 分别为BC ,CD 的中点,所以HG 綊12BD ,所以EF ∥HG 且EF ≠HG .所以四边形EFGH 是梯形.5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点,给出下列四个推断:①FG ∥平面AA 1D 1D ; ②EF ∥平面BC 1D 1; ③FG ∥平面BC 1D 1; ④平面EFG ∥平面BC 1D 1. 其中推断正确的序号是( ) A .①③ B .①④ C .②③D .②④解析:选A.因为在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点,所以FG ∥BC 1,因为BC 1∥AD 1,所以FG ∥AD 1,因为FG ⊄平面AA 1D 1D ,AD 1⊂平面AA 1D 1D ,所以FG ∥平面AA 1D 1D ,故①正确; 因为EF ∥A 1C 1,A 1C 1与平面BC 1D 1相交,所以EF 与平面BC 1D 1相交,故②错误; 因为E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点, 所以FG ∥BC 1,因为FG ⊆/平面BC 1D 1,BC 1平面BC 1D 1,所以FG ∥平面BC 1D 1,故③正确;因为EF 与平面BC 1D 1相交,所以平面EFG 与平面BC 1D 1相交,故④错误.故选A. 6.在四面体A -BCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN平行的是________.解析:如图,取CD的中点E,连接AE,BE,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.因为AB平面ABD,MN⊆/平面ABD,AB平面ABC,MN⊆/平面ABC,所以MN∥平面ABD,MN∥平面ABC.答案:平面ABD与平面ABC7.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.解析:因为EF∥平面AB1C,EF平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.故EF=12AC= 2.答案: 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD=D,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)9.在如图所示的一块木料中,棱BC平行于平面A′B′C′D′.(1)要经过平面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面ABCD是什么位置关系?并证明你的结论.解:(1)过点P作B′C′的平行线,交A′B′,C′D′于点E,F,连接BE,CF.作图如下:(2)EF∥平面ABCD.理由如下:因为BC∥平面A′B′C′D′,又因为平面B′C′CB∩平面A′B′C′D′=B′C′,所以BC∥B′C′,因为EF∥B′C′,所以EF∥BC,又因为EF⊆/平面ABCD,BC平面ABCD,所以EF∥平面ABCD.10.如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊆/平面DMF,MO平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊆/平面MNG,GN平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊆/平面MNG,MN平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.[综合题组练]1.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在的平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的个数是( ) A .1 B .2 C .3D .4解析:选C.由题图,显然①是正确的,②是错的; 对于③因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊆/平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;因为水是定量的(定体积V ). 所以S △BEF ·BC =V , 即12BE ·BF ·BC =V . 所以BE ·BF =2VBC(定值),即④是正确的,故选C.2.(2020·江西吉安一模)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1D 1,A 1B 1的中点,过直线BD 的平面α∥平面AMN ,则平面α截该正方体所得截面的面积为( )A. 2 B .98C. 3D .62解析:选B.如图1,取B 1C 1的中点E ,C 1D 1的中点F ,连接EF ,BE ,DF ,B 1D 1,则EF ∥B 1D 1,B 1D 1∥BD ,所以EF ∥BD ,故EF ,BD 在同一平面内,连接ME ,因为M ,E 分别为A 1D 1,B 1C 1的中点,所以ME ∥AB ,且ME =AB ,所以四边形ABEM 是平行四边形,所以AM ∥BE ,又因为BE平面BDFE ,AM ⊆/平面BDFE ,所以AM ∥平面BDFE ,同理AN ∥平面BDFE ,因为AM ∩AN =A , 所以平面AMN ∥平面BDFE ,BD =2,EF =12B 1D 1=22,DF =BE =52,等腰梯形BDFE 如图2,过E ,F 作BD 的垂线,垂足分别为G ,H ,则四边形EFGH 为矩形,所以FG =DF 2-DG 2=54-18=324, 故所得截面的面积为12×⎝⎛⎭⎫22+2×324=98,故选B.3.在正方体ABCD -A 1B 1C 1D 1中,M ,N ,Q 分别是棱D 1C 1,A 1D 1,BC 的中点,点P 在BD 1上且BP =23BD 1.则以下四个说法:①MN ∥平面APC ; ②C 1Q ∥平面APC ; ③A ,P ,M 三点共线; ④平面MNQ ∥平面APC .其中说法正确的是________(填序号). 解析:①连接MN ,AC ,则MN ∥AC ,连接AM ,CN , 易得AM ,CN 交于点P ,即MN平面APC ,所以MN ∥平面APC 是错误的;②由①知M ,N 在平面APC 上,由题易知AN ∥C 1Q ,AN 平面APC ,所以C 1Q ∥平面APC 是正确的; ③由①知A ,P ,M 三点共线是正确的; ④由①知MN 平面APC ,又MN平面MNQ ,所以平面MNQ ∥平面APC 是错误的. 答案:②③4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.解析:因为平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥PQ .又因为B 1D 1∥BD ,所以BD ∥PQ , 设PQ ∩AB =M ,因为AB ∥CD , 所以△APM ∽△DPQ .所以PQ PM =PDAP =2,即PQ =2PM .又知△APM ∽△ADB ,所以PM BD =AP AD =13,所以PM =13BD ,又BD =2a ,所以PQ =223a .答案:223a5.如图,在四棱锥P -ABCD 的底面ABCD 中,BC ∥AD ,且AD =2BC ,O ,E 分别为AD ,PD 的中点.(1)设平面P AB ∩平面PCD =l ,请作图确定l 的位置并说明你的理由; (2)若Q 为直线CE 上任意一点,证明:OQ ∥平面P AB .解:(1)分别延长AB 和DC 交于点R ,连接PR ,则直线PR 就是l 的位置; R ∈AB平面P AB ,R ∈CD平面PCD ,所以P 、R 是平面P AB 和平面PCD 的两个公共点, 由公理1可知,过P 、R 的直线就是两个平面的交线l . (2)证明:连接OE 、OC ,因为BC ∥AD ,且BC =12AD ,又AO =12AD ,所以BC ∥AO ,且BC =AO ,所以四边形ABCO 为平行四边形, 所以OC ∥AB ,则OC ∥平面P AB ; 又OE 为△P AD 的中位线,则OE ∥AP , 所以OE ∥平面P AB , 又OE平面OEC ,OC平面OEC ,且OE ∩OC =O ,所以平面P AB∥平面OEC,又OQ平面OEC,所以OQ∥平面P AB.6.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明B1D1∥l.证明:(1)由题设知BB1綊DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊆/平面CD1B1,B1D1平面CD1B1,所以BD∥平面CD1B1.因为A1D1綊B1C1綊BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊆/平面CD1B1,D1C平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.。
第四节直线、平面平行的判定及性质[知识能否忆起]一、直线与平面平行1.判定定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行⎭⎪⎬⎪⎫a⊄αb⊂αb∥a⇒a∥α2.性质定理文字语言图形语言符号语言性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行⎭⎪⎬⎪⎫a∥αa⊂βα∩β=b⇒a∥b二、平面与平面平行1.判定定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行⎭⎪⎬⎪⎫a⊂αb⊂αa∩b=Pa∥βb∥β⇒α∥β2.两平面平行的性质定理文字语言图形语言符号语言性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行⎭⎪⎬⎪⎫α∥βα∩γ=aβ∩γ=b⇒a∥b[小题能否全取]1.(教材习题改编)下列条件中,能作为两平面平行的充分条件的是( )A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解析:选D 由面面平行的定义可知,一平面内所有的直线都平行于另一个平面时,两平面才能平行,故D正确.2.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是( )A.0 B.1C.2 D.3解析:选A 对于命题①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于命题②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②也不正确;对于命题③,若a∥α,b∥α,则应有a∥b或a与b相交或a与b异面,因此③也不正确.3.(教材习题改编)若一直线上有相异三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是( )A.l∥αB.l⊥αC.l与α相交且不垂直 D.l∥α或l⊂α解析:选D 由于l上有三个相异点到平面α的距离相等,则l与α可以平行,l⊂α时也成立.4.平面α∥平面β,a⊂α,b⊂β,则直线a,b的位置关系是________.解析:由α∥β可知,a ,b 的位置关系是平行或异面. 答案:平行或异面5.(2012·某某质检)在正方体ABCD -A 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析:如图.连接AC ,BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案:平行1.平行问题的转化关系: 线∥线判定判定性质线∥面――→判定性质面∥面性质 2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在性质定理的应用中,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.辅助线(面)是求证平行问题的关键,注意平面几何中位线,平行四边形及相似中有关平行性质的应用.线面平行、面面平行的基本问题典题导入[例1] (2011·某某高考)如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.[自主解答] 因为直线EF ∥平面AB 1C ,EF ⊂平面ABCD ,且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC .又因为点E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得EF =12AC .又因为在正方体ABCD -A 1B 1C 1D 1中,AB =2,所以AC =2 2.所以EF = 2.[答案]2本例条件变为“E 是AD 中点,F ,G ,H ,N 分别是AA 1,A 1D 1,DD 1与D 1C 1的中点,若M 在四边形EFGH 及其内部运动”,则M 满足什么条件时,有MN ∥平面A 1C 1CA .解:如图,∵GN∥平面AA1C1C,EG∥平面AA1C1C,又GN∩EG=G,∴平面EGN∥平面AA1C1C.∴当M在线段EG上运动时,恒有MN∥平面AA1C1C.由题悟法解决有关线面平行、面面平行的基本问题要注意:(1)判定定理与性质定理中易忽视的条件,如线面平行的判定定理中条件线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)举反例否定结论或用反证法推断命题是否正确.以题试法1.(1)(2012·某某高三调研)已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内解析:选C 由直线l与点P可确定一个平面β,且平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内.(2)(2012·潍坊模拟)已知m,n,l1,l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是( )A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2解析:选D 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知α∥β.直线与平面平行的判定与性质典题导入[例2] (2012·某某高考)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)求三棱锥A ′-MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)[自主解答] (1)证明:法一:连接AB ′、AC ′,因为点M ,N 分别是A ′B 和B ′C ′的中点,所以点M 为AB ′的中点. 又因为点N 为B ′C ′的中点, 所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.法二:取A ′B ′的中点P .连接MP .而点M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′.所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′.又MP ∩PN =P , 因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)法一:连接BN ,由题意得A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.法二:V A ′-MNC =V A ′-NBC -V M -NBC =12V A ′-NBC =16.由题悟法利用判定定理证明线面平行的关键是找平面内与已知直线平行的直线,可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.以题试法2.(2012·某某模拟)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是BD,BB1的中点.(1)求证:EF∥平面A1B1CD;(2)求证:EF⊥AD1.解:(1)在正方体ABCD-A1B1C1D1中,连接B1D,在平面BB1D内,E,F分别为BD,BB1的中点,∴EF∥B1D.又∵B1D⊂平面A1B1CD.EF⊄平面A1B1CD,∴EF∥平面A1B1CD.(2)∵ABCD-A1B1C1D1是正方体,∴AD1⊥A1D,AD1⊥A1B1.又A1D∩A1B1=A1,∴AD1⊥平面A1B1D.∴AD1⊥B1D.又由(1)知,EF∥B1D,∴EF⊥AD1.平面与平面平行的判定与性质典题导入[例3] 如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F.[自主解答] (1)在正方形AA1B1B中,∵AE=B1G=1,∴BG=A1E=2,∴BG綊A1E.∴四边形A1GBE是平行四边形.∴A1G∥BE.又C1F綊B1G,∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1.∴四边形A 1GFD 1是平行四边形. ∴A 1G 綊D 1F . ∴D 1F 綊EB .故E ,B ,F ,D 1四点共面. (2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF . ∴∠B 1GH =∠CFB =∠FBG . ∴HG ∥FB .∵GH ⊄面FBED 1,FB ⊂面FBED 1,∴GH ∥面BED 1F . 由(1)知A 1G ∥BE ,A 1G ⊄面FBED 1,BE ⊂面FBED 1, ∴A 1G ∥面BED 1F . 且HG ∩A 1G =G , ∴平面A 1GH ∥平面BED 1F .由题悟法常用的判断面面平行的方法 (1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β).以题试法3.(2012·东城二模)如图,矩形AMND 所在的平面与直角梯形MB 所在的平面互相垂直,MB ∥NC ,MN ⊥MB .(1)求证:平面AMB ∥平面DNC ; (2)若MC ⊥CB ,求证:BC ⊥AC .证明:(1)因为MB ∥NC ,MB ⊄平面DNC ,NC ⊂平面DNC , 所以MB ∥平面DNC .又因为四边形AMND 为矩形,所以MA ∥DN . 又MA ⊄平面DNC ,DN ⊂平面DNC . 所以MA ∥平面DNC .又MA ∩MB =M ,且MA ,MB ⊂平面AMB , 所以平面AMB ∥平面DNC .(2)因为四边形AMND是矩形,所以AM⊥MN.因为平面AMND⊥平面MB,且平面AMND∩平面MB=MN,所以AM⊥平面MB.因为BC⊂平面MB,所以AM⊥BC.因为MC⊥BC,MC∩AM=M,所以BC⊥平面AMC.因为AC⊂平面AMC,所以BC⊥AC.1.(2013·某某模拟)已知直线m⊥平面α,直线n⊂平面β,则下列命题正确的是( ) A.若n∥α,则α∥βB.若α⊥β,则m∥nC.若m⊥n,则α∥βD.若α∥β,则m⊥n解析:选D 由m⊥α,α∥β,n⊂β⇒m⊥n.2.平面α∥平面β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D 若α∩β=l,a∥l,a⊄α,a⊄β,a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则α∥β,b∥α,故排除C.3.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条解析:选D 由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与平面D1EF平行.4.(2012·某某模拟)已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是( )A .①或②B .②或③C .①或③D .只有②解析:选C 由定理“一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③,结合各选项知,选C.5.(2012·某某模拟)如图所示,在空间四边形ABCD 中,E ,F 分别为边AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,又H 、G 分别为BC ,CD 的中点,则( )A .BD ∥平面EFGH ,且四边形EFGH 是矩形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是菱形 D .EH ∥平面ADC ,且四边形EFGH 是平行四边形解析:选B 由AE ∶EB =AF ∶FD =1∶4知EF 綊15BD ,∴EF ∥面BCD .又H ,G 分别为BC ,CD 的中点,∴HG 綊12BD ,∴EF ∥HG 且EF ≠HG .∴四边形EFGH 是梯形.6.(2012·某某四校联考)在空间内,设l ,m ,n 是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是( )A .α⊥γ,β⊥γ,α∩β=l ,则l ⊥γB .l ∥α,l ∥β,α∩β=m ,则l ∥mC .α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥m ,则l ∥nD .α⊥γ,β⊥γ,则α⊥β或α∥β解析:选D 对于A ,∵如果两个相交平面均垂直于第三个平面,那么它们的交线垂直于第三个平面,∴该命题是真命题;对于B ,∵如果一条直线平行于两个相交平面,那么该直线平行于它们的交线,∴该命题是真命题;对于C ,∵如果三个平面两两相交,有三条交线,那么这三条交线交于一点或相互平行,∴该命题是真命题;对于D ,当两个平面同时垂直于第三个平面时,这两个平面可能不垂直也不平行,∴D 不正确.7.设a ,b 为空间的两条直线,α,β为空间的两个平面,给出下列命题: ①若a ∥α,a ∥β,则α∥β;②若a ⊥α,a ⊥β,则α∥β; ③若a ∥α,b ∥α,则a ∥b ;④若a ⊥α,b ⊥α,则a ∥b . 上述命题中,所有真命题的序号是________.解析:①错误.因为α与β可能相交;③错误.因为直线a 与b 还可能异面、相交.答案:②④8.已知平面α∥β,P ∉α且P ∉β,过点P 的直线m 与α,β分别交于A .C ,过点P 的直线n 与α,β分别交于B ,D ,且PA =6,AC =9,PD =8则BD 的长为________.解析:如图1,∵AC ∩BD =P , ∴经过直线AC 与BD 可确定平面PCD .∵α∥β,α∩平面PCD =AB ,β∩平面PCD =CD , ∴AB ∥CD .∴PA AC =PB BD ,即69=8-BD BD. ∴BD =245.如图2,同理可证AB ∥CD .∴PA PC =PB PD ,即63=BD -88. ∴BD =24.综上所述,BD =245或24.答案:245或249.(2012·某某模拟)下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出直线AB ∥平面MNP 的图形的序号是________.(写出所有符合要求的图形序号)解析:对于①,注意到该正方体的经过直线AB 的侧面与平面MNP 平行,因此直线AB 平行于平面MNP ;对于②,注意到直线AB 和过点A 的一个与平面MNP 平行的平面相交,因此直线AB 与平面MNP 相交;对于③,注意到直线AB 与MP 平行,且直线AB 位于平面MNP 外,因此直线AB 与平面MNP 平行;对于④,易知此时AB 与平面MNP 相交.综上所述,能得出直线AB 平行于平面MNP 的图形的序号是①③.答案:①③10.(2013·某某模拟)如图,FD 垂直于矩形ABCD 所在平面,CE ∥DF ,∠DEF =90°.(1)求证:BE ∥平面ADF ;(2)若矩形ABCD 的一边AB =3,EF =23,则另一边BC 的长为何值时,三棱锥F -BDE 的体积为3?解:(1)证明:过点E 作CD 的平行线交DF 于点M ,连接AM .因为CE ∥DF ,所以四边形CEMD 是平行四边形.可得EM =CD 且EM ∥CD ,于是四边形BEMA 也是平行四边形,所以有BE ∥AM .而AM ⊂平面ADF ,BE ⊄平面ADF ,所以BE ∥平面ADF .(2)由EF =23,EM =AB =3,得FM =3且∠MFE =30°.由∠DEF =90°可得FD =4,从而得DE =2.因为BC ⊥CD ,BC ⊥FD ,所以BC ⊥平面CDFE .所以,V F -BDE =V B -DEF =13S △DEF ×BC . 因为S △DEF =12DE ×EF =23,V F -BDE =3, 所以BC =32. 综上当BC =32时,三棱锥F -BDE 的体积为 3. 11.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,且AB =2CD ,在棱AB 上是否存在一点F ,使平面C 1CF ∥平面ADD 1A 1?若存在,求点F 的位置;若不存在,请说明理由.解:存在这样的点F ,使平面C 1CF ∥平面ADD 1A 1,此时点F 为AB的中点,证明如下:∵AB ∥CD ,AB =2CD ,∴AF 綊CD ,∴四边形AFCD 是平行四边形,∴AD ∥CF .又AD ⊂平面ADD 1A 1,CF ⊄平面ADD 1A 1.∴CF ∥平面ADD 1A 1.又CC 1∥DD 1,CC 1⊄平面ADD 1A 1,DD 1⊂平面ADD 1A 1,∴CC 1∥平面ADD 1A 1,又CC 1,CF ⊂平面C 1CF ,CC 1∩CF =C ,∴平面C 1CF ∥平面ADD 1A 1.12.(2013·潍坊二模)如图,点C 是以AB 为直径的圆上一点,直角梯形BCDE 所在平面与圆O 所在平面垂直,且DE ∥BC ,DC ⊥BC ,DE=12BC =2,AC =CD =3. (1)证明:EO ∥平面ACD ;(2)证明:平面ACD ⊥平面BCDE ;(3)求三棱锥E -ABD 的体积.解:(1)证明:如图,取BC 的中点M ,连接OM ,ME .在△ABC 中,O 为AB 的中点,M 为BC 的中点,∴OM ∥AC .在直角梯形BCDE 中,DE ∥BC ,且DE =12BC =CM , ∴四边形MCDE 为平行四边形.∴EM ∥DC .∴平面EMO ∥平面ACD ,又∵EO ⊂平面EMO ,∴EO ∥平面ACD .(2)证明:∵C 在以AB 为直径的圆上,∴AC ⊥BC .又∵平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC .∴AC ⊥平面BCDE .又∵AC ⊂平面ACD ,∴平面ACD ⊥平面BCDE .(3)由(2)知AC ⊥平面BCDE .又∵S △BDE =12×DE ×CD =12×2×3=3, ∴V E -ABD =V A -BDE =13×S △BDE ×AC =13×3×3=3.1.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内与过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且经过B 点时,可使a ∥平面α,但这时在平面β内过B 点的所有直线中,不存在与a 平行的直线,而在其他情况下,都可以存在与a 平行的直线.2.(2012·某某二模)如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 答案:平面ABC ,平面ABD3.(2012·东城区模拟)一个多面体的直观图和三视图如图所示,其中M ,N 分别是AB ,AC 的中点,G 是DF 上的一动点.(1)求该多面体的体积与表面积;(2)求证:GN ⊥AC ;(3)当FG =GD 时,在棱AD 上确定一点P ,使得GP ∥平面FMC ,并给出证明.解:(1)由题中图可知该多面体为直三棱柱,在△ADF 中,AD ⊥DF ,DF =AD =DC =a ,所以该多面体的体积为12a 3. 表面积为12a 2×2+2a 2+a 2+a 2=(3+2)a 2. (2)连接DB ,FN ,由四边形ABCD 为正方形,且N 为AC 的中点知B ,N ,D 三点共线,且AC ⊥DN .又∵FD ⊥AD ,FD ⊥CD ,AD ∩CD =D ,∴FD ⊥平面ABCD .∵AC ⊂平面ABCD ,∴FD ⊥AC .又DN ∩FD =D ,∴AC ⊥平面FDN .又GN ⊂平面FDN ,∴GN ⊥AC .(3)点P 与点A 重合时,GP ∥平面FMC .取FC 的中点H ,连接GH ,GA ,MH .∵G 是DF 的中点,∴GH 綊12CD . 又M 是AB 的中点,∴AM 綊12CD . ∴GH ∥AM 且GH =AM .∴四边形GHMA 是平行四边形.∴GA ∥MH .∵MH ⊂平面FMC ,GA ⊄平面FMC ,∴GA ∥平面FMC ,即当点P 与点A 重合时,GP ∥平面FMC .1.已知m ,n ,l 为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A .α∥β,m ⊂α,n ⊂β⇒m ∥nB .l ⊥β,α⊥β⇒l ∥αC .m ⊥α,m ⊥n ⇒n ∥αD .α∥β,l ⊥α⇒l ⊥β解析:选D 对于选项A ,m ,n 平行或异面;对于选项B ,可能出现l ⊂α这种情形;对于选项C ,可能出现n ⊂α这种情形.2.如图,三棱柱ABC -A 1B 1C 1,底面为正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB .当点M 在何位置时,BM ∥平面AEF?解:法一:如图,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .∵侧棱A 1A ⊥底面ABC ,∴侧面A 1ACC 1⊥底面ABC ,∴OM ⊥底面ABC .又∵EC=2FB,∴OM綊FB綊12 EC.∴四边形OMBF为矩形.∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF.故BM∥平面AEF,此时点M为AC的中点.法二:如图,取EC的中点P,AC的中点Q,连接PQ,PB,BQ,∴PQ∥AE.∵EC=2FB,∴PE綊BF,PB∥EF,∴PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,∴平面PBQ∥平面AEF,又∵BQ⊂面PQB,∴BQ∥平面AEF.故点Q即为所求的点M,此时点M为AC的中点.3.(2012·某某二中质检)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的角平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.解:(1)证明:∵AC=6,BC=3,∠ABC=90°,∴∠ACB=60°.∵CD为∠ACB的角平分线,∴∠BCD=∠ACD=30°.∴CD=2 3.∵CE=4,∠DCE=30°,∴DE=2.则CD2+DE2=EC2.∴∠CDE=90°,DE⊥DC.又∵平面BCD⊥平面ACD,平面BCD∩平面ACD=CD,DE⊂平面ACD,∴DE⊥平面BCD.(2)∵EF∥平面BDG,EF⊂平面ABC,平面ABC∩平面BDG=BG,∴EF∥BG.∵点E在线段AC上,CE=4,点F是AB的中点,∴AE=EG=CG=2.如图,作BH ⊥CD 于H .∵平面BCD ⊥平面ACD , ∴BH ⊥平面ACD .由条件得BH =32, S △DEG =13S △ACD =13×12AC ·CD ·sin 30°=3,∴三棱锥B -DEG 的体积V =13S △DEG ·BH =13×3×32=32.。
直线、平面平行的判定与性质(时间:45分钟 分值:100分)基础热身1.若直线a 平行于平面α,则下列结论错误的是( ) A .a 平行于α内的所有直线 B .α内有无数条直线与a 平行C .直线a 上的点到平面α的距离相等D .α内存在无数条直线与a 垂直 2.[2013·银川一模] 设α,β是两个平面,l ,m 是两条直线,下列命题中,可以判断α∥β的是( )A .l ⊂α,m ⊂α,且l ∥β,m ∥βB .l ⊂α,m ⊂β,且m ∥αC .l ∥α,m ∥β,且l ∥mD .l ⊥α,m ⊥β,且l ∥m 3.[2013·兰州二模] a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合的平面,现给出四个命题:①⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β;② ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;③⎭⎪⎬⎪⎫α∥c a ∥c ⇒a ∥α; ④⎭⎪⎬⎪⎫a ∥γα∥γ⇒α∥a . 其中正确的命题是( ) A .①②③ B .①④ C .② D .①③④ 4.[2013·济南二模] 已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A .m ∥n ,m ⊥α⇒n ⊥αB .α∥β,m ⊂α,n ⊂β⇒m ∥nC .m ⊥α,m ⊥n ⇒n ∥αD .m ⊂α,n ⊂α,m ∥β,n ∥β⇒α∥β能力提升 5.[2013·合肥二模] α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是( )A .α和β都垂直于平面γB .α内不共线的三点到β的距离相等C . l ,m 是平面α内的直线,且l ∥β,m ∥βD .l ,m 是两条异面直线,且l ∥α,m ∥α,m ∥β,l ∥β 6.[2013·贵阳二模] 设平面α∥平面β,A ∈α,B ∈β,C 是AB 的中点,当A ,B 分别在α,β内运动时,那么所有的动点C ( )A .不共面B .当且仅当A ,B 在两条相交直线上移动时才共面C .当且仅当A ,B 在两条给定的平行直线上移动时才共面D .不论A ,B 如何移动都共面7.[2013·重庆二模] 已知m ,n ,l 1,l 2表示直线,α,β 表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2 =M ,则α∥β的一个充分条件是( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2 8.[2013·沈阳三模] 如图K40-1,边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,已知△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,则下列命题中正确的是( )①动点A ′在平面ABC 上的射影在线段AF 上;②BC ∥平面A ′DE ;③三棱锥A ′-FED 的体积有最大值.A .①B .①②C .①②③D .②③K40-1K40-29.如图K40-2,若Ω是长方体ABCD -A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确的是( )A .EH ∥FGB .四边形EFGH 是矩形C .Ω是棱柱D .Ω是棱台 10.[2013·武汉三模] 如图K40-3所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N的平面交上底面于PQ ,Q 在CD .K40-3K40-411.[2013·广州三模] 如图K40-4所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.12.考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l ,m 为直线,α,β为平面),则此条件为________.①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α; ③⎭⎪⎬⎪⎫l ⊥βα⊥β ⇒l ∥α. 13.[2013·天津二模] 如图K40-5所示,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,P A ⊥底面ABCD ,E 为PC 的中点,则BE 与平面P AD 的位置关系是________.14.(10分)[2013·佛山质检] 如图K40-6,三棱锥P -ABC 中,PB ⊥底面ABC ,∠BCA =90°,PB =BC =CA =4,E 为PC 的中点,M 为AB 的中点,点F 在P A 上,且AF =2FP .(1)求证:BE ⊥平面P AC ; (2)求证:CM ∥平面BEF.15.(13分)如图K40-7,已知平行四边形ABCD 中,BC =6,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点.(1)求证:GH ∥平面CDE ;(2)若CD =2,DB =42,求四棱锥F -ABCD 的体积.难点突破16.(12分)[2013·银川二模] 如图K40-8所示,在七面体ABCDMN 中,四边形ABCD 是边长为2的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =2,NB =1,MB 与ND 交于P 点,点Q 在AB 上,且BQ =23.(1)求证:QP ∥平面AMD ; (2)求七面体ABCDMN 的体积.【基础热身】1.A [解析] A 错误,a 与α内的直线平行或异面.2.D [解析] 条件A 中,增加l 与m 相交才能判断出α∥β,A 错.由条件B ,C 都有可能得到α与β相交,排除B 和C.选D.3.C [解析] ②正确.①错在α与β可能相交.③④错在a 可能在α内.4.A [解析] 选项A 中,如图①,n ∥m ,m ⊥α⇒n ⊥α一定成立,A 正确;选项B 中,如图②,α∥β,m ⊂α,n ⊂β,m 与n 互为异面直线,∴B 不正确;选项C 中,如图③,m ⊥α,m ⊥n ,n ⊂α,∴C 不正确;选项D 中,如图④,m ⊂α,n ⊂α,m ∥β,n ∥β,但α与β相交,∴D 不正确.【能力提升】5.D [解析] 利用面面平行的判定方法及平行间的转化可知D 正确.6.D [解析] 不论A ,B 如何移动,点C 均在与α,β距离相等的平面内,故选D.7.D [解析] 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.8.C [解析] ①中由已知可得平面A ′FG ⊥平面ABC ,∴点A ′在平面ABC 上的射影在线段AF 上;②BC ∥DE ,∴BC ∥平面A ′DE ;③当平面A ′DE ⊥平面ABC 时,三棱锥A ′-FED 的体积达到最大.9.D [解析] ∵EH ∥A 1D 1,∴EH ∥B 1C 1,∴B 1C 1∥平面EFGH ,∴B 1C 1∥FG ,∴Ω是棱柱,故选D.10.223a [解析] 如图所示,连接AC ,易知MN ∥平面ABCD ,∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC .又∵AP =a 3,∴PD AD =DQ CD =PQ AC =23,∴PQ =2AC =22a .11.M ∈线段FH [解析] 连接HNF ∥平面B 1BDD 1知当M 点满足在线段FH 上时,有MN ∥面B 1BDD 1.12.l ⊄α [解析] 线面平行的判定中指的是平面外的一条直线和平面内的一条直线平行,故此条件为l ⊄α.13.平行 [解析] 取PD 的中点F ,连接EF ,AF .在△PCD 中,EF 綊12CD ,又∵AB ∥CD ,且CD =2AB ,∴EF 綊AB ,∴四边形ABEF 为平行四边形,∴EB ∥AF .又∵EB ⊄平面P AD ,AF ⊂平面P AD ,∴BE ∥平面P AD .14.证明:(1)∵PB ⊥底面ABC ,且AC ⊂底面ABC ,∴AC ⊥PB , 由∠BCA =90°,可得AC ⊥CB , 又∵PB ∩CB =B ,∴AC ⊥平面PBC ,∵BE ⊂平面PBC ,∴AC ⊥BE ,∵PB =BC ,E 为PC 中点,∴BE ⊥PC , ∵PC ∩AC =C ,∴BE ⊥平面P AC.(2)取AF 的中点G ,连接CG ,GM ∵E 为PC 中点,F A =2FP ,∴EF ∥CG .∵CG ⊄平面BEF ,EF ⊂平面BEF ,∴CG ∥平面BEF . 同理可证:GM ∥平面BEF .又CG ∩GM =G ,∴平面CMG ∥平面BEF . ∵CM ⊂平面CMG ,∴CM ∥平面BEF .15.解:(1)证法一:∵EF ∥AD ,AD ∥BC ,∴EF ∥BC . 又EF =AD =BC ,∴四边形EFBC 是平行四边形, ∴H 为FC 的中点.又∵G 是FD 的中点,∴GH ∥CD . ∵GH ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE . 证法二:连接EA ,∵四边形ADEF 是正方形, ∴G 是AE 的中点,∴在△EAB 中,GH ∥AB . 又∵AB ∥CD ,∴GH ∥CD .∵HG ⊄平面CDE ,CD ⊂平面CDE , ∴GH ∥平面CDE .(2)∵平面ADEF ⊥平面ABCD ,交线为AD ,且F A ⊥AD , ∴F A ⊥平面ABCD .∵AD =BC =6,∴F A =AD =6.又∵CD =2,DB =42,CD 2+DB 2=BC 2,∴BD ⊥CD . ∵S ▱ABCD =CD ·BD =82,∴V F -ABCD =13S ▱ABCD ·F A =13×82×6=16 2.【难点突破】16.解:(1)证明:∵MD ⊥平面ABCD ,NB ⊥平面ABCD , ∴MD ∥NB ,∴BP PM =NB MD =12.又QB QA =232-23=12,∴QB QA =BPPM.∴在△MAB 中,QP ∥AM .又QP ⊄平面AMD ,AM ⊂平面AMD ,∴QP ∥平面AMD .(2)连接BD ,AC 并交于点O ,则AC ⊥BD . ∵MD ⊥平面ABCD ,∴MD ⊥AC . 又BD ∩MD =D ,∴AC ⊥平面MNBD . ∴AO 为四棱锥A -MNBD 的高.又S 四边形MNBD =12×(1+2)×22=32,∴V A -MNBD =13×32×2=2.又V C -MNBD =V A -MNBD =2,∴V 七面体ABCDMN =2V A -MNBD =4.。
10。
4直线、平面平行的判定及其性质典例精析题型一面面平行的判定【例1】如图,B为△ACD所在平面外一点,M、N、G 分别为△ABC、△ABD、△BCD的重心。
(1)求证:平面MNG∥平面ACD;(2)若△ACD是边长为2的正三角形,判断△MNG的形状并求△MGN的面积.【解析】(1)证明:连接BM、BN、BG并延长分别交AC、AD、CD于E、F、H三点.因为M为△ABC的重心,N为△BAD的重心,所以BMME=错误!=2.所以MN∥EF,同理MG∥HE。
因为MN⊄平面ACD,MG⊄平面ACD,所以MN∥平面ACD,MG∥平面ACD,因为MN∩MG=M,所以平面MNG∥平面ACD。
(2)由(1)知,平面MNG∥平面ACD,错误!=错误!=2,所以错误!=错误!=错误!,因为EH=错误!AD,EF=错误!CD,所以错误!=错误!=错误!,所以错误!=错误!=错误!=错误!,又△ACD为正三角形。
所以△MNG为等边三角形,且边长为错误!×2=错误!,面积S=错误!×错误!=错误!。
【点拨】由三角形重心的性质得到等比线段,由此推出线线平行,应用面面平行的判定定理得出面面平行.【变式训练1】如图,ABCD是空间四边形,E、F、G、H分别是四边上的点,且它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当EFGH是菱形时,AE∶EB=____________.【解析】错误!.设AE=a,EB=b,由EF∥AC,得EF=错误!,同理EH=错误!。
EF=EH,所以错误!=错误!⇒错误!=错误!。
题型二线面平行的判定【例2】两个全等的正方形ABCD和ABEF所在平面相交于AB,M ∈AC,N∈FB且AM=FN。
求证:MN∥平面BCE。
【证明】方法一:如图一,作MP⊥BC,NQ⊥BE,P、Q为垂足,连接PQ,则MP∥AB,NQ∥AB.所以MP∥NQ,又AM=NF,AC=BF,所以MC=NB.又∠MCP=∠NBQ=45°,所以Rt△MCP≌Rt△NBQ,所以MP=NQ.故四边形MPQN为平行四边形。