高数同济五版 (13)
- 格式:doc
- 大小:143.50 KB
- 文档页数:6
高数第五版答案(同济)总习题十总习题十 1. 填空: (1)第二类曲线积分Γ++Rdz Qdy Pdx 化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解Γ++ds R Q P )cos cos cos (γβα, 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解dS R Q P )cos cos cos (γβα++∑, 法向量.2. 选择下述题中给出的四个结论中一个正确的结论: 设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________. (A )xdS xdS 14∑∑=; (B )xdS ydS 14∑∑=;(C )xdS zdS 14∑∑=; (D )xyzdS xyzdS 14∑∑=.解 (C ).3. 计算下列曲线积分: (1)+Lds y x 22, 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为θcos 22a a x +=, θsin 2a y =(0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x LL )()()(222022'+'?==+?θθθθππd ad a=?+=204204|2cos 2|4)cos 1(2422202022)cos cos (|cos |4a tdt tdt a dt t a =-==ππππ(2θ=t 这里令).(2)?Γzds , 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0); 解+++-?=Γ00221)cos (sin )sin (cos t dt t t t t t t t zds322)2(232002-+=+=?t dt t t . (3)?+-L xdy dx y a )2(, 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧; 解-+-?+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L22022sin a tdt t a ππ-==?.(4)?Γ-+-dz x yzdy dx z y 2222)(, 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧; 解-??+?-=-+-Γ1223264222]3221)[(2)(dt t t t t t t t dz x yzdy dx z y351)32(164=+-=?dt t t . (5)-+-L x x dy y e dx y y e )2cos ()2sin (, 其中L 为上半圆周(x -a )2 +y 2=a 2, y ≥0, 沿逆时针方向;解这里P =e x sin y -2y , Q =e x cos y -2,22cos cos =+-=??-??y e y e yP x Q x x. 令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式+-+-1)2cos ()2sin (LL x x dy y e dx y y e dxdy yPx Q D)(-??=?? 22a dxdy Dπ==??,-+--=-+-1)2cos ()2sin ()2cos ()2sin (2L x x L x x dy y e dx y y e a dy y e dx y y e π22020a dx a aππ=-=?.(6)Γxyzdz , 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去,沿逆时针方向.解曲线Γ的一般方程为?==++z y z y x 1222, 其参数方程为tz t y t x sin 22 ,sin 22 ,cos ===, t 从0变到2π.于是tdt t t t xyzdz cos 22cos 22cos 22cos 20=??Γπππ162cos sin 422022==tdt t .4. 计算下列曲面积分: (1)222z y x dS ++∑, 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2; 解∑=∑1+∑2, 其中221:y R x -=∑, D xy : -R ≤y ≤R , 0≤z ≤H , dydz yR R dS 22-=; 221:y R x --=∑, D xy : -R ≤y ≤R , 0≤z ≤H , dydz yR R dS 22-=, 于是22222222221z y x dS z y x dS z y x dS +++++=++∑∑∑?????? ????+-=-?+=-H R R D dz z R dy y R R dydz y R R z R xt02222222211212RH arctan 2π=. (2)dxdy y x dzdx x z dydz z y )()()(222-+-+-∑, 其中∑为锥面22y x z +=(0≤z ≤h ) 的外侧;解这里P =y 2-z , Q =z 2-x , R =x 2-y ,0=??+??+??zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式0)()()()(2221=??+??+??=-+-+-Ω∑+∑dv zR y Q x P dxdy y x dzdx x z dydz z y ,而dxdy y x dxdy y x dzdx x z dydz z y )()()()(222211-=-+-+-∑∑40222024)sin cos ()(1h d r r d dxdy y x hπθθθθπ=-=-∑, 所以42224)()()(h dxdy y x dzdx x z dydz z y π-=-+-+-∑. (3)zdxdy ydzdx xdydz ++∑, 其中∑为半球面222y x R z --=的上侧;解设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得dv zR y Q x P zdxdy ydzdx xdydz )(1+??+??=++Ω∑+∑332)32(33R R dv ππ===Ω,而00011====++∑∑dxdy zdxdy zdxdy ydzdx xdydz xyD ,所以33202R R zdxdy ydzdx xdydz ππ=-=++∑.(4)3222)(z y x zdxdy ydzdx xdydz ++++∑??, 其中∑为曲面9)1(16)2(5122-+-=-y x z (z ≥0)的上侧;解这里3r x P =, 3r y Q =, 3r z R =, 其中222z y x r ++=. 52331r x r x P -=??, 5 2331r y r x Q -=??, 52331r z r x R -=??,033)(3352352223=-=++-=??+??+??rr r r z y x r z R y Q x P . 设∑1为z =0)19)1(16)2((22≤-+-y x 的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式0)()(32221=??+??+??=++++Ω∑+∑dv zR y Q x P z y x zdxdy ydzdx xdydz ,32223222)()(1z y x zdxdyydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑0)(0322=+=dxdy y x xyD .(5)xyzdxdy ∑, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解∑=∑1+∑2, 其中∑1是221y x z --=(x 2+y 2≤1, x ≥0, y ≥0)的上侧; ∑2是221y x z ---=(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑+=dxdy y x xy dxdy y x xy xyxyD D )1(12222------=-??=--=13220221sin cos 212ρρρθθθπd d dxdy y x xy xyD15212sin 103220=-=?ρρρθθπd d .5. 证明22y x ydyxdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数. 解这里22y x x P +=, 22y x y Q +=. 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且xQ y x xy y P ??=+-=??222)(2, 所以22y x ydyxdx ++在开区域G 内是某个二元函数u (x , y )的全微分.C y x dy y x y dx x y x ydy xdx y x u y x y x ++=++=++=)ln(211),(220221),()0 ,1(22.6. 设在半平面x >0内有力)(3j i y x k F +-=ρ构成力场, 其中k 为常数,22y x +=ρ. 证明在此力场中场力所作的功与所取的路径无关. 解场力沿路径L 所作的功为 dy kydx kx W L33ρρ?--=.令3ρkx P -=, 3ρky Q -=. 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且xQ xy k y P ??==??53ρ, 所以上述曲线积分所路径无关, 即力场所作的功与路径无关. 7. 求均匀曲面222y x a z --=的质心的坐标. 解这里∑:222y x a z --=, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}. 设曲面∑的面密度为ρ=1, 由曲面的对称性可知, 0==y x . 因为3222221a dxdy a dxdy z z y x a zdS xyxyD y x D π=='+'+?--=∑,222421a a dS ππ=?=∑, 所以 2223a a a z ==ππ.因此该曲面的质心为)2,0 ,0(a .8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明: (1)+?-=?L D D ds n u v dxdy v u udxdy v ) (grad grad ;(2)-??=?-?L D ds nu v n v u dxdy u v v u )()(, 其中n u ??、n v ??分别是u 、v 沿L 的外法线向量n 的方向导数, 符号2222yx ??+??=?称为二维拉普拉斯算子.证明设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α). (1)+??-=??-??=??L L L ds x uv y u v ds y u x u v ds n u v ]sin cos [)cos sin (ααααdxdy yu v y x u v x D )]()([??-??-=dxdy y u v y u y v x u v x u x v D)(2222??++??+=?? dxdy y u x u v dxdy y u y v x u x v DD )()(2222??+??++= udxdy v udxdy v D D ?+?=grad grad ,所以+?-=?L D D ds nu v dxdy v u udxdy v ) (grad grad . (2)dxdy yu x u v y v x v u ds n u v n v u L L )]cos sin ()cos sin ([)(αααα??-??-??-??=??- dxdy xuv x v u y u v y v u L ]sin )(cos )[(αα??-??+??+??-=?dxdy yu v y v u y x u v x v u x D )]()([??+??-??-??-=dxdy y u v y u y v y v u y v y u x u v x u x v x v u x v x u D)(22222222??--??++??--??+=?? dxdy u v v u dxdy y u x u v y v x v u D D )()]()([22222222?-?=??+??-??+??=. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解设∑为区域Ω的边界曲面的外侧, 则通量为 dv zR y Q x P zdxdy ydzdx xdydz )(??+??+??=++=ΦΩ∑ 33==Ωdv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为++=L xdz zdy ydx W .曲面∑的的单位法向量为)cos cos ,(cos )1 ,1 ,1(31γβα=-=n , 由斯托克斯公式有dS xz y z y x W =∑γβαcos cos cos233sin )2(2133)111(312=?==----=∑∑πdS dS .。
高等数学同步练习第八章 多元函数微分法及其应用第一节 多元函数的基本概念1. 求定义域(1){(x,y ) 1xy e e≤≤};(2)},122),{(22N k k y x k y x ∈+≤+≤; (3){(x,y,z )22219x y z <++≤}.2.求极限(1)001)2x y →→=;(2)0 ;(3)22222002sin2lim 0()xyx y x y x y e →→+=+; (4)20sin cos lim.2x y xy xyx xy →→=.3.判断下列极限是否存在,若存在,求出极限值(1)沿直线y=kx 趋于点(0,0)时,2222222201lim 1x x k x k x k x k→--=++,不存在; (2)沿直线y =0,极限为1;沿曲线y,极限为0,不存在 ;(3)222222221100x y x y x y x y x y x y x y x y+≤≤+≤+=+→+++.极限为0 .4.因当220x y +≠时,2222220.x y x y y x y x y ≤=≤++, 所以0lim (,)0(0,0)x y f x y f →→==,故连续.1. 求下列函数的偏导数(1)2(1).2(1)xy y y xy +=+; 2x (1+xy ); (2)yz cos(xyz )+2xy ; xz cos(xyz )+2x ; (3)22()1()x y x y -+- , 22()1()x y x y --+-. 2.6π.3.11(11xy y =+-==. 4.1222222222222222222222222222221ln()ln(),212.,2()2,()()()z x y x y z x x x x y x y z x y x x y x x y x y z y x y x y -=+=-+∂=-=-∂++∂+--=-=∂++∂-=∂+5.22002202010sin,lim (,)0(0,0),1sin00lim 10sin 00(0,0)lim 0x y x y x x x yf x y f x f x x xf y y y→→∆→∆→≤≤+==∆-∂∆+=∂∆-∂+∆==∂∆g 因为所以连续.(0,0),不存在,.1. 求下列函数的全微分 解:(1)21z z dz dx dy x y x ∂∂=+∂∂-=+=.(2)1ln ln yz yz yz u u u du dx dy dz x y zyzx dx zx xdy yx xdz -∂∂∂=++∂∂∂=++.2.解:33222222220033332222(0,0)0033322322200,(,)(0,0)lim (,)0(0,0),000000(0,0)lim 1,lim 11x y x y x y x y x y x y x y x y x y x y x y f x y f y x yx f f x y x y x x y x y y x y z x y →→∆→∆→+≤=+≤+→→+++==+∆∆+--+∆∆+====∆∆∆+∆∆+∆∆+∆∆+∆-∆∆∆==∆+∆.所以连续.两个偏导数都存在,为222222211(0,0)0,.x y x y x yx y x y x y y x ρρ→→-∆∆∆∆+∆∆=∆+∆-∆+∆∆+∆=→==≠g g 当沿时,故不可微第四节 1.解:322235221''(1)22323(21)(5456)1(2)1(3)()ln()v vdzuv w u v w x u v x x x xdxdzdx xdz z du z duvu f x u u g xdx u dx v dx-=⋅+⋅+⋅=++-===+∂∂=⋅+⋅=⋅+⋅∂∂...2.解:(1)222221121(arctan ln21()uxy xy vz z x z y u uvye xe e u vuu x u y u u v u v vv∂∂∂∂∂=+=⋅⋅+⋅=+∂∂∂∂∂+++.221(arctanuvz z x z y ue u vv x v y v u v v∂∂∂∂∂=+=-∂∂∂∂∂+.(2)'''()(1)()()()uf x xy xyz y yzxuf x xy xyz x xzyuf x xy xyz xyz∂=++++∂∂=+++∂∂=++⋅∂3. 解:''''1212.z z zf a f b f ft x yz z za bt x y∂∂∂=⋅+⋅==∂∂∂∂∂∂=+∂∂∂,,,所以,4. 解:'222'222''2222''22''22()22(()2())2()24()zf x y xxzf x y x f x yxzx f x y y xyf x yx y∂=+⋅∂∂=+++∂∂=⋅+⋅=+∂∂第五节1.解:令(,,)sin()01cos()1cos()1cos()1cos()x z y z F x y z x y z xyz F z yz xyz x F xy xyz F z xz xyz y F xy xyz =++-=∂-=-=-∂-∂-=-=-∂- 2. .解:令22222222(0,0,1)2(,,)10()|1x z F x y z x y z F z x x F z z xz x z x zx z x z zzx=++-=∂=-=-∂∂-⋅--∂∂=-=-∂∂=-∂ 3.证明:''11''''1212'1''12()().x z c c zx a b a b c z y a b z zab C x yφφφφφφφφφφφ⋅⋅∂=-=-=∂-+-+⋅∂=∂+∂∂+=∂∂所以6.(1)解:方程两边对y 求导,得:222460222642146212622242(62)(62)2(61)(61)22(61)61dz dxx ydy dy dx dz x y z dydy dx dz x y dy dy dx dz x z y dy dyy y z x x zx yx ydx y z y z dyx z x z dz y dy x z z =+++=-=-+=-------⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩-++===-++-==++(3)''12''12()(1)2u u v f u x f x x x v u vg g vy x xx ∂∂∂=⋅++⋅∂∂∂∂∂∂=⋅-+⋅⋅∂∂∂⎧⎨⎩'''121'''121''12'''''''1212121''''''''21212112''12''11''11'''''212121(1)(21)212221121122u v xf f uf x x u v g vyg g x xuf f g vyg uvyf g uf f g u x vyg vxyf g xf f g xf f g vyg xf uf g g uy vyg vxyf g xf f g ∂∂-⋅-=∂∂∂∂+-=∂∂---+∂==∂-++-----∂=∂-++'''''11111'''''''2121211221g xf g uf g vyg vxyf g xf f g --=--++-7.证明:x t dy f dx f dt =+ →x tdy dtf f dx dx=+ ① 0x y t dF F dx F dy F dt =++= → x y tF dx F dydt F +=-→y x t t F F dtdy dx F F dx=--⋅ ② ②代入①,得:()(1)y x x t t t t y t x x t tt t y x t t xt t x t t x t t yF F dydy f f dx F F dx f F f Fdy f F dx F F f F f F f F dy F dx F f F f F dy dx F f F =+--⋅+=-+-⋅=-∴=+第六节 多元函数微分学的几何应用1.解:切向量),cos ,sin (=b t a t a T 。
习题5-11. 利用定积分定义计算由抛物线y=x2+1, 两直线x=a、x=b(b>a及横轴所围成的图形的面积.解第一步: 在区间[a, b]内插入n-1个分点(i=1, 2, , n-1, 把区间[a, b]分成n个长度相等的小区间, 各个小区间的长度为: (i=1, 2, , n.第二步: 在第i个小区间[x i-1, x i] (i=1, 2, , n上取右端点, 作和.第三步: 令⎣=max{x1, x2, , x n}, 取极限得所求面积.2. 利用定积分定义计算下列积分:(1(a<b;(2.解 (1取分点为(i=1, 2, , n-1, 则(i=1, 2, , n. 在第i个小区间上取右端点 (i=1, 2, , n. 于是.(2取分点为(i=1, 2, , n-1, 则(i=1, 2, , n. 在第i个小区间上取右端点(i=1, 2, , n. 于是.3. 利用定积分的几何意义说明下列等式:(1;(2;(3;(4.解 (1表示由直线y=2x、x轴及直线x=1所围成的面积, 显然面积为1.(2表示由曲线、x轴及y轴所围成的四分之一圆的面积, 即圆x2y2=1的面积的:.(3由于y=sin x为奇函数, 在关于原点的对称区间[- , ]上与x轴所夹的面积的代数和为零, 即.(4 表示由曲线y=cos x与x轴上一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y轴对称. 因此图形面积的一半为, 即.4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p(单位面积上的压力大小是水深h的函数, 且有p=98h (kN/m2. 若闸门高H=3m, 宽L=2m, 求水面与闸门顶相齐时闸门所受的水压力P.解建立坐标系如图. 用分点(i=1, 2, , n-1将区间[0, H]分为n分个小区间, 各小区间的长为(i=1, 2, , n.在第i个小区间[xi-1, xi]上, 闸门相应部分所受的水压力近似为Pi=9.8x i lx i .闸门所受的水压力为.将L=2, H=3代入上式得P=88.2(千牛.5. 证明定积分性质:(1;(2.证明 (1.(2.6. 估计下列各积分的值:(1;(2;(3;(4.解 (1因为当1x4时, 2x2117, 所以,即.(2因为当时, 11sin2x2, 所以,即.(3先求函数f(x x arctan x在区间上的最大值M与最小值m.. 因为当时, f (x0, 所以函数f(x=x arctan x在区间上单调增加. 于是, .因此,即.(4先求函数在区间[0, 2]上的最大值M与最小值m., 驻点为.比较f(0=1, f(2=e 2, ,得, M=e 2. 于是,即.7. 设f(x及g(x在[a, b]上连续, 证明:(1若在[a, b]上, f(x0, 且, 则在[a, b]上f(x0;(2若在[a, b]上, f(x0, 且f(x≢0, 则;(3若在[a, b]上, f(xg(x, 且, 则在[a b]上f(xg(x.证明 (1假如f(x≢0, 则必有f(x0. 根据f(x在[a, b]上的连续性, 在[a, b]上存在一点x0, 使f(x00, 且f(x0为f(x在[a, b]上的最大值.再由连续性, 存在[c, d][a, b], 且x0[c, d], 使当x[c, d]时, . 于是.这与条件相矛盾. 因此在[a, b]上f(x0.(2证法一因为f(x在[a, b]上连续, 所以在[a, b]上存在一点x0, 使f(x00, 且f(x0为f(x在[a, b]上的最大值.再由连续性, 存在[c, d][a, b], 且x0[c, d], 使当x[c, d]时, . 于是.证法二因为f(x0, 所以. 假如不成立. 则只有,根据结论(1, f(x0, 矛盾. 因此.(3令F(x=g(x-f(x, 则在[a, b]上F(x0且,由结论(1, 在[a, b]上F(x0, 即f(xg(x.4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大:(1还是?(2还是?(3还是?(4还是?(5还是?解 (1因为当0x1时, x2x3, 所以.又当0x1时, x2x3, 所以.(2因为当1x2时, x2x3, 所以.又因为当1x2时, x2x3, 所以.(3因为当1x2时, 0ln x1, ln x(ln x2, 所以.又因为当1x2时, 0ln x1, ln x(ln x2, 所以.(4因为当0x1时, x ln(1x, 所以.又因为当0x1时, x ln(1x, 所以.(5设f(x=e x-1-x, 则当0x1时f (x =e x-10, f(x=e x-1-x是单调增加的. 因此当0x1时,f(xf(0=0, 即e x1x, 所以.又因为当0x1时, e x1x, 所以.习题5-21. 试求函数当x=0及时的导数.解, 当x=0时, y=sin0=0; 当时, .2. 求由参数表示式, 所给定的函数y对x的导数.解x(t sin t , y(t cos t , .3. 求由所决定的隐函数y对x的导数.解方程两对x求导得e y y cos x 0,于是.4. 当x为何值时, 函数有极值?解, 令I (x=0, 得x=0. 因为当x0时, I (x0; 当x0时, I (x0, 所以x=0是函数I(x的极小值点.5. 计算下列各导数:(1;(2;(3.解 (1.(2.(3=-cos( sin 2x(sin x cos( cos 2x( cos x=-cos x cos( sin 2x-sin x cos( cos 2x=-cos x cos( sin2x- sin x cos( - sin2x=-cos x cos( sin2x sin x cos( sin2x=(sin x-cos x cos( sin2x.6. 计算下列各定积分:(1;解.(2;解.(3;解. (4;解.(5;解.(6;解.(7;解.(8;解. (9;解.(10;解.(11;解 cos x|cos x|cos cos0cos2cos4. (12, 其中.解.7. 设k为正整数. 试证下列各题:(1;(2;(3;(4.证明 (1.(2.(3.(4.8. 设k及l为正整数, 且kl . 试证下列各题:(1;(2;(3.证明 (1.(2.(3..9. 求下列极限:(1;(2.解 (1.(2.10. 设. 求在[0, 2]上的表达式, 并讨论∏(x在(0, 2内的连续性.解当0x1时, ;当1x2时, .因此.因为, , ,所以∏(x在x=1处连续, 从而在(0, 2内连续.11. 设. 求在(-, 内的表达式.解当x0时, ;当0x 时, ;当x 时, .因此.12. 设f(x在[a, b]上连续, 在(a, b内可导且f (x0,.证明在(a, b内有F (x0.证明根据积分中值定理, 存在⎩[a, x], 使. 于是有.由f (x0可知f(x在[a, b]上是单调减少的, 而a⎩x, 所以f(x-f(⎩0. 又在(a, b内, x-a0, 所以在(a, b内.习题5-31. 计算下列定积分:(1;解.(2;解.(3;解. (4;解.(5;解.(6;解.(7;解.(8;解. (9;解.(10;解.(11;解.(12 ;解. (13;解. (14;解. (15;解.(16;解.(17;解. (18;解.(19;解(20.解.2. 利用函数的奇偶性计算下列积分:(1;解因为x 4sin x在区间[- , ]上是奇函数, 所以. (2;解.(3;解.(4.解因为函数是奇函数, 所以.3. 证明: , 其中∏(u为连续函数.证明因为被积函数∏(x2是x的偶函数, 且积分区间[-a, a]关于原点对称, 所以有.4. 设f(x在[-b, b]上连续, 证明.证明令x=-t, 则dx=-dt, 当x=-b时t=b, 当x=b时t=-b, 于是,而,所以.5. 设f(x在[a, b]上连续., 证明.证明令x=ab-t, 则dx=d t, 当x=a时t=b, 当x=b时t=a, 于是,而,所以.6. 证明: .证明令, 则, 当x=x时, 当x=1时t=1, 于是,而,所以.7. 证明: .证明令1xt , 则, 即.8. 证明: .证明,而,所以.9. 设f(x是以l为周期的连续函数, 证明的值与a无关.证明已知f(xl f(x.,而,所以.因此的值与a无关.10. 若f(t是连续函数且为奇函数, 证明是偶函数; 若f(t是连续函数且为偶函数, 证明是奇函数.证明设.若f(t是连续函数且为奇函数, 则f(-t=-f(t, 从而,即是偶函数.若f(t是连续函数且为偶函数, 则f(-t=f(t, 从而,即是奇函数.11. 计算下列定积分:(1;解.(2;解.(3(⎤为常数;解.(4;解.(5;解. (6;解.(7;解所以,于是(8;解.(9;解. (10;解法一.因为,所以.因此.解法二,故.(11;解.(12(m为自然数;解.根据递推公式,.(13(m为自然数.解因为,所以(用第8题结果. 根据递推公式,.习题5 71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1;解因为,所以反常积分收敛, 且.(2;解因为, 所以反常积分发散. (3(a>0;解因为,所以反常积分收敛, 且.(4(p>1;解因为, 所以反常积分收敛, 且.(5(p0, ω0;解,所以.(6;解.(7;解这是无界函数的反常积分, x=1是被积函数的瑕点..(8;解这是无界函数的反常积分, x=1是被积函数的瑕点. 因为,而,所以反常积分发散.(9;解这是无界函数的反常积分, x=1是被积函数的瑕点..(10.解这是无界函数的反常积分, x=e是被积函数的瑕点..2. 当k为何值时, 反常积分收敛? 当k为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解当k1时, ;当k=1时, ;当k1时, .因此当k1时, 反常积分收敛; 当k 1时, 反常积分发散.当k1时, 令, 则.令f (k=0得唯一驻点.因为当时f (k0, 当时f (k0, 所以为极小值点, 同时也是最小值点, 即当时, 这反常积分取得最小值3. 利用递推公式计算反常积分.解因为,所以I n= n(n-1(n-2 2I1.又因为,所以I n= n(n-1(n-2 2I1=n!.总习题五1. 填空:(1函数f(x在[a, b]上(常义有界是f(x在[a, b]上可积的______条件, 而f(x在[a, b]上连续是f(x在[a, b]上可积______的条件;解函数f(x在[a, b]上(常义有界是f(x在[a, b]上可积的___必要___条件, 而f(x在[a, b]上连续是f(x在[a, b]上可积___充分___的条件;(2对[a, +上非负、连续的函数f(x, 它的变上限积分在[a, +上有界是反常积分收敛的______条件;解对[a, +上非负、连续的函数f(x, 它的变上限积分在[a, +上有界是反常积分收敛的___充分___条件;(3绝对收敛的反常积分一定______;解绝对收敛的反常积分一定___收敛___;(4函数f(x在[a, b]上有定义且|f(x|在[a, b]上可积, 此时积分______存在.解函数f(x在[a, b]上有定义且|f(x|在[a, b]上可积, 此时积分___不一定___存在.2. 计算下列极限:(1;解.(2(p>0;解.(3;解.(4, 其中f(x连续;解法一(用的是积分中值定理.解法二(用的是洛必达法则.(5.解.3. 下列计算是否正确, 试说明理由:(1;解计算不正确, 因为在[-1, 1]上不连续.(2因为, 所以.解计算不正确, 因为在[-1, 1]上不连续.(3.解不正确, 因为.4. 设p>0, 证明.证明. 因为,而, ,所以.5. 设f (x、g (x在区间[a, b]上均连续, 证明:(1;证明因为[f(x-⎣g(x]20, 所以⎣2g 2(x-2⎣f(xg(xf 2(x0, 从而.上式的左端可视为关于⎣的二次三项式, 因为此二次三项式大于等于0, 所以其判别式小于等于0, 即,亦即.(2,证明,又,所以.6. 设f (x在区间[a, b]上连续, 且f (x>0. 证明.证明已知有不等式, 在此不等式中, 取,, 则有,即.7. 计算下列积分:(1;解.(2;解.令则,所以.(3;解令x a sin t, 则.又令, 则,所以.(4;解.(5.解.8. 设f(x为连续函数, 证明.证明.9. 设f(x在区间[a, b]上连续, 且f(x>0, , x[a, b]. 证明:(1F (x2;(2方程F(x=0在区间(a, b内有且仅有一个根.证明 (1.(2因为f(x0, ab, 所以, ,由介值定理知F(x=0在(a, b内有根. 又F(x2, 所以在(a, b内仅有一个根.10. 设 , 求.解.11. 设f(x在区间[a, b]上连续, g(x在区间[a, b]上连续且不变号. 证明至少存在一点x[a, b], 使下式成立(积分第值定理 .证明若g(x=0, 则结论题然成立.若g(x0, 因为g(x不变号, 不妨设g(x>0.因f(x在[a, b]上连续, 所以f(x在[a, b]上有最大值M和最小值m即mf(xM,因此有m g(xf(xg(xM g(x.根据定积分的性质, 有,或.因为f(x在[a, b]上连续, 根据介值定理, 至少存在一点x(a, b, 使,即.*12.(1证明:证明=(2证明。
高等数学同济教材第五版高等数学是大学数学的重要组成部分,在培养学生的数学思维和分析解决实际问题的能力方面起着重要的作用。
同济大学出版社出版的高等数学同济教材第五版是国内一本经典的高等数学教材,具有权威性和实用性。
本文将对该教材的特点、内容和使用方法进行介绍。
一、教材特点高等数学同济教材第五版作为同济大学数学系编写的教材,具有以下特点:1.权威性:同济大学数学系作为国内一流的数学学科,编写的教材具备了权威性。
该教材的内容全面、准确,能够满足高等数学各个章节的学习需求。
2.严谨性:高等数学同济教材第五版在内容的讲解和定理的证明方面非常严谨。
编写者注重逻辑推理和数学证明的完整性,有助于学生形成严密的思维习惯。
3.实用性:教材内容既有理论知识,也有实际应用。
对于工科和理科学生来说,教材中的例题和习题涵盖了众多实际问题的分析和解决方法,具有实用性。
二、教材内容高等数学同济教材第五版包含了以下主要内容:1.数列与级数:介绍了各种常见数列和级数的性质、求和方法以及数列极限和级数敛散性的判定方法。
2.函数与极限:重点讲解了函数的概念、连续性、可导性以及函数的极限与无穷小的关系等内容。
3.微分学:包括函数的导数、高阶导数和微分、中值定理、泰勒公式以及函数的极值和最值等内容。
4.积分学:介绍了不定积分和定积分的概念、性质和计算方法,以及变限积分、曲线长度、曲面面积和体积的计算方法等。
5.微分方程:包括一阶常微分方程和二阶线性常微分方程的基本方法与应用。
6.多元函数微分学:讲述了多元函数的偏导数、全微分、方向导数和梯度,以及多元函数的极值和条件极值等内容。
7.多元函数积分学:介绍了二重积分和三重积分的概念、性质和计算方法,以及对坐标变换下的积分和曲线、曲面、空间区域的面积和体积等内容。
三、使用方法在使用高等数学同济教材第五版时,可以采用以下方法:1.理论学习:阅读教材中的理论部分,了解概念和性质的定义和证明过程,理解数学思想和方法。
高数课后答案详解【篇一:高数课后习题答案】txt>▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆《全新版大学英语综合教程》(第三册)练习答案及课文译文/viewthread.php?tid=77fromuid=164951《全新版大学英语综合教程》(第一册)练习答案及课文译文/viewthread.php?tid=75fromuid=164951《会计学原理》同步练习题答案/viewthread.php?tid=305fromuid=164951《微观经济学》课后答案(高鸿业版)/viewthread.php?tid=283fromuid=164951《统计学》课后答案(第二版,贾俊平版)/viewthread.php?tid=29fromuid=164951《西方经济学》习题答案(第三版,高鸿业)可直接打印/viewthread.php?tid=289fromuid=164951毛邓三全部课后思考题答案(高教版)/毛邓三课后答案/viewthread.php?tid=514fromuid=164951新视野大学英语听说教程1听力原文及答案下载/viewthread.php?tid=2531fromuid=164951西方宏观经济高鸿业第四版课后答案/viewthread.php?tid=2006fromuid=164951《管理学》经典笔记(周三多,第二版)/viewthread.php?tid=280fromuid=164951《中国近代史纲要》课后习题答案/viewthread.php?tid=186fromuid=164951《理论力学》课后习题答案/viewthread.php?tid=55fromuid=164951《线性代数》(同济第四版)课后习题答案(完整版)/viewthread.php?tid=17fromuid=164951高等数学(同济第五版)课后答案(pdf格式,共527页)/viewthread.php?tid=18fromuid=164951中国近现代史纲要课后题答案/viewthread.php?tid=5900fromuid=164951曼昆《经济学原理》课后习题解答/viewthread.php?tid=85fromuid=16495121世纪大学英语读写教程(第三册)参考答案/viewthread.php?tid=5fromuid=164951谢希仁《计算机网络教程》(第五版)习题参考答案(共48页)/viewthread.php?tid=28fromuid=164951《概率论与数理统计》习题答案/viewthread.php?tid=57fromuid=164951《模拟电子技术基础》详细习题答案(童诗白,华成英版,高教版) /viewthread.php?tid=42fromuid=164951《机械设计》课后习题答案(高教版,第八版,西北工业大学)《大学物理》完整习题答案/viewthread.php?tid=217fromuid=164951《管理学》课后答案(周三多)/viewthread.php?tid=304fromuid=164951机械设计基础(第五版)习题答案[杨可桢等主编]/viewthread.php?tid=23fromuid=164951程守洙、江之永主编《普通物理学》(第五版)详细解答及辅导/viewthread.php?tid=3fromuid=164951新视野大学英语课本详解(四册全)/viewthread.php?tid=1275fromuid=16495121世纪大学英语读写教程(第四册)课后答案/viewthread.php?tid=7fromuid=164951新视野大学英语读写教程3册的课后习题答案/viewthread.php?tid=805fromuid=164951新视野大学英语第四册答案(第二版)/viewthread.php?tid=5310fromuid=164951《中国近现代史》选择题全集(共含250道题目和答案)/viewthread.php?tid=181fromuid=164951《电工学》课后习题答案(第六版,上册,秦曾煌主编)/viewthread.php?tid=232fromuid=164951完整的英文原版曼昆宏观、微观经济学答案/viewthread.php?tid=47fromuid=164951《数字电子技术基础》习题答案(阎石,第五版)/viewthread.php?tid=90fromuid=164951《电路》习题答案上(邱关源,第五版)/viewthread.php?tid=137fromuid=164951《电工学》习题答案(第六版,秦曾煌)/viewthread.php?tid=112fromuid=16495121世纪大学英语读写教程(第三册)课文翻译/viewthread.php?tid=6fromuid=164951《生物化学》复习资料大全(3套试卷及答案+各章习题集)/viewthread.php?tid=258fromuid=164951《模拟电子技术基础》课后习题答案(共10章)/viewthread.php?tid=21fromuid=164951《概率论与数理统计及其应用》课后答案(浙江大学盛骤谢式千编著)/viewthread.php?tid=178fromuid=164951《理论力学》课后习题答案(赫桐生,高教版)《全新版大学英语综合教程》(第四册)练习答案及课文译文/viewthread.php?tid=78fromuid=164951《化工原理答案》课后习题答案(高教出版社,王志魁主编,第三版)/viewthread.php?tid=195fromuid=164951《国际贸易》课后习题答案(海闻 p.林德特王新奎)大学英语综合教程 1-4册练习答案/viewthread.php?tid=1282fromuid=164951《流体力学》习题答案/viewthread.php?tid=83fromuid=164951《传热学》课后习题答案(第四版)/viewthread.php?tid=200fromuid=164951高等数学习题答案及提示/viewthread.php?tid=260fromuid=164951《高分子化学》课后习题答案(第四版,潘祖仁主编)/viewthread.php?tid=236fromuid=164951/viewthread.php?tid=6417fromuid=164951《计算机网络》课后习题解答(谢希仁,第五版)/viewthread.php?tid=3434fromuid=164951《概率论与数理统计》优秀学习资料/viewthread.php?tid=182fromuid=164951《离散数学》习题答案(高等教育出版社)/viewthread.php?tid=102fromuid=164951《模拟电子技术基础简明教程》课后习题答案(杨素行第三版) /viewthread.php?tid=41fromuid=164951《信号与线性系统分析》习题答案及辅导参考(吴大正版)/viewthread.php?tid=74fromuid=164951《教育心理学》课后习题答案(皮连生版)/viewthread.php?tid=277fromuid=164951《理论力学》习题答案(动力学和静力学)/viewthread.php?tid=221fromuid=164951选修课《中国现当代文学》资料包/viewthread.php?tid=273fromuid=164951机械设计课程设计——二级斜齿圆柱齿轮减速器(word+原图)/viewthread.php?tid=35fromuid=164951《成本会计》配套习题集参考答案/viewthread.php?tid=300fromuid=164951《概率论与数理统计》8套习题及习题答案(自学推荐)/viewthread.php?tid=249fromuid=164951《现代西方经济学(微观经济学)》笔记与课后习题详解(第3版,宋承先) /viewthread.php?tid=294fromuid=164951《计算机操作系统》习题答案(汤子瀛版,完整版)/viewthread.php?tid=262fromuid=164951《线性代数》9套习题+9套相应答案(自学,复习推荐)/viewthread.php?tid=244fromuid=164951《管理理论与实务》课后题答案(手写版,中央财经大学,赵丽芬)统计学原理作业及参考答案/viewthread.php?tid=13fromuid=164951机械设计课程设计——带式运输机的传动装置的设计/viewthread.php?tid=222fromuid=164951/viewthread.php?tid=50fromuid=164951《新编大学英语》课后答案(第三册)/viewthread.php?tid=168fromuid=164951《通信原理》课后习题答案及每章总结(樊昌信,国防工业出版社,第五版) /viewthread.php?tid=203fromuid=164951《c语言程序与设计》习题答案(谭浩强,第三版)/viewthread.php?tid=59fromuid=164951《微生物学》课后习题答案(周德庆版)/viewthread.php?tid=291fromuid=164951新视野第二版全四册听说教程答案/viewthread.php?tid=6959fromuid=164951《宏观经济学》课后答案(曼昆,中文版)/viewthread.php?tid=138fromuid=164951《电力电子技术》习题答案(第四版,王兆安,王俊主编)/viewthread.php?tid=164fromuid=164951《土力学》习题解答/课后答案/viewthread.php?tid=43fromuid=164951《公司法》课后练习及参考答案/viewthread.php?tid=307fromuid=164951《全新版大学英语综合教程》(第二册)练习答案及课文译文 /viewthread.php?tid=76fromuid=164951新视野大学英语视听说第三册答案/viewthread.php?tid=5161fromuid=164951《工程力学》课后习题答案(梅凤翔主编)/viewthread.php?tid=191fromuid=164951《理论力学》详细习题答案(第六版,哈工大出版社)/viewthread.php?tid=2445fromuid=164951《成本会计》习题及答案(自学推荐,23页)/viewthread.php?tid=301fromuid=164951《自动控制原理》课后题答案(胡寿松,第四版)/viewthread.php?tid=52fromuid=164951《复变函数》习题答案(第四版)/viewthread.php?tid=118fromuid=164951《信号与系统》习题答案(第四版,吴大正)/viewthread.php?tid=268fromuid=164951《有机化学》课后答案(第二版,高教版,徐寿昌主编)/viewthread.php?tid=3830fromuid=164951《电工学——电子技术》习题答案(下册)《财务管理学》章后练习参考答案(人大出版,第四版)/viewthread.php?tid=292fromuid=164951现代汉语题库(语法部分)及答案/viewthread.php?tid=211fromuid=164951《概率论与数理统计》习题详解(浙大二、三版通用)/viewthread.php?tid=80fromuid=164951《有机化学》习题答案(汪小兰主编)/viewthread.php?tid=69fromuid=164951《微机原理及应用》习题答案/viewthread.php?tid=261fromuid=164951《管理运筹学》第二版习题答案(韩伯棠教授)/viewthread.php?tid=34fromuid=164951《古代汉语》习题集(附习题答案)福建人民出版社/viewthread.php?tid=1277fromuid=164951《金融市场学》课后习题答案(张亦春,郑振龙,第二版) /viewthread.php?tid=279fromuid=164951《公共关系学》习题及参考答案(复习必备)/viewthread.php?tid=308fromuid=164951现代汉语通论(邵敬敏版)词汇语法课后练习答案/viewthread.php?tid=1429fromuid=164951《国际经济学》教师手册及课后习题答案(克鲁格曼,第六版) /viewthread.php?tid=281fromuid=164951《教育技术》课后习题答案参考(北师大)/viewthread.php?tid=199fromuid=164951《金融市场学》课后答案(郑振龙版)/viewthread.php?tid=24fromuid=164951《组织行为学》习题集答案(参考下,还是蛮好的)/viewthread.php?tid=297fromuid=164951《分析化学》课后习题答案(第五版,高教版)/viewthread.php?tid=122fromuid=164951大学英语精读第3册答案(外教社)/viewthread.php?tid=9fromuid=164951《国际经济学》习题答案(萨尔瓦多,英文版)/viewthread.php?tid=155fromuid=164951《复变函数与积分变换》习题答案/viewthread.php?tid=70fromuid=164951《信息论与编码》辅导ppt及部分习题答案(曹雪虹,张宗橙,北京邮电大学出版社) /viewthread.php?tid=136fromuid=164951《宏观经济学》习题答案(第七版,多恩布什)/viewthread.php?tid=293fromuid=164951《物理化学》习题解答(天津大学, 第四版,106张)/viewthread.php?tid=2647fromuid=164951新视野大学英语视听说教程第一册【篇二:高数练习题及答案】xt>一、填空题(每空3分,共15分)z?的定义域为y2yy2(1)函数(2)已知函数z?arctan20?zx,则?x?=(x?y)ds?(3)交换积分次序,?dy?f(x,y)dx(4)已知l是连接(0,1),(1,0)两点的直线段,则?l(5)已知微分方程y???2y??3y?0,则其通解为二、选择题(每空3分,共15分)?x?3y?2z?1?0?(1)设直线l为?2x?y?10z?3?0,平面?为4x?2y?z?2?0,则() a. l平行于? b. l在?上 c. l垂直于?d. l与?斜交(2()xyz?确定,则在点(1,0,?1)处的dz??2a.dx?dyb.dx?22d.dx?2?2(3)已知?是由曲面4z?25(x?y)及平面z?5所围成的闭区域,将在柱面坐标系下化成三次积分为() a.?0c.2????(x?y)dv5d??rdr?dz235?2?0d??rdr?dz2?22543?2?0d??20rdr?5dz2r35d. ()1?d??rdr?dz(4)已知幂级数a. 2b. 1c. 2d. (5)微分方程y???3y??2y?3x?2e的特解y的形式为y?()a.xx??xxb.(ax?b)xec.(ax?b)?ced.(ax?b)?cxe三、计算题(每题8分,共48分)x?11、求过直线l1:12?y?20?z?3?1且平行于直线l2:x?22?y?11?z1的平面方程?z?z2、已知z?f(xy,xy),求?x, ?y3、设d?{(x,y)x?y?4}22,利用极坐标求??dxdxdy24、求函数f(x,y)?e(x?y?2y)的极值?x?t?sint?(2xy?3sinx)dx?(x?e)dy?5、计算曲线积分l,其中l为摆线?y?1?cost从点2y2x2o(0,0)到a(?,2)的一段弧x?xy?y?xe6、求微分方程满足 yx?1?1的特解四.解答题(共22分)1、利用高斯公式计算半球面z????2xzdydz?yzdzdx?z?dxdy,其中?由圆锥面z?与上(10? )?2、(1)判别级数?n?1(?1)n?1n3n?1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6?)n?(2)在x?(?1,1)求幂级数n?1?nx的和函数(6?)高等数学(下)模拟试卷二一.填空题(每空3分,共15分)z?(1)函数ln(1?x?y)的定义域为;elnx0xy(2)已知函数z?e,则在(2,1)处的全微分dz?(3)交换积分次序,?1dx?f(x,y)dy2=;(4)已知l是抛物线y?x上点o(0,0与点b(1,1之间的一段弧,则?l?;(5)已知微分方程y???2y??y?0,则其通解为 .二.选择题(每空3分,共15分)?x?y?3z?0?(1)设直线l为?x?y?z?0,平面?为x?y?z?1?0,则l与?的夹角为();???z?a. 0b. 2c. 3d. 4 (2)设z?f(x,y)是由方程z?3xyz?a确定,则?x yz2233?();xy2yz2x?xz2?a. xy?zb. z?xyc. xy?zd. z?xy (3)微分方程y???5y??6y?xe 的特解y的形式为y?();a.(ax?b)e2xb.(ax?b)xe222xc.(ax?b)?ce22xd.(ax?b)?cxe2x(4)已知?是由球面x?y?z?a所围成的闭区域, 将三次积分为(); a?02?2???dv?在球面坐标系下化成a?20d??sin?d??rdra2b.?02??20d??d??rdr2?a20c.?02?d??d??rdr?ad.?02nd??sin?d??rdr??(5)已知幂级数n?1?2n?1xn,则其收敛半径().1a. 2b. 1c. 2三.计算题(每题8分,共48分)5、求过a(0,2,4)且与两平面?1:x?2z?1和?2:y?3z?2平行的直线方程 .?z?z6、已知z?f(sinxcosy,e22x?y),求?x, ?y.7、设d?{(x,y)x?y?1,0?y?x},利用极坐标计算22??arctandyxdxdy.8、求函数f(x,y)?x?5y?6x?10y?6的极值. 9、利用格林公式计算? 222l(esiny?2y)dx?(ecosy?2)dyxx,其中l为沿上半圆周(x?a)?y?a,y?0、从a(2a,0)到o(0,0)的弧段.x?16、求微分方程四.解答题(共22分)y??y3?(x?1)2的通解.?1、(1)(6?)判别级数敛;n?1(?1)n?12sinn?3的敛散性,若收敛,判别是绝对收敛还是条件收?n(2)(4?)在区间(?1,1)内求幂级数2、(12?)利用高斯公式计算 z?x?y(0?z?1)的下侧22?n?1?xnn的和函数 .??2xdydz?ydzdx?zdxdy,?为抛物面高等数学(下)模拟试卷三一.填空题(每空3分,共15分)1、函数y?arcsin(x?3)的定义域为 .2、n??3n?3n?2=.3、已知y?ln(1?x),在x?1处的微分dy?.2lim(n?2)22?4、定积分1?1(x2006sinx?x)dx?2.dy5、求由方程y?2y?x?3x?0所确定的隐函数的导数dx57.二.选择题(每空3分,共15分)x?3x?2的间断点 1、x?2是函数(a)可去(b)跳跃(c)无穷(d)振荡y?x?1222、积分?10=.(a) ?(b)??(c) 0 (d) 13、函数y?e?x?1在(??,0]内的单调性是。
成都大学诗叶子制作第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)ba c a cb cb a ;解 ba c a cb cb a =acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).成都大学诗叶子制作(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:成都大学诗叶子制作成都大学诗叶子制作(1)7110025*******214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd aeac ab ---e c b e c b e c b adf ---=abcdef adfbce 4111111111=---=.成都大学诗叶子制作(4)dc b a 100110011001---. 解 d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++成都大学诗叶子制作bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)成都大学诗叶子制作022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).成都大学诗叶子制作(5)12211 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以成都大学诗叶子制作nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解成都大学诗叶子制作aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.成都大学诗叶子制作(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解成都大学诗叶子制作nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |;成都大学诗叶子制作解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121成都大学诗叶子制作nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10001 000 100 0100 0100 0011332212132 11113121121110 00011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=n n n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 000100 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为成都大学诗叶子制作14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==D D x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D ,成都大学诗叶子制作70351100650000601000051001653==D , 39551000601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ成都大学诗叶子制作有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,成都大学诗叶子制作故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB成都大学诗叶子制作⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;成都大学诗叶子制作解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,成都大学诗叶子制作 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取成都大学诗叶子制作 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A ,成都大学诗叶子制作 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以成都大学诗叶子制作 (B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,成都大学诗叶子制作 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:成都大学诗叶子制作 (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .成都大学诗叶子制作 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,成都大学诗叶子制作 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.成都大学诗叶子制作 证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,成都大学诗叶子制作 )3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得成都大学诗叶子制作A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而成都大学诗叶子制作⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A成都大学诗叶子制作11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ成都大学诗叶子制作⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,成都大学诗叶子制作所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,成都大学诗叶子制作1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.成都大学诗叶子制作由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则成都大学诗叶子制作⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )成都大学诗叶子制作~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.成都大学诗叶子制作(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132. 解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )成都大学诗叶子制作~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.成都大学诗叶子制作3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023成都大学诗叶子制作~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为成都大学诗叶子制作⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,成都大学诗叶子制作所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:成都大学诗叶子制作⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;成都大学诗叶子制作解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )成都大学诗叶子制作~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;成都大学诗叶子制作(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有成都大学诗叶子制作A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为。