微生物学教案第五章微生物代谢
- 格式:docx
- 大小:1.76 MB
- 文档页数:22
微生物学教案绪论教学目的和要求:掌握微生物和微生物学的概念及微生物所包括的主要类群;了解微生物在生物界的分类地位、微生物学发展历史以及微生物学发展的奠基人,了解研究微生物的重要意义。
一、微生物的特点二、微生物的研究对象三、微生物学的发展简史四、微生物与人类的关系五、现代微生物学的发展第一章原核生物的形态、构造和功能教学目的和要求:掌握细菌、放线菌、蓝细菌、立克次氏体、支原体、衣原体的形态结构及其功能。
重点:掌握原核生物特点,以细菌为代表的结构特征、基本结构中细胞壁肽聚糖结构和组成,细菌特殊结构芽孢、荚膜和鞭毛的组成、结构和功能。
难点:肽聚糖的结构。
第一节细菌一、细菌的形态构造及其功能(一)形态和染色(二)构造及其功能1、基本结构细胞壁、细胞膜、原核、细胞质及内含物2、特殊结构糖被、鞭毛、芽孢、菌毛(三)细菌的繁殖二、细菌的群体形态1、在固体培养基上(内)的群体形态2、在半固体培养基上(内)的群体形态3、在液体培养基上(内)的群体形态第二节放线菌一、放线菌的形态构造二、放线菌的繁殖三、放线菌的群体特征第三节蓝细菌第四节支原体、立克次氏体和衣原体一、支原体二、立克次氏体三、衣原体第二章真核微生物的形态、构造和功能教学目的和要求:比较原核生物和真核生物的区别,了解真核微生物的形态结构及繁殖方式,比较几大类微生物的菌落特征。
重点和难点:酵母菌的生活史第一节真核微生物概述第二节酵母菌一、分布及与人类的关系二、细胞的形态和构造三、繁殖方式、生活史和菌落特征第三节丝状真菌——霉菌一、分布及与人类的关系二、细胞的形态和构造三、真菌的孢子四、霉菌的菌落第三章病毒和亚病毒教学目的和要求:掌握病毒的特点,形态结构,繁殖方式,了解不同病毒种类与人、动植物的关系,掌握亚病毒的特点。
重点和难点:病毒的结构及复制方式。
第一节病毒一、病毒的形态结构和化学成分二、4类病毒及其繁殖方式1、噬菌体2、植物病毒3、动物病毒和昆虫病毒第二节亚病毒一、类病毒二、拟病毒三、朊病毒第四章微生物的营养和培养基教学目的和要求:了解微生物的营养要求,微生物进入细胞的方式,微生物的营养类型以及培养基的配制原则和培养基的种类等知识。
新陈代谢:是生物维持生命的动力源泉,是细胞内发生的各种化学反应的总称。
分解代谢:又称异化作用,是指复杂有机大分子通过分解代谢酶系的催化产生简单分子、能量(一般以ATP形式存在)和还原力(一般以[H]表示)的作用。
合成代谢:又称同化作用,是指合成酶系的催化下,由简单小分子、ATP和[H]形式的还原力一起共同合成复杂的生物大分子的过程。
微生物代谢的特点是:1、代谢旺盛;2、谢极为多样化;3、代谢的严格调节和灵活性。
生物氧化:发生在生物细胞内的氧化还原反应。
微生物产能代谢可归纳为两类途径和三种形式:发酵、呼吸;底物水平磷酸化、氧化磷酸化和光合磷酸化。
发酵:广义的发酵:利用微生物生产有用代谢产物的一种方式。
狭义的发酵:指有机物氧化释放的电子未经电子传递链传递,直接交给本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。
糖酵解:生物体内葡萄糖被降解成丙酮酸的过程。
EMP途径:又称糖酵解途径,以1分子葡萄糖为起始底物,经历10步反应,产生2分子ATP,同时生成2分子NADH2和2分子丙酮酸。
或己糖二磷酸途径。
EMP途径生理功能:供应ATP能量和NADH2还原力;连接其他几个重要代谢途径的桥梁;为生物合成提供多种中间代谢产物;逆向反应可进行多糖合成。
HMP途径又称磷酸戊糖途径或支路,是循环途径。
葡萄糖未经EMP途径和TCA 途径而彻底氧化,由6分子葡萄糖以6-磷酸葡萄糖的形式参与,循环一次用去1分子葡萄糖,产生大量NADPH2形式的还原力和多种中间代谢产物。
HMP途径的生理功能:微生物合成提供多种碳骨架,5-磷酸核糖可以合成嘌呤、嘧啶核苷酸,进一步合成核酸,5-磷酸核糖也是合成辅酶[NADP,FAD和CoA]的原料,4-磷酸赤藓糖是合成芳香族氨基酸的前提;HMP途径中的5-磷酸核酮糖可以转化为1,5-二磷酸核酮糖,在羟化酶催化下固定CO2,这对光能自养和化能自养菌有重要意义;为生物合成提供还原力(NADPH2)ED途径:又称2-酮-3-脱氧-6-磷酸葡糖酸途径,6-磷酸葡萄糖脱氢产生6-磷酸葡萄糖酸,在脱水酶和醛缩酶的作用下,生成1分子3-磷酸甘油醛和1分子丙酮酸。
《微生物学》教学大纲课程编号:课程名称:微生物学学分:4总学时:72学时理论学时:42学时实验学时:30学时先修课程要求:动物学、植物学、细胞生物学、生物化学等适应专业:生物技术专业本科教材:微生物学,袁生主编,第1版,高等教育出版社,2009年8月(国家规划教材)参考教材:1、《微生物学》,沈萍陈向东主编第2版高等教育出版社 2006年5月(国家规划教材)2、《微生物学教程》,周德庆主编,第二版,高等教育出版社。
2002年5月。
一、课程在培养方案中的地位、目的与任务本课程为生物技术专业本科生的必修专业基础课。
《微生物学》是在细胞、分子或群体水平上研究微生物的形态构造、生理代谢、遗传和育种、生态和分类进化等生命活动的基本规律,并将其应用于农业、工业、医药卫生、生物工程和环境保护等领域的科学。
通过该课程的学习,要求学生能够了解该学科的发展前沿、热点和问题,牢固掌握微生物学的基本理论和基础知识,了解微生物的基本特性及其生命活动规律,熟悉微生物学的基本技术,了解国外微生物学最新进展及应用,为今后的学习及工作实践打下宽厚的基础。
二、课程基本要求1、基本理论和基本知识(1)掌握微生物学的基础理论、基本知识掌握以细菌、真菌、病毒为主要内容的各类微生物的形态结构、繁殖方式和主要特征;掌握微生物遗传变异的一般规律及传染与免疫的知识;(2)熟悉微生物的营养、代谢和生长的特点;熟悉微生物育种的一般方法和微生物在工业、农业,医学、环境和日常生活中的某些应用,以及微生物在自然界物质循环中的重要意义。
(3)了解微生物生态及在自然界物质转化中的作用;了解微生物的多样性、系统发育与分类。
2、基本技能(1)掌握普通光学显微镜的使用方法,特别是利用油镜观察细菌的方法;掌握微生物的制片染色技术;(2)熟悉微生物细胞的大小测定及数量测定技术;熟悉培养基的制备、灭菌及微生物的分离纯化培养技术。
(3)通过综合实验(土壤微生物数量测定及未知菌革兰氏染色鉴定)让学生进一步掌握微生物的四大操作技术,并初步了解微生物科学研究的基本方法和思路。
医学微生物学教案第一章:微生物学基本概念1.1 微生物学的定义和发展史1.2 微生物的分类和特点1.3 微生物的观察和培养技术第二章:细菌2.1 细菌的形态与结构2.2 细菌的生理代谢2.3 细菌的遗传与变异2.4 细菌的分类与命名第三章:病毒3.1 病毒的形态与结构3.2 病毒的复制与感染机制3.3 病毒的分类与命名3.4 病毒与疾病的关系第四章:真菌4.1 真菌的形态与结构4.2 真菌的生理代谢4.3 真菌的分类与命名4.4 真菌与疾病的关系第五章:微生物与人类的关系5.1 微生物在自然界中的作用5.2 微生物在食品发酵中的应用5.3 微生物在药物研发中的应用5.4 微生物与人类健康的关联第六章:微生物实验室技术6.1 微生物实验室的安全与操作规范6.2 微生物的分离与纯化技术6.3 微生物的鉴定与计数方法6.4 常见微生物实验室检测案例分析第七章:抗生素与抗菌治疗7.1 抗生素的发现与发展史7.2 抗生素的分类与作用机制7.3 抗菌治疗的原则与策略7.4 抗生素的耐药性与防治措施第八章:感染性疾病8.1 感染性疾病的概述与分类8.2 传染病的传播途径与预防措施8.3 常见感染性疾病的临床表现与诊断8.4 感染性疾病的治疗与控制策略第九章:疫苗与免疫预防9.1 疫苗的原理与类型9.2 疫苗的研发与接种程序9.3 免疫记忆与疫苗的长期效果9.4 疫苗的不良反应与应对措施第十章:微生物学的前沿与发展10.1 微生物学的最新研究进展10.2 微生物组与人类健康的关系10.3 微生物病原体的进化与适应机制10.4 未来微生物学的发展方向与挑战重点和难点解析一、微生物学基本概念补充说明:微生物的分类包括原核生物、真核生物和病毒,特点包括微小、多样性、广泛分布等。
观察技术主要包括光学显微镜和电子显微镜,培养技术包括液体培养和固体培养等。
二、细菌补充说明:细菌的形态包括球形、杆形、螺旋形等,结构包括细胞壁、细胞膜、细胞质等。
微生物学教案(一)教学目标:1. 了解微生物的定义和分类。
2. 掌握微生物的基本特征和生命活动。
3. 认识微生物在自然界和人类生活中的重要作用。
教学内容:1. 微生物的定义和分类2. 微生物的基本特征3. 微生物的生命活动4. 微生物在自然界和人类生活中的作用教学过程:1. 导入:通过展示微生物图片,引起学生兴趣,提问“你们知道什么是微生物吗?”2. 讲解:介绍微生物的定义、分类、基本特征、生命活动以及其在自然界和人类生活中的作用。
3. 互动:学生分享他们对微生物的了解,提问解答。
教学评价:1. 课堂参与度:学生分享和提问解答的情况。
2. 理解度:学生对微生物定义、分类、基本特征和生命活动的掌握程度。
3. 应用能力:学生对微生物在自然界和人类生活中作用的的理解和举例。
微生物学教案(二)教学目标:1. 了解微生物的培养方法和培养基的制备。
2. 掌握微生物的分离和纯化技术。
3. 认识微生物的鉴别和鉴定方法。
教学内容:1. 微生物的培养方法2. 培养基的制备3. 微生物的分离和纯化4. 微生物的鉴别和鉴定方法教学过程:1. 导入:回顾上一节课的内容,提问“你们知道微生物是如何培养的吗?”2. 讲解:介绍微生物的培养方法、培养基的制备、分离和纯化技术以及鉴别和鉴定方法。
3. 互动:学生演示微生物的分离和纯化操作,提问解答。
教学评价:1. 操作能力:学生进行微生物分离和纯化操作的准确性。
2. 理解度:学生对微生物培养方法、培养基制备和鉴别鉴定技术的掌握程度。
3. 应用能力:学生能够将所学知识应用于实际微生物实验。
微生物学教案(三)教学目标:1. 了解微生物的代谢类型和代谢产物。
2. 掌握微生物的生长条件和优化方法。
3. 认识微生物在工业生产和环境中的应用。
教学内容:1. 微生物的代谢类型和代谢产物2. 微生物的生长条件和优化方法3. 微生物在工业生产和环境中的应用教学过程:1. 导入:回顾上一节课的内容,提问“你们知道微生物的代谢类型和代谢产物吗?”2. 讲解:介绍微生物的代谢类型、代谢产物、生长条件和优化方法以及其在工业生产和环境中的应用。
微生物学教程第三版周德庆教学设计本文是对于微生物学教程第三版周德庆教学设计的一些介绍和展望。
本教程针对新时代的教学特点和新生代学生的学习习惯进行了重新设计,以帮助学生更好地理解和掌握微生物学相关理论知识和实验技术。
第一章:导论在微生物学的研究中,我们需要了解微生物生长、代谢以及遗传学等方面的基础知识,并且在实验中需要运用到分子生物学和生物化学等相关技术手段。
本章的教学内容主要包括微生物的定义和分类,微生物学的研究对象,微生物的生长曲线以及微生物的遗传学基础知识等。
第二章:微生物的生长控制和培养本章的教学内容主要包括对于微生物生长控制理论的解读、微生物的培养方法及其特点和相应的实验方法,以及微生物生长的影响因素和测定方法等。
通过本章的学习,学生可以深入了解微生物生长过程中物理、化学等各种因素对微生物生长的影响并且学会操作对应的实验技术以验证这些影响因素的作用。
第三章:微生物代谢微生物代谢是微生物学中的一个重要的研究方向,本章将深入探讨微生物在代谢过程中产生的能量、产物、氧化还原等相关的生化学反应,并重点介绍常见微生物的代谢路径。
本章将介绍微生物生长过程中生成ATP的方式以及酸碱平衡的调节机制,为学生理解微生物代谢提供更加专业的知识支持。
第四章:微生物的遗传本章主要介绍微生物遗传学的基本概念、DNA的复制、转录、翻译的机制以及基因的表达调控等方面的知识。
通过本章的学习,学生可以了解微生物的基因组结构,通过实验掌握对微生物遗传信息进行检测时的基本方法和步骤,为学生进一步了解微生物生长和适应机制提供重要支持和理论依据。
第五章:微生物学在疾病诊断和治疗中的应用本章主要介绍微生物学在疾病诊断和治疗中的应用,包括微生物学在人体内的定位、微生物学在疾病诊断和治疗的应用、微生物学在传染病预防和控制方面的贡献等,结合实际病例引导学生进行探索性学习。
结语本教程针对新时代的教学特点和新生代学生的学习习惯进行了重新设计,将微生物学相关的理论知识和实验技术有机结合,使学生在学习过程中能够更加全面深入地了解微生物学相关领域的基础知识和实验技术。
课程编号:《微生物学》授课大纲学时数: 72讲课:72学制:四年制本科适合专业:生物科学有关专业一、本课程的性质和任务(一)课程的性质微生物学是生命科学中一门理论与实践性较强的重要基础课程,是一门对现代生命科学的发展发挥着不可以取代的重要作用的学科,故本课程分为理论解说和实践授课两大部分(实验部分还有授课大纲)。
理论课授课主要解说微生物发展的历史、微生物的形态构造、营养和代谢特点、遗传规律、生态、传染与免疫和系统分类等内容。
(二)课程的任务:本课程主要面对生物科学专业的本科学生讲课,是专业必修课。
经过学习微生物的形态构造、生理生化、生长生殖、遗传变异、生态分布、传染免疫、分类判断以及微生物与其他生物的互有关系及其多样性,在工、农、医等方面的应用,认识该学科的发展前沿、热点和问题,使学生牢固掌握微生物学的基本理论和基础知识,认识微生物的基本特点及其生命活动规律,为学生今后的学习及工作实践打下宽厚的基础。
二、本课程与其他课程的联系:微生物学是一门专业基础课,与好多课程关系亲近,应在生物化学、遗传学、生理学等课程的基础进步行学习,并为今后专业课,如遗传学、生物化学等课程的学习确定基础。
三、授课内容(一)第一章绪论一、本学期的授课安排二、微生物和你三、微生物学四、微生物的发现和微生物学的发展五、 20 世纪的微生物学六、 21 世纪微生物学发展的特点和趋势授课基本要求:学习微生物学这门课程,必定第一认识什么是微生物、主要种类、特点、发展情况、研究意义等等。
本章要修业生在联系本质的情况下掌握微生物的见解、特点,并提起学生学习微生物的兴趣。
主要知识点与重点:微生物的见解、类群及特点。
(二)第二章微生物的纯培养和显微技术第一节微生物的分别和纯培养一、无菌技术二、用固体培养基获得纯培养三、用液体培养基获得纯培养四、单细胞(孢子)分别五、选择培养分别六、微生物的珍藏技术第二节显微镜和显微技术一、显微镜的种类及原理二、显微观察样品的制备第三节显微镜下的微生物一、细菌和古菌二、真菌三、藻类四、原生动物授课基本要求:掌握微生物学研究的基本技术,即无菌技术、纯种分别技术、培养技术及显微镜技术。
微生物学教案x完整版教案名称:微生物学教案一、教学内容本节课的教学内容来自于人教版《生物学》八年级下册第五章第二节“微生物的生存和作用”。
具体内容包括:微生物的定义、分类、生存条件及其在自然界中的作用。
二、教学目标1. 学生能够理解微生物的定义,熟记微生物的分类。
2. 学生能够掌握微生物的生存条件,并能够运用到实际情境中。
3. 学生能够了解微生物在自然界中的作用,培养对微生物的探究兴趣。
三、教学难点与重点1. 教学难点:微生物的分类,微生物在自然界中的作用。
2. 教学重点:微生物的生存条件,微生物与环境的关系。
四、教具与学具准备1. 教具:PPT,微生物模型,显微镜。
2. 学具:笔记本,彩色笔。
五、教学过程1. 导入:通过展示微生物图片,引导学生思考微生物的特点和分类。
2. 讲解:介绍微生物的定义,讲解微生物的分类,重点介绍细菌、真菌和病毒。
3. 探究:引导学生思考微生物的生存条件,分组讨论并展示结果。
4. 实践:利用显微镜观察微生物模型,加深对微生物结构的理解。
六、板书设计板书内容:微生物的定义、分类、生存条件及其在自然界中的作用。
七、作业设计1. 作业题目:(1)列举三种微生物,并简要介绍它们的特征。
2. 答案:(1)细菌:单细胞,无核,具有细胞壁。
真菌:单细胞或多细胞,具有细胞壁,无核。
病毒:无细胞结构,由核酸和蛋白质组成。
(2)微生物的生存条件:适宜的温度、水分、营养物质等。
(3)微生物在自然界中的作用:分解有机物,促进物质循环;产生抗生素,抑制其他生物生长;引起疾病等。
八、课后反思及拓展延伸1. 课后反思:本节课通过图片、模型和实践活动,使学生对微生物有了更深入的了解。
但在微生物分类的讲解上,可以进一步拓展微生物分类的依据和分类方法。
2. 拓展延伸:微生物在食品制作中的应用,如发酵过程中微生物的作用;微生物与环境的关系,如微生物对土壤肥力的影响。
重点和难点解析一、教学内容本节课的教学内容来自于人教版《生物学》八年级下册第五章第二节“微生物的生存和作用”。
第十一授课单元一、教学目的:此章为要求学生掌握的重点内容之一,使学生了解六大营养要素在微生物生命活动中功能和供给形式、微生物的营养类型、营养物质进入细胞的四种主要方式、选用设计培养基的原则、培养基的种类。
本教学单元的教学目的是使学生了解微生物的六类生长要素及其功能, 掌握微生物营养类型特点.通过本章节的学习,了解微生物的营养与微生物发酵工业的关系。
二、教学内容: (第五章微生物的营养第一节微生物的化学组成及营养要求第二节微生物的营养类型)1.微生物细胞的化学组成和营养要求:重点介绍碳源、氮源、能源、生长因子、无机盐和水六大营养要素在微生物生命活动中功能和供给形式。
并通过实例介绍如何根据碳源、氮源的不同筛选工业微生物菌种。
2.微生物的营养类型:介绍根据碳源和能源划分的四种营养类型,即光能自养型、光能异养型、化能自养型和化能异养型。
三、教学重点、难点及其处理重点:1. 使学生了解碳源、氮源、能源、生长因子、无机盐和水六大营养要素在微生物生命活动中功能和供给形式;主要通过平时常见的培养基为例加以说明。
2. 根据碳源、能源的不同,将微生物分为四种基本营养类型:就微生物而言, 地球上几乎没有不被微生物所利用的一种物质, 但就其一类微生物来说, 它们所需要的营养物质则是有一定范围的. 根据微生物对碳源、能源的不同, 可分为自养微生物和异养微生物两类.自养微生物靠无机营养而活, 利用二氧化碳(或碳酸盐)作为唯一或主要的碳源, 还原二氧化碳为有机物(细胞物质), 所需要的能量来自光或无机物的氧化.异养微生物不能在完全无机物的环境下生长, 主要碳源来自有机物, 但可以固定二氧化碳, 它的合成反应所需要的能量来自有机物的氧化. 例如:光能自养型:以光为能源,以CO2或碳酸盐为唯一或主要碳源光能异养型:以光为能源,但生长需要一定的有机营养物化能自养型:以无机物的氧化获得能量,以CO2或碳酸盐为唯一或主要碳源化能异养型:以有机物的氧化获得能量,生长依赖于有机营养物质难点:根据碳源、能源的不同,将微生物分为四种基本营养类型。
微生物学教程绪论1.微生物是形体微小、单细胞或个体结构简单的多细胞、甚或无细胞结构的低等生物的通称。
2.微生物的特点:个体微小、构造简单、进化地位低。
3.微生物的分类:原核类、真核类、非细胞类。
4.微生物学简史5.微生物的五大共性:①体积小,面积达;②吸收多,转化快;③生长旺,繁殖快;④适应强,易变异;⑤分布广,种类多。
6.微生物学:是一门在细胞、分子或群体水平上研究微生物的形态构造、生理代谢、遗传变异、生态分布和分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程和环境保护等实践领域的科学。
第一章原核微生物的形态、构造和功能1.原核生物:一大类细胞核无核膜包裹,只存在称作核区的裸露DNA的原始单细胞生物。
根据外表特征粗分为6种类型,即细菌、放线菌、蓝细菌、支原体、立克次氏体和衣原体。
2.细菌的形态极其简单,基本上只有球状(球菌)、杆状(杆菌)和螺旋状(螺旋菌——弧菌、螺菌和螺旋体)。
3.细菌的一般构造包括细胞壁、细胞膜、细胞质和核区等,特殊构造主要是鞭毛、菌毛、性菌毛、糖被(包括微荚膜、荚膜和粘液层)和芽孢等。
5. G-细菌与G+细菌的肽聚糖的差别仅在于:1)四肽尾的底3个氨基酸不是L-lys,而是被一种只有在原核微生物细胞壁上才有的内消二氨基庚二酸(m-DAP)所代替;2)没有特殊的肽桥,其前后两个单体间的连接仅通过甲四肽尾的第4个氨基酸——D-Ala的羧基与乙四肽尾的第3个氨基酸——m-DAP的氨基直接相连,因而只形成较为疏稀、机械强度较差的肽聚糖网套。
6. 革兰氏染色法的机制Ⅰ结晶紫液初染和碘液媒染:在细菌的细胞膜内可形成不溶于水的结晶紫与碘的复合物。
Ⅱ乙醇脱色: G+细胞壁较厚、肽聚糖网层次多和交联致密且不含类脂,遇乙醇时,因失水网孔缩小,把结晶紫与碘的复合物牢牢留在壁内,使其保持紫色; G-细胞壁薄、外膜层类脂含量高、肽聚糖层薄和文联度差,结晶紫与碘复合物的溶出,细胞退成无色。
第一节代谢概论代谢(metalsolism)是细胞内发生的各种化学反应的总称,它主要由分解代谢(catabolism)和合成代谢(anabolism)两个过程组成。
分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。
一般可将分解代谢分为三个阶段(图5-1):第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH及FADH2。
第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,产生大量的ATP。
图5-1 分解代谢的三个阶段合成代谢是指细胞利用简单的小分子物质合成复杂大分子的过程,在这个过程中要消耗能量。
合成代谢所利用的小分子物质来源于分解代谢过程中产生的中间产物(图5-2)或环境中的小分子营养物质。
在代谢过程中,微生物通过分解代谢产生化学能,光合微生物还可将光能转换成化学能,这些能量除用于合成代谢外,还可用于微生物的运动和运输,另有部分能量以热或光的形式释放到环境中去。
微生物产生和利用能量及其与代谢的关系见图5-3。
无论是分解代谢还是合成代谢,代谢途径都是由一系列连续的酶促反应构成的,前一步反应的产物是后续反应的底物。
细胞通过各种方式有效地调节相关的酶促反应,来保证整个代谢途径的协调性与完整性,从而使细胞的生命活动得以正常进行。
图5-2 合成代谢示意图图5-3 能量与代谢关系示意图某些微生物在代谢过程中除了产生其生命活动所必需的初级代谢产物和能量外,还会产生一些次级代谢产物,这些次级代谢产物除了有利于这些微生物的生存外,还与人类的生产与生活密切相关,也是微生物学的一个重要研究领域。
第二节微生物产能代谢一.生物氧化分解代谢实际上是物质在生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,这个过程也称为生物氧化,是一个产能代谢过程。
在生物氧化过程中释放的能量可被微生物直接利用,也可通过能量转换储存在高能化合物(如ATP)中,以便逐步被利用,还有部分能量以热的形式被释放到环境中。
不同类型微生物进行生物氧化所利用的物质是不同的,异养微生物利用有机物,自养微生物则利用无机物,通过生物氧化来进行产能代谢。
二.异养微生物的生物氧化异养微生物将有机物氧化,根据氧化还原反应中电子受体的不同,可将微生物细胞内发生的生物氧化反应分成发酵和呼吸两种类型,而呼吸又可分为有氧呼吸和厌氧呼吸两种方式。
1. 发酵发酵(fermentation)是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。
在发酵条件下有机化合物只是部分地被氧化,因此,只释放出一小部分的能量。
发酵过程的氧化是与有机物的还原偶联在一起的。
被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。
发酵的种类有很多,可发酵的底物有碳水化合物、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。
生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解(glycolysis),主要分为四种途径:EMP途径、HMP途径、ED途径、磷酸解酮酶途径。
(1)EMP途径(Embden-Meyerhof pathway)整个EMP途径大致可分为两个阶段(如图5-4)。
第一阶段可认为是不涉及氧化还原反应及能量释放的准备阶段,只是生成两分子的主要中间代谢产物:3-磷酸-甘油醛。
第二阶段发生氧化还原反应,合成ATP并形成两分子的丙酮酸。
在EMP途径的第一阶段,葡萄糖在消耗ATP的情况下被磷酸化,形成葡萄糖-6-磷酸。
初始的磷酸化能增加分子的反应活性。
葡萄糖-6-磷酸再转化为果糖-6-磷酸,然后再次被磷酸化,形成一个重要的中间产物:果糖-1,6-二磷酸。
醛缩酶催化果糖-1,6-二磷酸裂解成两个三碳化合物:3-磷酸甘油醛及磷酸二羟丙酮。
至此,还未发生氧化还原反应,所有的反应均不涉及电子转移。
在第二阶段,3-磷酸甘油醛转化为1,3-二磷酸甘油醛的过程是氧化反应,辅酶NAD+接受氢原子,形成NADH。
同时,每个3-磷酸甘油醛都接受无机磷酸被磷酸化。
与己糖磷酸的有机磷酸键不同,二磷酸甘油醛中的两个磷酸键,属于高能磷酸键,在1,3二磷酸甘油酸转变成3-磷酸甘油酸及后续的磷酸烯醇式丙酮酸转变成丙酮酸的反应过程中,发生ATP的合成反应。
在糖酵解过程中,有两分子的ATP用于糖的磷酸化,但合成出四个分子的ATP,因此,每氧化一个分子的葡萄糖净得两分子ATP。
在两分子的1,3-二磷酸甘油醛的合成过程中,两分子NAD+被还原为NADH。
然而,细胞中的NAD+供应是有限的,假如所有的NAD+都转变成NADH,葡萄糖的氧化就得停止。
因为三磷酸甘油醛的氧化反应只有在NAD+存在时才能进行。
这一路障可以通过将丙酮酸进一步还原,使NADH氧化重新成为NAD+而得以克服。
例如在酵母细胞中,丙酮酸被还原成为乙醇,并伴有CO2的释放;而在乳酸菌细胞中,丙酮酸被还原成乳酸。
对于原核生物细胞,丙酮酸的还原途径是多种多样的,但有一点是一致的:NADH必须重新被氧化成NAD+,使得酵解过程中的产能反应得以进行。
在任何产能过程中,氧化必须与还原相平衡。
每除去一个电子都必须有一个电子受体。
在此情况下,NAD+在一个酶促反应中的还原与它在另一反应中的氧化相偶联,反应终产物也是处于氧化还原平衡中。
EMP途径可为微生物的生理活动提供ATP和NADH,其中间产物又可为微生物的合成代谢提供碳骨架,并在一定条件下可逆转合成多糖。
图5-4 EMP途径(2)HMP途径HMP途径(图5-5)是从6-磷酸葡萄糖酸开始的,即在单磷酸己糖基础上开始降解的,故称为单磷酸己糖途径。
HMP途径与EMP途径有着密切的关系,因为HMP途径中的3-磷酸甘油醛可以进入EMP,因此该途径又可称为磷酸戊糖支路。
HMP途径的一个循环的最终结果是一分子6-磷酸葡萄糖转变成一分子3-磷酸甘油醛,三分子CO2和六分子NADPH。
一般认为HMP途径不是产能途径,而是为生物合成提供大量的还原力(NADPH)和中间代谢产物。
如5-磷酸核酮糖是合成核酸,某些辅酶及组氨酸的原料;NADPH是合成脂`肪酸、类固醇和谷氨酸的供氢体。
另外,HMP途径中产生的5-磷酸核酮糖,还可以转化为1,5-二磷酸核酮糖,在羧化酶作用下固定CO2,对于光能自养菌,化能自养菌具有重要意义。
虽然这条途径中产生的NADPH可经呼吸链氧化产能,一摩尔葡萄糖经HMP途径最终可得到35摩尔ATP,但这不是代谢中的主要方式。
因此不能把HMP途径看作是产生ATP的有效机制。
大多数好氧和兼性厌氧微生物中都有HMP途径,而且在同一微生物中往往同时存在EMP和HMP途径,单独具有EMP或HMP途径的微生物较少见。
图5-5 HMP途径(3)ED途径ED途径是在研究嗜糖假单胞菌(Pseudomonas saccharophila)时发现的。
在ED途径中,6-磷酸葡萄糖首先脱氢产生6-磷酸葡萄糖酸,接着在脱水酶和醛缩酶的作用下,产生一分子3-磷酸甘油醛和一分子丙酮酸。
然后3-磷酸甘油醛进入EMP途径转变成丙酮酸。
一分子葡萄糖经ED途径最后生成两分子丙酮酸,一分子ATP,一分子NADPH和NADH(如图5-6)。
ED途径在细菌中,尤其是在革兰氏阴性菌中分布较广,特别是假单胞菌和固氮菌的某些菌株较多存在。
ED途径可不依赖于EMP和HMP途径而单独存在,但对于靠底物水平磷酸化获得ATP的厌氧菌而言,ED途径不如EMP途径经济图5-6 ED途径(4)磷酸解酮酶途径磷酸解酮酶途径是明串珠菌在进行异型乳酸发酵过程中分解己糖和戊糖的途径。
该途径的特征性酶是磷酸解酮酶,根据解酮酶的不同。
把具有磷酸戊糖解酮酶的称为PK途径(如图5-7),把具有磷酸己糖解酮酶的叫HK途径(如图5-8)。
在糖酵解过程中生成的丙酮酸可被进一步代谢。
在无氧条件下,不同的微生物分解丙酮酸后会积累不同的代谢产物。
目前发现多种微生物可以发酵葡萄糖产生乙醇,能进行乙醇发酵的微生物包括酵母菌、根霉、曲霉和某些细菌。
根据在不同条件下代谢产物的不同,可将酵母菌利用葡萄糖进行的发酵分为三种类型:在酵母菌的乙醇发酵中,酵母菌可将葡萄糖经EMP途径降解为两分子丙酮酸,然后丙酮酸脱羧生成乙醛,乙醛作为氢受体使NAD+再生,发酵终产物为乙醇,这种发酵类型称为酵母的一型发酵;但当环境中存在亚硫酸氢钠时,它可与乙醛反应生成难溶的磺化羟基乙醛。
由于乙醛和亚硫酸盐结合而不能作为NADH2的受氢体,所以不能形成乙醇,迫使磷酸二羟丙酮代替乙醛作为受氢体,生成α-磷酸甘油。
α-磷酸甘油进一步水解脱磷酸而生成甘油,称为酵母的二型发酵;在弱碱性条件下(pH 7.6),乙醛因得不到足够的氢而积累,两个乙醛分子间会发生歧化反应,一分子乙醛作为氧化剂被还原成乙醇,另一个则作为还原剂被氧化为乙酸。
氢受体则由磷酸二羟丙酮担任。
发酵终产物为甘油、乙醇和乙酸,称为酵母的三型发酵。
这种发酵方式不能产生能量,只能在非生长的情况下才进行。
图5-7 磷酸戊糖解酮酶(PK)途径图5-8 磷酸己糖解酮酶(HK)途径不同的细菌进行乙醇发酵时,其发酵途径也各不相同。
如运动发酵单胞菌(Zymomonas mobilis)和厌氧发酵单胞菌(Zymomonas anaerobia)是利用ED途径分解葡萄糖为丙酮酸,最后得到乙醇,对于某些生长在极端酸性条件下的严格厌氧菌,如胃八叠球菌(Sarcina ventriculi)和肠杆菌(Enterobacteriaceae)则是利用EMP途径进行乙醇发酵。
许多细菌能利用葡萄糖产生乳酸,这类细菌称为乳酸细菌。
根据产物的不同,乳酸发酵有三种类型:同型乳酸发酵、异型乳酸发酵和双歧发酵。
同型乳酸发酵的过程是:葡萄糖经EMP途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH还原为乳酸。
由于终产物只有乳酸一种,故称为同型乳酸发酵。
在异型乳酸发酵中,葡萄糖首先经PK途径分解,发酵终产物除乳酸以外还有一部分乙醇或乙酸。
在肠膜明串珠菌(Leuconostoc mesenteroides)中,利用HK途径分解葡萄糖,产生3-磷酸甘油醛和乙酰磷酸,其中3-磷酸甘油醛进一步转化为乳酸,乙酰磷酸经两次还原变为乙醇,当发酵戊糖时,则是利用PK途径,磷酸解酮糖酶催化5-P木酮糖裂解生成乙酰磷酸和3-P-甘油醛。
双歧发酵是两歧双歧杆菌(Bifidobacterium bifidum)发酵葡萄糖产生乳酸的一条途径。
此反应中有两种磷酸酮糖酶参加反应,即6-磷酸果糖磷酸酮糖酶和5-磷酸木酮糖磷酸酮糖酶分别催化6-磷酸果糖和5-磷酸木酮糖裂解产生乙酰磷酸和4-磷酸丁糖,及3-磷酸甘油醛和乙酰磷酸。