课后复习题3
- 格式:pdf
- 大小:168.34 KB
- 文档页数:1
一、选择题1.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( )A .4B .5C .6D .72.(0分)[ID :10223]下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥ 4.(0分)[ID :10220]顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是( )A .矩形B .菱形C .正方形D .平行四边形5.(0分)[ID :10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示: 鞋的尺码/cm 2323.5 24 24.5 25 销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,246.(0分)[ID :10217]已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.18.(0分)[ID:10202]如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.729.(0分)[ID:10193]如图,以 Rt△ABC的斜边 BC为一边在△ABC的同侧作正方形 BCEF,设正方形的中心为 O,连接 AO,如果 AB=4,AO=62,那么 AC 的长等于()A.12B.16C.43D.8210.(0分)[ID:10180]如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A.B.C.D.的自变量取值范围是( )11.(0分)[ID:10175]函数y=√x+3A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0 12.(0分)[ID:10171]()23-)A.﹣3B.3或﹣3C.9D.313.(0分)[ID:10167]如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于()A .2B .3C .4D .614.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.815.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题16.(0分)[ID :10325]将一次函数y=3x ﹣1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为__.17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10309]若ab <0,则代数式2a b 可化简为_____.19.(0分)[ID :10301]如图所示,将四根木条组成的矩形木框变成▱ABCD 的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.20.(0分)[ID :10295]一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.21.(0分)[ID :10281]如图,在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为____________.22.(0分)[ID :10260]在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10251]A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B 的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.25.(0分)[ID :10246]一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.三、解答题26.(0分)[ID :10421]如图,菱形ABCD 中,对角线AC 、BD 交于O 点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.27.(0分)[ID:10412]如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC 的中点,若DE=3,求B C的长.28.(0分)[ID:10365]如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC 上的点,AE=CF,并且∠AED=∠CF D.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.29.(0分)[ID:10359]已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF=.求证:四边形AECF是菱形.30.(0分)[ID:10337]将函数y=x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|x+b|(b为常数)的图象(1)当b=0时,在同一直角坐标系中分别画出函数112y x=+与y=|x+b|的图象,并利用这两个图象回答:x取什么值时,112x+比|x|大?(2)若函数y=|x+b|(b为常数)的图象在直线y=1下方的点的横坐标x满足0<x<3,直接写出b的取值范围【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.A4.C5.A6.B7.C8.D9.B10.C11.B12.D13.C14.D15.B二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+217.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ再在直角三角形AQC中求出CQ得出BC=40+21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE再由∠ABE =∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB边的高即可得到答案【详解】如图作出AB边上的高CD∵AC=BC=13AB=10∴△ABC是等腰三角形∴AD=BD=5根据勾股定理C23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a千米/小时乙车的速度为b千米/小时解得∴AB两地的距离为:80×9=7225.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】7n是完全平方数,满足条件的最小正整数n为7.【详解】∴7n是完全平方数;∴n的最小正整数值为7.故选:D.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b b a a=.解题关键是分解成一个完全平方数和一个代数式的积的形式. 2.C解析:C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【详解】解:∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH//FG//BD ,EF//AC//HG ,EH =FG =12BD ,EF =HG =12AC , ∴四边形EFGH 是平行四边形,∵AC ⊥BD ,AC =BD ,∴EF ⊥FG ,FE =FG ,∴四边形EFGH 是正方形,故选:C .【点睛】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.5.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5, 故选A .【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.6.B解析:B【解析】【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形.【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.C解析:C【解析】【分析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.8.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.9.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:62OA OG ==,AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO ,∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.10.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.11.B解析:B【解析】【分析】【详解】由题意得:x+3>0,解得:x>-3.故选B.12.D解析:D【解析】【分析】本题考查二次根式的化简,(0)(0)a aa a⎧=⎨-<⎩.【详解】|3|3=-=.故选D.【点睛】本题考查了根据二次根式的意义化简.a≥0a;当a≤0a.13.C解析:C【解析】【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C14.D解析:D【解析】【分析】【详解】解:∵AB=2.5米,AC=0.7米,∴BC(米).∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC﹣0.4=2(米),∴DC(米),∴梯子的底部向外滑出AD=1.5﹣0.7=0.8(米).故选D.【点睛】此题主要考查了勾股定理在实际生活中的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.15.B解析:B【解析】【分析】由于正比例函数y=kx(k≠0)函数值随x的增大而增大,可得k>0,-k<0,然后判断一次函数y=kx-k的图象经过的象限即可.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而增大,∴k>0,∴-k<0,∴一次函数y=kx-k的图象经过一、三、四象限;故选:B.本题主要考查了一次函数的图象,一次函数y=kx+b(k≠0)中k,b的符号与图象所经过的象限如下:当k>0,b>0时,图象过一、二、三象限;当k>0,b<0时,图象过一、三、四象限;k<0,b>0时,图象过一、二、四象限;k<0,b<0时,图象过二、三、四象限.二、填空题16.y=3x+2【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后可得y=3x﹣1+3=3x+2故答案为y=3x+2解析:y=3x+2.【解析】【详解】将一次函数y=3x﹣1的图象沿y轴向上平移3个单位后,可得y=3x﹣1+3=3x+2.故答案为y=3x+2.17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键解析:x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1.点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.19.30°【解析】【分析】过A作AE⊥BC于点E由四根木条组成的矩形木框变成▱ABCD的形状面积变为原来的一半可得AE=AB由此即可求得∠ABE=30°即平行四边形中最小的内角为30°【详解】解:过A作解析:30°【解析】【分析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=12AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=12AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°【点睛】本题考查了平行四边形的面积公式及性质,根据题意求得AE=12AB是解决问题的关键.20.【解析】【分析】设该船行驶的速度为x海里/时由已知可得BC=3xAQ⊥BC∠BAQ=60°∠CAQ=45°AB=80海里在直角三角形ABQ中求出AQBQ 再在直角三角形AQC中求出CQ得出BC=40+404033【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+3=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x=4033+.40403+/时;40403+【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.21.2【解析】【分析】根据平行四边形的性质可得出AD∥BC则∠AEB=∠CBE 再由∠ABE=∠CBE则∠AEB=∠ABE则AE=AB从而求出DE【详解】解:∵四边形ABCD是平行四边形∴AD∥BC∴∠A解析:2【解析】【分析】根据平行四边形的性质,可得出AD∥BC,则∠AEB=∠CBE,再由∠ABE=∠CBE,则∠AEB=∠ABE,则AE=AB,从而求出DE.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE =AB ,∵AB =3,BC =5,∴DE =AD -AE =BC -AB =5-3=2.故答案为2.【点睛】本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.22.60【解析】【分析】根据题意可以判断为等腰三角形利用勾股定理求出AB 边的高即可得到答案【详解】如图作出AB 边上的高CD∵AC=BC=13AB=10∴△ABC 是等腰三角形∴AD=BD=5根据勾股定理C 解析:60【解析】【分析】根据题意可以判断ABC ∆为等腰三角形,利用勾股定理求出AB 边的高,即可得到答案.【详解】如图作出AB 边上的高CD∵AC=BC=13, AB=10,∴△ABC 是等腰三角形,∴AD=BD=5,根据勾股定理 CD 2=AC 2-AD 2, 22135-,12ABC SCD AB =⋅=112102⨯⨯=60, 故答案为:60.【点睛】 此题主要考查了等腰三角形的判定及勾股定理,关键是判断三角形的形状,利用勾股定理求出三角形的高.23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【解析】【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点24.【解析】【分析】根据题意和函数图象中的数据可以求得甲乙两车的速度再根据路程=速度×时间即可解答本题【详解】解:设甲车的速度为a 千米/小时乙车的速度为b 千米/小时解得∴AB 两地的距离为:80×9=72解析:【解析】【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米, 设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1320(千米) 故答案为:1320.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.33【解析】【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445解析:3, 3,32. 【解析】【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键.三、解答题26.(1)证明见解析;(2)2165. 【解析】【分析】(1)由DE ∥AC ,CE ∥BD 可得四边形OCED 为平行四边形,又AC ⊥BD 从而得四边形OCED 为矩形;(2)过点O 作OH ⊥BC ,垂足为H ,由已知可得三角形OBC 、OCD 的面积,BC 的长,由面积法可得OH 的长,从而可得三角形OCF 的面积,三角形OCD 与三角形OCF 的和即为所求.【详解】(1)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形.又∵四边形ABCD 是菱形,∴AC ⊥BD .∴∠DOC=90°.∴四边形OCED 为矩形.(2)∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =12BD =6,OA =OC =12AC =8,∴CF=CO=8,S △BOC =S △DOC =12OD OC ⋅=24,在Rt △OBC 中,BC =10,.作OH ⊥BC 于点H ,则有12BC·OH=24,∴OH=245,∴S △COF =12CF·OH=965.∴S 四边形OFCD =S △DOC +S △OCF =2165.【点睛】本题考查菱形的性质,矩形的判定与性质,勾股定理,三角形面积的计算方法等知识点,熟练掌握基础知识点,计算出OH 的长度是解题关键.27.【解析】【分析】根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC 的长即可.【详解】∵ D 、E 是AB 、BC 的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.28.(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA 证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C .在△AED 与△CFD 中,A C AE CFAED CFD ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AED ≌△CFD (ASA );(2)由(1)知,△AED ≌△CFD ,则AD=CD .又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.29.见解析【解析】【分析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.30.(1)见解析,223x-<<;(2)21b--【解析】【分析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b=0时,y=|x+b|=|x|列表如下:x-101112y x =+ 121 12 y =|x|1 0 1 描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩= ∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩ ∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2), ∴观察图象可知:223x -<<时,112x +比||x 大; (2)如图,观察图象可知满足条件的b 的值为21b --,【点睛】本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.。
操作系统课后复习题答案第一章一、简答题3.什么是操作系统?操作系统在计算机系统中的主要作用是什么?操作系统是管理系统资源、控制程序执行、改善人机界面、提供各种服务,并合理组织计算机工作流程和为用户有效地使用计算机提供良好运行环境的一种系统软件.主要作用(1)服务用户—操作系统作为用户接口和公共服务程序(2)进程交互—操作系统作为进程执行的控制者和协调者(3)系统实现—操作系统作为扩展机或虚拟机(4)资源管理—操作系统作为资源的管理者和控制者15.什么是多道程序设计?多道程序设计有什么特点?多道程序设计是指允许多个作业(程序)同时进入计算机系统内存并执行交替计算的方法。
从宏观上看是并行的,在一个时间段,它们都在同时执行,都处于执行的开始点和结束点之间;从微观上看是串行的,在某一时刻,他们在同一台计算机上交替、轮流、穿插地执行。
(1)可以提高CPU、内存和设备的利用率;(2)可以提高系统的吞吐率,使单位时间内完成的作业数目增加;(3)可以充分发挥系统的并行性,使设备和设备之间,设备和CPU 之间均可并行工作。
19.分时系统中,什么是响应时间?它与哪些因素有关?分时系统的响应时间是指用户从终端发出一个命令到系统处理完这个命令并做出回答所需要的时间。
这个时间受时间片长度、终端用户个数、命令本身功能、硬件特性、主存与辅存的交换速度等影响。
23.现代操作系统具有哪些基本功能?请简单叙述之。
(1)处理器管理;(2)存储管理;(3)设备管理;(4)文件管理;(5)联网与通信管理。
/某tip某/简述操作系统资源管理的资源复用技术。
系统中相应地有多个进程竞争使用资源,由于计算机系统的物理资源是宝贵和稀有的,操作系统让众多进程共享物理资源,这种共享称为资源复用。
(1)时分复用共享资源从时间上分割成更小的单位供进程使用;(2)空分复用共享资源从空间上分割成更小的单位供进程使用。
二、应用题2、答:画出两道程序并发执行图如下:(1)两道程序运行期间,CPU存在空闲等待,时间为100至150m之间(见图中有色部分)。
一、选择题1.这支铅笔的长度是()厘米。
A. 7B. 9C. 82.在尺子上,从刻度4到刻度9之间的长度是()厘米。
A. 4B. 5C. 63.图中小刀长()厘米A. 9B. 5C. 44.下面()比1米长。
A. B. C.5.1米-14厘米=()A. 13厘米B. 不够减C. 86厘米6.在尺子上,从刻度2到刻度8,长度是()厘米。
A. 6B. 8C. 107.一拃大约是()A. 10厘米B. 2分米C. 30毫米8.下列物体中,高度约是2米的是()。
A. B. C.9.小月家离顺峰山公园大约()。
A. 600米B. 399米C. 1千米10.小华家到学校大约800米,估计一下,他在上学的路上可能走了()步。
A. 16B. 160C. 1600D. 16000 11.长1米的木棒和长100厘米的铁丝相比,()。
A. 铁丝长B. 木棒长C. 同样长D. 无法比较12.一根彩带长60米,李叔叔剪去7米,钱叔叔剪去18米,一共剪去()米。
A. 35B. 25C. 4213.可以用来测量物体长度的单位是()。
A. 时B. 角C. 米14.用一根皮尺量一条线段的长度,这条线段长()。
A. 62厘米B. 60厘米C. 72厘米D. 52厘米15.100张纸的厚度约1厘米,推想一下,一百万张这种纸的厚度约是()A. 10米B. 100米C. 1000米D. 10000米二、填空题16.这支铅笔长是________厘米。
17.直尺上从刻度0到4是________厘米,从3到11是________厘米。
18.在括号里填厘米或米。
一棵大树高大约9________一根火柴长4________小红身高1________35________19.1米=________厘米 24厘米+49厘米=________厘米。
20.一只蚂蚁从尺子的17厘米处爬到8厘米处,它爬了________厘米。
21.大树高16________;一块橡皮的长约6________(填:米或厘米)。
一、选择题1.能正确表示下列反应的离子方程式为A .碳酸氢钠溶液中滴入氢氧化钙溶液:HCO 3-+OH ﹣=CO 23-+H 2OB .用醋酸除去水垢:2H ++CaCO 3=Ca 2++CO 2↑+H 2OC .硫化钡加入稀硫酸:BaS+2H +=H 2S↑+Ba 2+D .新制的氧化铝可溶于氢氧化钠溶液:Al 2O 3+2OH ﹣=2AlO 2-+H 2O2.某反应过程中存在2Fe +、3NO -、3Fe +、4NH +、H +和2H O 六种粒子,测得3Fe +、3NO -的质量分数(w)随时间变化的曲线如图所示,下列判断错误的是A .3NO -被还原,发生还原反应B .还原性:2++4Fe >NHC .2Fe +被氧化为3Fe +D .还原剂与氧化剂的物质的量之比为1:8 3.将表面已完全钝化的铝条,插入下列溶液中,几乎不反应的是A .稀硝酸B .NaOH 溶液C .Cu(NO 3)2溶液D .稀硫酸 4.下列离子反应方程式书写正确的是A .大理石与稀醋酸反应:CaCO 3+2H +=Ca 2++ H 2O+CO 2↑B .向饱和碳酸钠溶液中通入过量 CO 2:23CO -+CO 2+H 2O=23HCO -C .10 mL 0.1 mol/LFeBr 2溶液中通入足量(标准状况下)的Cl 2:2Fe 2++4Br -+3Cl 2=2Fe 3++2Br 2+6Cl -D .FeCl 3溶液中滴加KSCN 溶液:Fe 3++3SCN -=Fe(SCN)3↓5.只用下列试剂中的一种,就能将FeCl 3、AlCl 3和NaCl 三种溶液区别开的是 A .KSCN 溶液 B .BaCl 2溶液 C .NaOH 溶液 D .AgNO 3溶液6.下列说法正确的是( )A .SiO 2和CO 2都是酸性氧化物,都是共价化合物B .为防止月饼等富脂食品氧化变质,可在包装袋中放入硅胶C .NaHCO 3溶液中含有Na 2SiO 3杂质,可通入少量CO 2后过滤D .SiO 2中含Al 2O 3杂质,可加入足量NaOH 溶液然后过滤除去7.过硝酸钠 (NaNO 4)能与水发生反应: NaNO 4+H 2O=NaNO 3+H 2O 2,下列说法不正确的是 A .过硝酸钠具有强氧化性,没有还原性B .过硝酸钠中含有—O —O —结构C .将过硝酸钠加入酸性FeSO 4溶液中发生的离子方程式:-4NO +2Fe 2++2H +=3NO -+2Fe 3++H 2OD .过硝酸钠可用于杀菌消毒8.在混合体系中,确认化学反应先后顺序有利于解决问题,下列反应先后顺序判断正确的是( )A .在含FeBr 2、FeI 2的溶液中缓慢通入Cl 2:I -,Br -,Fe 2+B .在含Fe 3+,Cu 2+、H +的溶液中加入Zn :Fe 3+,Cu 2+、H +、Fe 2+C .在含Ba (OH )2、KOH 的溶液中通入CO 2:KOH ,Ba (OH )2,BaCO 3、K 2CO 3D .在含[Al(OH)4]-、OH -,CO 23-溶液中,逐滴加入盐酸:[Al(OH)4]-、Al(OH)3、OH -、CO 23-9.下列实验现象描述正确的是A .将打磨过的铝片投入氢氧化钠溶液中,无明显现象B .将氯水滴入紫色石蕊试液中,石蕊试液先变红后褪色C .将红热的铜丝伸入盛有氯气的集气瓶中,剧烈燃烧,产生大量蓝色的烟D .将溴水和四氯化碳混合并振荡,静置后,分层,上层接近无色,下层呈橙红色10.在给定条件下,下列选项所示的物质间转化均能实现的是 A .饱和NaCl(aq)2CO →足量NaHCO 3Δ−−→Na 2CO 3 B .Fe 2O →煅烧Fe 2O 32H O −−−→ Fe(OH)3 C .Na →空气 Na 2O 2ΔO →Na 2O 2 D .Cl 2(g)2Ca(OH)−−−−→Ca(ClO)22SO →足量HClO 二、填空题11.按要求写方程式(1)过氧化钠与水反应(化学方程式)___________(2)铁与水蒸气反应(化学方程式)___________(3)氯气与氢氧化钙反应(化学方程式)___________(4)铝氢化钠(NaAlH4)遇水发生剧烈反应产生大量气泡(化学方程式)___________(5)大气中的水蒸气在紫外线作用下会转化为活泼的·OH(羟基自由基,“·”表示1个电子)。
一、选择题1.下列叙述不正确的是A.天然气的主要成分是甲烷,是一种清洁、不可再生的化石燃料B.液氨汽化时吸收大量的热,因此液氨常用作制冷剂C.活性炭、SO2、Na2O2都能使品红溶液褪色,原理相同D.石油分馏得到的汽油是混合物2.下列说法正确的是A.可燃物的物质的量发生变化,其燃烧热会发生变化B.物质燃烧的热化学方程式与物质燃烧热的热化学方程式书写一样C.使燃料充分燃烧,要有足够的空气;燃料与空气有足够小的接触面积D.新能源的优势,资源丰富,可以再生,没有污染或污染很少3.下列说法不正确的是A.“氢化油”可以用来制肥皂,也可以用于生产人造奶油B.现代工业生产中芳香烃主要来源于石油化学工业中的催化重整和裂化C.催化裂化可以提高汽油等轻质油的产量与质量D.可燃冰的主要成分为CH4·nH2O,是可再生能源4.中华传统文化中蕴藏丰富的化学知识。
下列说法正确的是A.“高奴县石脂水,水腻,浮上如漆,采以膏车及燃灯极明”中的“石脂水”为油脂B.“凡石灰经火焚……风中久自吹化成粉”中的“粉”为氧化钙C.“盖此矾色绿味酸,烧之则赤……”中“矾”为五水硫酸铜D.“土鼎者……入砂于鼎中,用阴阳火候飞伏之”中“土鼎”的主要成分为硅酸盐5.下列实验装置图正确的是A.实验室制备及收集乙烯B.石油分馏C.实验室制硝基苯D.实验室制乙酸乙酯6.利用海水提取溴和镁的过程如图,下列说法不正确的是A.工业上常利用电解熔融MgCl2冶炼金属镁B.工业溴中含少量Cl2,可用NaOH溶液除去C.富集溴元素过程中,空气吹出法利用了溴易挥发的性质D.若提取1mol工业溴,至少需要标准状况下44.8L的Cl27.塑料、合成橡胶和合成纤维这三大类合成材料,都主要是以石油、煤和天然气为原料生产的,下列有关说法错误的是A.天然气作为化工原料主要用于合成氨和生产甲醇B.煤可以直接液化,煤与氢气作用生成液体燃料C.乙烯、丙烯、甲烷等主要化工基本原料都可以由石油分馏得到D.聚乙烯塑料的主要成分聚乙烯是由乙烯通过聚合反应制得的8.下列说法不正确的是A.钠着火不能用泡沫灭火器灭火B.石灰石在高温下可用于消除燃煤烟气中的SO2C.二氧化硅具有导电性,可用于制造光导纤维D.利用催化剂可减少汽车尾气中有害气体的排放9.从海带中提取I2的实验流程如图所示,下列说法正确的是A.操作①用到的玻璃仪器有烧杯、玻璃棒、漏斗B.操作②用到的玻璃仪器有长颈漏斗、烧杯C.操作③用到的玻璃仪器有烧杯、酒精灯、温度计、漏斗D.将操作②中的苯换为酒精可以达到同样的效果10.下表中相关物质的信息都正确的一项是()选项化学式电子式或含有的化学键类型物质的性质与性质相对应的用途A NaClO强氧化性消毒液B H2O2不稳定,易分解医用消毒剂C NH3共价键水溶液呈弱碱性工业制硝酸D KAl(SO4)2离子键易水解自来水消毒剂A.A B.B C.C D.D二、填空题11.“兴尽晚归舟,误入藕花深处”。
一、选择题1.(0分)[ID :12112]已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.(0分)[ID :12093]设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则BA =( ) A .()0,1B .[)0,1C .(]0,1D .[]0,13.(0分)[ID :12089]已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( )A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.(0分)[ID :12127]在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.(0分)[ID :12108]酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .76.(0分)[ID :12083]已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( )A .278-B .18-C .18D .2787.(0分)[ID :12075]已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20228.(0分)[ID :12054]已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( ) A .1B .-1C .-3D .39.(0分)[ID :12031]设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( )A .()1,2B .()2,+∞C .(D .)210.(0分)[ID :12072]设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,611.(0分)[ID :12063]将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nty ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .512.(0分)[ID :12047]偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭13.(0分)[ID :12123]函数y =11x -在[2,3]上的最小值为( ) A .2 B .12C .13D .-1214.(0分)[ID :12079]已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q ⋃=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}15.(0分)[ID :12040]下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题16.(0分)[ID :12225]若155325a b c ===,则111a b c+-=__________. 17.(0分)[ID :12221]已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.18.(0分)[ID :12219]若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m的取值范围是__________.19.(0分)[ID :12217]已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______20.(0分)[ID :12195]已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑ni n i x x x x ,则1ni i x ==∑__________.21.(0分)[ID :12179]已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.22.(0分)[ID :12167]若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________.23.(0分)[ID :12155]2()2f x x x =+(0x ≥)的反函数1()fx -=________24.(0分)[ID :12145]已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0x f x k -=的所有根的和的最大值是_______.25.(0分)[ID :12134]已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.三、解答题26.(0分)[ID :12292]已知全集U =R,函数()lg(10)f x x =-的定义域为集合A ,集合{}|57B x x =≤<(1)求集合A ; (2)求()U C B A ⋂.27.(0分)[ID :12289]已知二次函数()f x 满足()02f =,()()12f x f x x +-=. (1)求函数()f x 的解析式;(2)若关于x 的不等式()0f x mx -≥在[]1,2上有解,求实数m 的取值范围; (3)若方程()2f x tx t =+在区间()1,2-内恰有一解,求实数t 的取值范围.28.(0分)[ID :12268]设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围.29.(0分)[ID :12245]若()221x x af x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.30.(0分)[ID :12291]已知函数2()1f x x x m =-+.(1)若()f x 在x 轴正半轴上有两个不同的零点,求实数m 的取值范围; (2)当[1,2]x ∈时,()1f x >-恒成立,求实数m 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.B3.B4.C5.C6.B7.C8.C9.D10.D11.D12.D13.B14.C15.D二、填空题16.1【解析】故答案为17.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有18.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根19.【解析】【分析】由求得进而求解的值得到答案【详解】由题意函数(为常数)且所以所以又由故答案为:【点睛】本题主要考查了函数值的求解其中解答中根据函数的解析式准确运算是解答的关键着重考查了计算能力属于基20.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以21.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值22.【解析】【分析】根据函数经过点求出幂函数的解析式利用反函数的求法即可求解【详解】因为点在幂函数的图象上所以解得所以幂函数的解析式为则所以原函数的反函数为故答案为:【点睛】本题主要考查了幂函数的解析式23.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对24.5【解析】【分析】将化简为同时设可得的函数解析式可得当k等于8时与的交点的所有根的和的最大可得答案【详解】解:由可得:设由函数的性质与图像可得当k等于8时与的交点的所有根的和的最大此时根分别为:当时25.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <,341x x =,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.B解析:B 【解析】 【分析】先化简集合A,B,再求BA 得解.【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}BA x x =≤<.故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.5.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.6.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322ff18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭,答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题7.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.【详解】()()10f x f x ++-=,()f x ∴关于1,02⎛⎫ ⎪⎝⎭对称, 而函数121=-y x 也关于1,02⎛⎫ ⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫ ⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称, 122022...101111011x x x ∴+++=⨯=.故选:C【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.8.C解析:C【解析】【分析】由(1)(3)0f x f x ++-=结合()f x 为奇函数可得()f x 为周期为4的周期函数,则(2019)(1)f f =-,要使函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,结合图像可得(1)3f =,即可得到答案.【详解】()f x 为定义在R 上的奇函数,∴()()f x f x -=-, 又(1)(3)0(13)(33)0f x f x f x f x ++-=⇔+++--=,(4)()0(4)()()f x f x f x f x f x ++-=⇔+=--=∴,∴()f x 在R 上为周期函数,周期为4,∴(2019)(50541)(1)(1)f f f f =⨯-=-=-函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,即6(1)cos 43x f x ⋅-=只有唯一解,令6()m x x = ,则5()6m x x '=,所以(,0)x ∈-∞为函数6()m x x =减区间,(0,)x ∈+∞为函数6()m x x =增区间,令()(1)cos 43x f x ϕ=⋅-,则()x ϕ为余弦函数,由此可得函数()m x 与函数()x ϕ的大致图像如下:由图分析要使函数()m x 与函数()x ϕ只有唯一交点,则(0)(0)m ϕ=,解得(1)3f = ∴(2019)(1)3f f =-=-,故答案选C .【点睛】本题主要考查奇函数、周期函数的性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题.9.D解析:D【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x ⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数, 若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2,故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解 10.D解析:D由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11.D 解析:D【解析】由题设可得方程组()552{4n m n ae a a ae +==,由55122n n ae a e =⇒=,代入(5)1142m n mnae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
一、填空题1.氯水中含有多种成分,因而具有多种性质,根据新制氯水分别与如图四种物质发生的反应填空(a 、b 、c 、d 、e 中重合部分代表物质间反应,且氯水足量)。
()1氯水中含有的粒子有2H O 、2Cl 、___________、H+、Cl -、___________、OH -七种。
()2久置的氯水变为___________,原因是___________(用化学反应方程式表示);实验室保存饱和氯水的方法是___________。
()3b 过程中的离子方程式是___________。
()4e 过程中所发生的主要反应的化学方程式为___________。
()5能证明氯水具有漂白性的是___________填“a”、“b”、“c”或“d”)。
2.氯及其化合物在生产、生活中有着广泛的用途(1)次氯酸钠是最普通的家庭洗涤中的“氯”漂白剂和消毒剂。
已知“84消毒液”的主要成分是次氯酸钠,在清洗卫生间时,若将“洁厕灵”与“84消毒液”混合使用会发生氯气中毒事件。
请从氧化还原反应的角度分析原因:_______________________。
(2)漂白粉的有效成分是:______________(填化学式),老师新买的漂白粉没有保存说明书,请你为漂白粉设计一份保存注意事项(不超过20个字):_____________,漂白粉久置后其成分除CaCl 2外还含有______________ (填化学式),请你设计实验方案证明该固体粉末含Cl -离子:____________________________。
(3)高铁酸钠(Na 2FeO 4)具有强氧化性,可对自来水进行消毒、净化。
高铁酸钠可用氢氧化铁和次氯酸钠在碱性介质中反应得到,请补充并配平下述离子方程式Fe(OH)3+ClO -+OH -→2-4FeO +□:_____________________________。
(4)ClO 2是一种消毒、杀菌效率高、二次污染小的水处理剂。
分子生物学课后习题答案(3)《现代分子生物学》第五次作业1、遗传密码有哪些特性?答:a.遗传密码的连续性,密码间无间断也没有重叠,即起始密码子决定了所有后续密码子的位置。
b.遗传密码的简并性,即同一个氨基酸可能由一种以上密码子编码。
c.遗传密码的通用性和特殊性,无论是体内还是体外,也无论是对病毒、细菌、动物还是植物而言,遗传密码都是通用的;但是某些密码子在不同生物中有着相对特殊的作用。
d.遗传密码子与反密码子的相互作用,在蛋白质生物合成过程中,tRNA的反密码子在核糖体内是通过碱基的反向配对与mRNA上的密码子相互作用的。
2、有几种终止密码子?它们的序列和别名是什么?答:3种,它们的序列是UAA、UGA和UAG,其中UAA叫赭石密码,UAG叫琥珀密码,UGA叫蛋白石密码。
3、简述摆动学说。
答:1996年,Crick根据立体化学原理提出摆动学说,解释了反向密码子中某些稀有成分的配对,以及许多氨基酸有两个以上密码子的问题。
假说中提出:在密码子与反密码子的配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以“摆动”,因而使某些tRNA可以识别一个以上的密码子。
一个tRNA 究竟能识别多少个密码子是由反密码子的第一位碱基的性质决定的,反密码子的第一位A或C时智能识别1种密码子,为G或U时可以识别2种密码子,为I 时可识别3种密码子。
如果有几个密码子同时编辑一个氨基酸,凡是第一、二位碱基不同的密码子都对应于各自独立的tRNA。
4、tRNA在组成及结构上有哪些特点?答:(1)所有的tRNA都具有共同的特征:存在经过特殊的修饰碱基,tRNA的3’端都以CCA-OH结束,该位点是tRNA与相应氨基酸结合的位点。
(2)tRNA的三叶草型二级结构:受体臂(acceptor arm):其3’端的最后3个碱基序列永远是CCA。
TφC臂:根据3个核苷酸命名的,其中φ表示拟尿嘧啶,是tRNA 分子所拥有的不常见核苷酸。