高三数学考试试题
- 格式:doc
- 大小:30.00 KB
- 文档页数:2
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -3D. 无理数2. 函数y=2x-1的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像3. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项an的值为:A. 19B. 21C. 23D. 254. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°5. 若复数z满足|z-1|=2,则复数z在复平面上的几何意义是:A. z到点(1,0)的距离为2B. z到点(0,1)的距离为2C. z到点(1,1)的距离为2D. z到点(0,0)的距离为26. 下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知函数f(x)=x^2-4x+3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log2(x+1)=3,则x的值为:A. 2B. 3C. 4D. 510. 下列不等式中,正确的是:A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x二、填空题(本大题共5小题,每小题5分,共25分)11. 已知等比数列{an}的第一项a1=1,公比q=2,则第n项an=______。
12. 在△ABC中,若∠A=60°,b=8,c=10,则a=______。
13. 函数y=2^x的图像与y=2^(-x)的图像关于______对称。
14. 若复数z=3+4i,则|z|=______。
15. 已知等差数列{an}的前n项和为Sn,若a1=2,d=3,则S10=______。
高三数学考试试题一、选择题(每题4分,共40分)1. 若函数f(x) = ax^2 + bx + c的图像是开口向上的抛物线,那么a 的取值范围是:A. a > 0B. a < 0C. a = 0D. a ≠ 02. 已知集合A={x|-1≤x≤2},B={x|-2≤x≤1},则A∪B的结果是:A. {x|-2≤x≤2}B. {x|-1≤x≤1}C. {x|-1≤x≤2}D. {x|-2≤x≤1}3. 若sin(α+β)sin(α-β) = m,那么cos^2α - sin^2β的值是:A. mB. -mC. 1-mD. 1+m4. 已知数列{an}满足a1=2,an+1 = an + 3n,那么a5的值是:A. 23B. 28C. 33D. 385. 函数y = ln(x)的导数是:A. 1/xB. x/ln(x)C. ln(x)/xD. ln^2(x)6. 已知直线l1: x + y - 3 = 0 与直线l2: 2x - y + 6 = 0,它们的交点坐标是:A. (1, 2)B. (-1, 4)C. (3, 0)D. (0, 3)7. 已知圆心在原点,半径为2的圆的方程是:A. x^2 + y^2 = 4B. x^2 + y^2 = 2C. x^2 + y^2 > 4D. x^2 + y^2 < 48. 若z = x + yi,其中x和y为实数,i为虚数单位,那么|z|的值是:A. √(x^2 + y^2)B. √(x^2 - y^2)C. x - yiD. x + yi9. 已知函数f(x) = x^3 - 3x^2 + 2x - 1,求f'(1)的值:A. -1B. 0C. 1D. 210. 若方程x^2 - 4x + 3 = 0有实数根,则实数根的和是:A. 1B. 2C. 4D. 0二、填空题(每题3分,共15分)11. 若sin(θ) = √3/2,且θ为锐角,则cos(θ) = _______。
高三数学考试题目及答案大全第一节选择题1.若a+b=0,则下列说法错误的是() A. a=-b B. b=-a C. a·b=0 D. a=b2.若函数y=ax+b在点(1,-3)处的斜率为-2,则a,b的值分别为() A. 2,-1 B. -2,1 C. -1,2 D. 1,-23.若直线2x+y+1=0与x轴交于点(-1, 0),求直线的斜率k为() A. k=0 B. k=1 C. k=-1 D. k=1/2第二节填空题1.已知平方根2的近似值为1.414,则2的近似值为_________。
2.已知函数y=x^2+4x+6,当x=-2时,y的值为_________。
第三节计算题1.求函数y=3x^2-4x+5的极小值。
2.解方程组: \[ \begin{cases} 2x+y=3 \\ x-3y=-2 \end{cases} \]3.计算极限: \[ \lim_{{x\to 1}}\frac{x^2-1}{x-1} \]第四节证明题证明:直线y=3x+1与直线y=3x+2平行。
答案参考第一节选择题1. D. a=b2. D. 1,-23. B. k=1第二节填空题1.2的近似值为1.414 x 2 =2.8282.当x=-2时,y=(-2)^2 + 4 × (-2)+ 6 = 2第三节计算题1.函数y=3x^2-4x+5的极小值为(4, 9)2.解得x=5,y=-73.解得极限值为2第四节证明题设直线y=3x+1过点(0, 1),直线y=3x+2过点(0,2),斜率均为3,两直线平行。
证毕。
以上为高三数学考试题目及答案大全内容,希望对你的学习有所帮助。
1高三数学考试试卷数学试题一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个选项中只有一个是符合题目要求的,不选,多选,错选均不给分.)1. 已知集合{}10<≤=x x P ,{}32≤≤=x x Q .记Q P M Y =,则 A .{}M ⊆2,1,0 B .{}M ⊆3,1,0C .{}M ⊆3,2,0D .{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A .{}0>x x B .{}0≥x x C .{}0≠x x D .R 3. 将不等式组⎩⎨⎧≥-+≥+-01,01y x y x 表示的平面区域记为Ω,则属于Ω的点是A .)1,3(-B .)3,1(-C .)3,1(D .)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA .1B .6log 2C .3D .9log 25. 双曲线1322=-y x 的渐近线方程为 A .x y 31±= B .x y 33±= C .x y 3±= D .x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A .31B .33C .32D .367. 若锐角α满足53)2πsin(=+α,则=αsinA .52 B .53 C .43 D .548.在三棱锥ABC O -中,若D 为BC 的中点,则= A .OB OC OA -+2121 B . OC OB OA ++2121 C .OA OC OB -+2121 D . OA OC OB ++21219. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是 A .{}n n b a ⋅ B .{}n n b a + C .{}1++n n b a D .{}1+-n n b aABCD 1A1D 1C 1B(第6题图)210.不等式1112<+--x x 的解集是 A . ⎭⎬⎫⎩⎨⎧<<-313x x B . ⎭⎬⎫⎩⎨⎧<<-331x x C . ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D . ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A .)2(+x f 为奇函数B . )2(+x f 为偶函数C .)2(-x f 为奇函数D . )2(-x f 为偶函数12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分 别为四个小正方形的内切圆,则图中某个圆的方程是 A .01222=++-+y x y x B .012222=+-++y x y x C .01222=-+-+y x y x D .012222=-+-+y x y x13. 设a 为实数,则“21aa >”是“a a 12>”的A .充分不必要条件B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=a A .41 B .43 C .1 D .3415. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A .乙甲乙甲,V V S S >>B . 乙甲乙甲,V V S S <>C .乙甲乙甲,V V S S ><D . 乙甲乙甲,V V S S <<ABCDxyo(第12题图)a a a aa a 15题图①)a aa aaa 侧视图15题图②)316.如图,F 为椭圆)0(12222>>=+b a by a x 的右焦点,过F 作x 轴的垂线交椭圆于点P ,点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB的面积是△OPF 面积的25倍,则该椭圆的离心率是 A .52或53 B .51或54C .510或515 D .55或552 17.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A .1或3B . 2或3C . 2或4D .3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC .若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A . C AB F -- B . D EF B --C . C BF A --D . D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19. 已知函数1)3π2sin(2)(++=x x f ,则)(x f 的最小正周期是 ▲ ,)(x f 的最大值是 ▲ .20. 若平面向量,满足)6,1(2=+,)9,4(2-=+,则=⋅ ▲ . 21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ . 22.若不等式02)(22≥----a x a x x 对于任意R ∈x 恒成立,则实数a 的最小值是▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分)在等差数列{})N (*∈n a n 中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物ABCDEF(第18题图)(第16题图)4线上位于第一象限内的点.(Ⅰ) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(Ⅱ)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分) 如图,在直角坐标系xOy 中,已知点)0,2(A ,)3,1(B ,直线t x =)20(<<t 将△OAB 分成两部分,记左侧部分的多边形为Ω.设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(Ⅰ) 分别求函数)(t f 和)(t g 的解析式;(Ⅱ)是否存在区间),(b a ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b - 的最大值;若不存在,说明理由.ABxoyt x =(第25题图)xyO ABPD(第24题图)5数学试题答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(Ⅰ)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (Ⅱ)将(Ⅰ)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(Ⅰ)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(Ⅱ)由直线AD PA ,的位置关系知 t k k AD -=-=11.因为PB AD ⊥,所以 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(Ⅰ)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为 t t t 2,3,; 当21<<t 时,多边形Ω是四边形(如图②),边长依次为62),1(2),2(3,--t t t .所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22t t t t t t f⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(t t t tt tt g(Ⅱ)由(Ⅰ)中)(t f 的解析式可知,函数)(t f 的单调递减区间是)45,1(,所以 )45,1(),(⊆b a .另一方面,任取)45,1(,21∈t t ,且21t t <,则)()(21t g t g -])2)(2(31)1)(1(211)[(21212112t t t t t t t t -----+-=. 由 45121<<<t t 知,1625121<<t t , 81)1)(1(2021<--<t t ,1639)2)(2(321>--t t .从而<--<)1)(1(2021t t )2)(2(321t t --,即0)2)(2(31)1)(1(212121>-----t t t t 所以 0)()(21>-t g t g ,得)(t g 在区间)45,1(上也单调递减.证得 )45,1(),(=b a .所以,存在区间)45,1(,使得函数)(t f 和)(t g 在该区间上均单调递减,且a b -的最大值为41.(第25题图②)。
一、选择题(每题5分,共50分)1. 下列函数中,在其定义域内单调递增的是()A. f(x) = x^2 - 3x + 2B. f(x) = -x^3 + 2xC. f(x) = 2x - 3D. f(x) = |x| - 12. 已知函数f(x) = x^3 - 6x^2 + 9x + 1,若f(x)的图像与x轴的交点个数为()A. 1B. 2C. 3D. 43. 已知等差数列{an}的前n项和为Sn,若a1 = 3,S5 = 55,则该数列的公差d 为()A. 2B. 3C. 4D. 54. 若复数z满足|z - 1| = |z + 1|,则复数z的取值范围是()A. z = 0B. z = 1C. z = -1D. z = ±15. 下列不等式中,正确的是()A. 2x > x + 1B. x^2 < xC. x^2 + 1 > 0D. x^3 > x^26. 已知函数f(x) = log2(x - 1) + 3,其定义域为()A. (1, +∞)B. (0, +∞)C. (1, 2)D. (2, +∞)7. 在直角坐标系中,点P(2, -3)关于直线y = -x的对称点为()A. (3, -2)B. (3, 2)C. (-3, 2)D. (-3, -2)8. 若向量a = (2, 3),向量b = (4, -6),则向量a与向量b的数量积为()A. 12B. -12C. 0D. 249. 已知圆C的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆C的半径为()A. 1B. 2C. 310. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的大小为()A. 75°B. 90°C. 105°D. 120°二、填空题(每题5分,共25分)11. 函数f(x) = (x - 1)^2 + 2的最小值为______。
高三数学考试试题一、选择题(每题3分,共36分)1. 下列函数中,哪一个不是二次函数?A. y = x^2 + 2x + 1B. y = 3x^2 + 1C. y = x^3D. y = 1/x2. 如果一个几何级数的首项是3,公比是2,那么它的第五项是多少?A. 48B. 96C. 192D. 3843. 已知向量\( \vec{a} = (3, 4) \),\( \vec{b} = (-1, 2) \),那么\( \vec{a} \cdot \vec{b} \)等于:A. 1B. 2C. 5D. 84. 以下哪个选项是正确的三角恒等式?A. \( \sin^2(x) + \cos^2(x) = 1 \)B. \( \tan(x) = \frac{\sin(x)}{\cos(x)} \)C. \( \sec(x) = \frac{\cos(x)}{\sin(x)} \)D. 所有选项都是正确的5-12. (此处略去其他8个选择题,格式与前述题目相同)二、填空题(每题4分,共24分)13. 函数\( f(x) = ax^2 + bx + c \)的顶点坐标是(,)。
14. 已知\( \sin(x) = \frac{3}{5} \),且\( x \)在第一象限,那么\( \cos(x) \)的值是 _______。
15. 将圆的一般方程\( x^2 + y^2 + 2gx + 2fy + c = 0 \)化为标准形式,得到的方程是 _______。
16. 一个几何级数的和为\( S_n = 1 - r^n \),其中\( |r| < 1 \),那么这个级数的第10项是 _______。
三、解答题(共40分)17. (12分)已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)(其中\( a > b > 0 \))的两个焦点是\( F_1 \)和\( F_2 \),且\( |F_1F_2| = 6cm \),椭圆的长轴长度是8cm。
一、选择题(每题5分,共50分)1. 若函数f(x) = 2x^2 - 3x + 1的图像开口向上,则其顶点坐标为()。
A. (1, 0)B. (1, -2)C. (0, 1)D. (0, -2)2. 下列函数中,在区间(-∞,+∞)上单调递增的是()。
A. y = x^3B. y = x^2C. y = x^3 - xD. y = x^2 + 2x3. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 45,则该数列的公差d为()。
A. 3B. 4C. 5D. 64. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 4,f(3) = 6,则a,b,c的值分别为()。
A. 1,1,1B. 2,0,2C. 1,2,1D. 2,1,25. 在三角形ABC中,∠A = 60°,AB = AC = 2,BC = √3,则三角形ABC的面积为()。
A. 2B. √3C. 3D. 46. 已知复数z = a + bi(a,b ∈ R),若|z| = 1,则z的辐角θ满足()。
A. 0 ≤ θ < 2πB. 0 ≤ θ ≤ 2πC. -π ≤ θ < 0D. -π ≤θ ≤ 07. 若函数f(x) = x^3 - 3x + 2在x = 1处的导数为0,则f(x)在x = 1处的极值点为()。
A. 极大值点B. 极小值点C. 无极值点D. 不存在极值点8. 下列不等式中,正确的是()。
A. 2x + 3 > 3x + 2B. x^2 + 2x + 1 < 0C. x^2 - 4x + 4 > 0D.x^2 - 3x + 2 ≤ 09. 在直角坐标系中,点P(2,-1)关于直线y = x的对称点为()。
A. (2,-1)B. (1,2)C. (-1,2)D. (-2,1)10. 已知函数f(x) = |x - 2| + |x + 3|,则f(x)的最小值为()。
新高三数学测试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 6x + 8,则f(3)的值为:A. -1B. 1C. 9D. 11答案:B2. 已知等差数列{a_n}中,a_1 = 2,公差d = 3,求a_5的值。
A. 14B. 17C. 20D. 23答案:A3. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A4. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, 2]答案:B5. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B =:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B6. 已知向量a = (3, 4),b = (-4, 3),则向量a与向量b的夹角θ满足:A. cosθ = 1/7B. cosθ = -1/7C. cosθ = 7/√50D. cosθ = -7/√50答案:A7. 函数y = x^3 - 3x^2 + 4x的导数y'为:A. 3x^2 - 6x + 4B. x^2 - 3x + 4C. 3x^2 - 6x + 1D. x^2 - 3x + 2答案:A8. 已知复数z = 2 + 3i,求|z|的值。
A. √13B. √19C. √7D. √17答案:A9. 已知双曲线方程为x^2/9 - y^2/16 = 1,求其渐近线方程。
A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(16/9)xD. y = ±(9/16)x答案:A10. 已知等比数列{b_n}中,b_1 = 2,公比q = 2,求b_4的值。
A. 16B. 32C. 64D. 128答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。
高三数学试题答案及解析1.某儿童乐园在“六一”儿童节退出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若,则奖励玩具一个;②若,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】(Ⅰ).(Ⅱ)小亮获得水杯的概率大于获得饮料的概率.【解析】用数对表示儿童参加活动先后记录的数,写出基本事件空间与点集一一对应.得到基本事件总数为(Ⅰ)事件包含的基本事件共有个,即计算即得.(Ⅱ)记“”为事件,“”为事件.知事件包含的基本事件共有个,得到事件包含的基本事件共有个,得到比较即知.试题解析:用数对表示儿童参加活动先后记录的数,则基本事件空间与点集一一对应.因为中元素个数是所以基本事件总数为(Ⅰ)记“”为事件.则事件包含的基本事件共有个,即所以,即小亮获得玩具的概率为.(Ⅱ)记“”为事件,“”为事件.则事件包含的基本事件共有个,即所以,则事件包含的基本事件共有个,即所以,因为所以,小亮获得水杯的概率大于获得饮料的概率.【考点】古典概型2.已知双曲线与椭圆共焦点,它们的离心率之和为,则双曲线方程为_____【答案】【解析】略3.函数的定义域为。
【答案】【解析】略4.设、、是三个互不重合的平面,是两条不重合的直线,则下列命题中正确的是()A.B.C.D.【答案】B【解析】略5..(本小题满分12分)已知集合,,(1)在区间上任取一个实数,求“”的概率;(2)设为有序实数对,其中是从集合中任取的一个整数,是从集合中任取的一个整数,求“”的概率.【答案】(1)由已知,, (2)分设事件“”的概率为,这是一个几何概型,则。
…………………………………………………………5分(2)因为,且,所以,,基本事件由下表列出,共12个:共有12个结果,即12个基本事件:1,2,3,4,0,1,2,3,1,0,1, 2 …………………………9分又因为,设事件为“”,则事件中包含9个基本事件,…………………………11分事件的概率。
一、选择题(每小题5分,共50分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √252. 函数 f(x) = x^2 - 4x + 3 的图像与x轴的交点个数是()A. 1B. 2C. 0D. 无法确定3. 已知向量 a = (1, 2),向量 b = (3, 4),则向量 a 与向量 b 的夹角余弦值是()A. 1/5B. 2/5C. 3/5D. 4/54. 在等差数列 {an} 中,a1 = 3,公差 d = 2,则第10项 an = ()A. 19B. 20C. 21D. 225. 下列函数中,是奇函数的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = x^46. 已知三角形的三边长分别为 3, 4, 5,则该三角形的面积是()A. 6B. 8C. 10D. 127. 函数 y = log2(x - 1) 的定义域是()A. (1, +∞)B. (-∞, 1)C. (0, +∞)D. (-∞, 0)8. 下列命题中,正确的是()A. 若 a > b,则 a^2 > b^2B. 若 a > b,则 |a| > |b|C. 若 a > b,则 -a < -bD. 若 a > b,则 a - b > 09. 在等比数列 {an} 中,a1 = 2,公比 q = 3,则第5项 an = ()A. 162B. 243C. 729D. 129610. 函数 y = 2^x 的图像在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(每小题5分,共25分)11. 函数 f(x) = x^3 - 3x 的极值点是 _______。
12. 已知等差数列 {an} 的前三项分别为 2, 5, 8,则公差 d = _______。
13. 向量 a = (2, -3) 与向量 b = (-1, 2) 的点积是 _______。
高二数学寒假作业试卷
姓名:__________ 得分:____
一.选择题:
1.过点(1,2)倾斜角a的正弦值是4/5的直线方程是()
A.4x-3y+2=0B.4x+3y-6=0
C.y=(x+1)-2D.y=(x+1)+2
2.椭圆x2+9y2/5=36的离心率为()
A.1/3B.2/3C.1/2D.3/4
3. 设F1,F2为双曲线x2/4-y2=1的两个焦点,P在双曲线上,且满足角
F
1PF
2
=900,则三角形的面积是()
A.1B.5/2C.2D.5
4.已知椭圆x2/25+y2/16=1上一点P到椭圆一个焦点的距离为4,则点P 到另一个焦点的距离是()
A. 2B.3C.5D. 6
5.直y-2x+5=0与圆x2+y2-4x+2y+2=图形之间的关系是()
A.相离B.相切C.相交但不过圆心D.相交且过圆心
6.半径等于3,圆心在y轴上,且和直线y=4相切的圆的方程是()
A . (x-1)2+y2=9,(x-7)2+y2=9
B . x2+(y-1)2=3,x2+(y-7)2=3
C. x2+(y-1)2=9,x2+(y-7)2=9 D . x2+(y+1)2=9,X2+(y+7)2=9
7.若抛物线y2=2px(p)0)上点的横坐标为6的点到焦点的距离为8,则它的焦点到准线的距离是()
A .1 B.2 C. 4 D.6
8.把函数y=(x-2)2+2的图象向左平移1个单位,在向上平移1个单位,所得图象对应的表达式()
A.Y=(X-3)2+3
B.Y=(X-3)2+1
B.Y=(X-1)2+3 D.Y=(X-1)2+1
9.若方程X2/(25-K)+Y2/(K-16)=1表示焦点在Y轴,上的双曲线,则() A.K<9 B.9<K<16
C.16<K<25
D.K>25
10.焦点在(-1,0),顶点在(1,0)的抛物线方程是()
A.y2=8(x+1)
B. y2=-8(x+1)
C. y2=8(x-1)
D. y2=-8(x-1)
11.若椭圆x2/16+y2/b2=1过点(-2,3),则其焦距为()
A.25B.23C.5D.3
12.椭圆x2/12+y2/3=1的焦点,点P在椭圆上,如果线段PF1的中点在
y轴上,那么|PF
1
|:|PF
2
|的值是()
A.7:1B.5:1C9:2D.8:3
二.填空题.
1.已知抛物线y2=a(x+1)的准线方程是x=-3,那么抛物线的焦点坐标
为
2.若双曲线的离心率为2,则它的两条渐进线的夹角为
3.顶点在原点,焦点在x轴上,且过点(-1,2)的抛物线的方程是
4.已知双曲线x2/a2-y2=1(a>0)的一条准线方程为x=3/2,则a=
5.F1,F2为椭圆x2/25+y2/9=1的焦点,P为椭圆上的一点,则三角形P
F
1F
2
的周长为
6.抛物线y=x2上到直线2x-y=4的距离最短的点的坐标是
三.解答题:
1.过抛物线y2=4x的焦点且斜率为2的直线l交抛物线于A,B两点。
(1)求直线的方程?(2)求AB的距离?
2.已知一直线过点p(-2,2),并且与两坐标轴构成的三角形的面积是1,求此直线的方程?3.已知P是椭圆上x2/100+y2/64=1上的一点,F1,F2,是焦点,若
角F
1
PF
2
=600,求三角形PF
1
F
2
的面积?
4.求以椭圆1
7
2
5
2
=
+
y
x
,的焦点为顶点,而以椭圆的顶点为焦点的双曲线的方程。