高三数学专题复习_概率
- 格式:docx
- 大小:29.88 KB
- 文档页数:19
2023年高考数学复习----件概率、全概率公式、贝叶斯公式典型例题讲解【典型例题】例1、(2022·全国·高三校联考阶段练习)2022年10月1日,女篮世界杯落幕,时隔28年,中国队再次获得亚军,追平历史最佳成绩.为考察某队员甲对球队的贡献,教练对近两年甲参加过的100场比赛进行统计:甲在前锋位置出场20次,其中球队获胜14次;中锋位置出场30次,其中球队获胜21次;后卫位置出场50次,其中球队获胜40次.用该样本的频率估计概率,则:(1)甲参加比赛时,求该球队某场比赛获胜的概率;(2)现有小组赛制如下:小组共6支球队,进行单循环比赛,即任意两支队伍均有比赛,规定至少3场获胜才可晋级.教练决定每场比赛均派甲上场,已知甲所在球队顺利晋级,记其获胜的场数为X ,求X 的分布列和数学期望.【解析】(1)设1A =“甲担任前锋”;2A =“甲担任中锋”;3A =“甲担任后卫”;B =“某场比赛中该球队获胜”; 则()1200.2100P A ==,()2300.3100P A ==,()3500.5100P A ==,()114|0.720P B A ==,()221|0.730P B A ==,()340|0.850P B A ==, 由全概率公式可得:()()()()()()()112233|||P A P B A A P B A A P B A B P P P =++0.20.70.30.70.50.80.75=⨯+⨯+⨯=.所以甲参加比赛时,该球队某场比赛获胜的概率是0.75.(2)设i C =“5场中有i 场获胜”()3,4,5i =,D =“甲所在球队顺利晋级”,()3233531270C 441024P C D ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;()4144531405C 441024P C D ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;()55553243C 41024P C D ⎛⎫== ⎪⎝⎭,则()9181024P D =,()()()()3327053|91817P C D P X P C D P D =====, 同理可得()()()()44405154|91834P C D P X P C D P D =====, ()()()()5524395|91834P C D P X P C D P D =====, 则X 的分布列为:()515913534517343434E X =⨯+⨯+⨯= 例2、(2022·全国·高三专题练习)某品牌汽车厂今年计划生产10万辆轿车,生产每辆轿车都需要安装一个配件M ,其中由本厂自主生产的配件M 可以满足20%的生产需要,其余的要向甲、乙两个配件厂家订购.已知本厂生产配件M 的成本为500元/件,从甲、乙两厂订购配件M 的成本分别为600元/件和800元/件,该汽车厂计划将每辆轿车使用配件M 的平均成本控制为640元/件.(1)分别求该汽车厂需要从甲厂和乙厂订购配件M 的数量;(2)已知甲厂、乙厂和本厂自主生产的配件M 的次品率分别为4%,2%和1%,求该厂生产的一辆轿车使用的配件M 是次品的概率;(3)现有一辆轿车由于使用了次品配件M 出现了质量问题,需要返厂维修,维修费用为14 000元,若维修费用由甲厂、乙厂和本厂按照次品配件M 来自各厂的概率的比例分担,则它们各自应该承担的维修费用分别为多少?【解析】(1)设使用甲厂生产的配件M 的比例为a ,则使用乙厂生产的配件M 的比例为0.8-a , 由已知可得()6000.88005000.2640a a +−+⨯=,解得a =0.5.所以需要从甲厂订购配件M 的数量为10⨯0.5=5万个; 从乙厂订购配件M 的数量为()100.80.5⨯−=3万个.(2)由(1)知甲厂、乙厂和本厂自主生产的配件M 的比例分别为0.5,0.3,0.2, 所以该汽车厂使用的配件M 的次品率的估计值为0.50.040.30.020.20.010.028⨯+⨯+⨯=,所以该厂生产的一辆轿车使用的配件M 是次品的概率为0.028.(3)设A =“该轿车使用了次品配件M ”,1B =“配件M 来自甲厂”,2B =“配件M 来自乙厂”,3B =“配件M 来自本厂”.由(2)可知()0.028P A = .该次品配件M 来自甲厂的概率为:()()()()()()11110.50.0450.0287P B P A B P AB P B A P A P A ⨯==== ,该次品配件M 来自乙厂的概率为:()()()()()()22220.30.0230.02814P B P A B P AB P B A P A P A ⨯==== ,该次品配件M 来自本厂的概率为:()()()()()()33330.20.0110.02814P B P A B P AB P B A P A P A ⨯==== ,所以甲厂应承担的费用为514000100007⨯=元,乙厂应承担的费用为314000300014⨯=元,本厂应承担的费用为114000100014⨯=元.例3、(2022·全国·高三专题练习)有专家指出,与新冠病毒感染者密切接触过的人,被感染的概率是9%.王某被确诊为新冠病毒感染者后,当地准备对王某的密切接触者共78人逐一进行核酸检测.(1)设X 为这78名密切接触者中被感染的人数,求X 的数学期望;(2)核酸检测并不是100%准确,有可能出现假阴性(新冠病毒感染者的检测结果为阴性,即漏诊)或假阳性(非新冠病毒感染者的检测结果为阳性,即误诊).假设当地核酸检测的灵敏度为98%(即假阴性率为2%),特异度为99%(即假阳性率为1%).已知王某的一个密切接触者赵某的核酸检测结果为阳性,求他被感染的概率(结果保留3位有效数字). 【解析】(1)X 为这78名密切接触者中被感染的人数, X 可取0,1,2,L ,78,()78,9%XB ,所以()789%7.02E X =⨯=.(2)设事件A 为“核酸检测结果为阳性”,事件B 为“密切接触者被感染”, 由题意()0.09P B =,()|0.98P A B =,()|0.01P A B =,所以()()()()()()()()||P A P AB AB P AB P AB P B P A B P B P A B ==+=+0.090.980.910.010.0973=⨯+⨯=,()()()()()()|0.090.98|0.9060.0973P AB P B P A B P B A P A P A ⨯===≈, 王某的一个密切接触者赵某的核酸检测结果为阳性,他被感染的概率为0.906.。
高三数学概率表知识点归纳概率是数学中一门重要的分支,也是高中数学必学内容之一。
在高三数学中,概率是一个相对简单但又不容忽视的知识点。
在复习过程中,归纳概率表的知识点能够帮助学生更好地理解和记忆概率相关概念和公式。
下面是对高三数学概率表知识点的归纳总结。
1. 基本概念概率是描述某一事件发生可能性大小的数值。
其中,事件是指某一结果或结果集合。
2. 概率的表示方法概率的表示可以有三种方式:- 百分数表示法:用百分比来表示概率,如75%- 小数表示法:用小数来表示概率,如0.75- 分数表示法:用分数表示概率,如3/43. 必然事件和不可能事件必然事件是概率为1的事件,不可能事件是概率为0的事件。
4. 事件的互斥和对立互斥事件是指两个事件不能同时发生,对立事件是指两个事件只能有一个发生。
互斥事件的概率为两个事件概率之和,对立事件的概率为1减去事件的概率。
5. 事件的组合事件的组合包括并、交、差等运算。
- 并事件的概率为两个事件概率之和减去交事件的概率;- 交事件的概率为两个事件概率之和减去并事件的概率;- 差事件的概率为一个事件发生的概率减去另一个事件发生的概率。
6. 条件概率条件概率是指在另一个事件已经发生的条件下,某一事件发生的概率。
条件概率的计算公式为:P(A|B) = P(AB) / P(B)。
7. 乘法定理乘法定理是指两个独立事件同时发生的概率等于各自发生的概率的乘积。
乘法定理可以推广到多个事件同时发生的情况。
8. 全概率公式和贝叶斯定理全概率公式和贝叶斯定理是在条件概率的基础上,分别用于计算事件的概率。
全概率公式用于计算未知事件的概率,贝叶斯定理用于在已知某个事件发生的条件下计算其他事件发生的概率。
9. 排列和组合排列是指从n个不同元素中取出m个元素进行排序的方法数,排列的计算公式为A(n, m) = n! / (n-m)!;组合是指从n个不同元素中取出m个元素进行组合的方法数,组合的计算公式为C(n, m) = n! / (m!(n-m)!)。
高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。
在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。
本文将针对高三文科数学中的概率知识点进行详细论述。
一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。
基本概率规则包括等可能概型、互斥事件与对立事件等概念。
等可能概型指的是实验中每个基本结果发生的概率相等的情况。
例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。
互斥事件指的是两个事件不能同时发生的情况。
例如,投篮比赛中不同队员投进的概率是互斥事件。
对立事件指的是两个事件至少有一个发生的情况。
例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。
二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。
频率法是通过重复实验的统计结果来估计概率。
例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。
古典概型法适用于每个基本结果发生的概率相等的情况。
例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。
几何概型法适用于几何空间问题。
例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。
三、条件概率条件概率是指在某个条件下事件发生的概率。
例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。
条件概率的计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。
四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。
例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。
独立事件的概率计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
高三数学知识点归纳概率概率是数学中一个非常重要的分支,它可以帮助我们理解事件发生的可能性。
在高三数学中,概率是一个必学的知识点。
本文将对高三数学概率知识点进行归纳总结,旨在帮助高三学生加深对概率的理解和掌握。
一、基础概念概率是指事件发生的可能性,用来表征事件的随机性。
它的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
常用的求概率的方法有频率法、几何法和古典概型法等。
二、事件的概率计算1.频率法频率法是通过实验的次数和结果的出现次数来计算概率的方法。
当实验的次数足够多时,事件发生的频率将逼近其概率。
2.几何法几何法是通过对样本空间的几何图形进行面积比较来计算概率。
对于连续型随机事件,可以使用几何法计算概率。
3.古典概型法古典概型法适用于样本空间元素个数有限且等可能的随机事件。
通过计算事件的有利结果个数与总结果个数之比来计算概率。
三、概率的性质与公式1.加法公式对于两个互斥事件A和B,其概率之和等于两个事件分别发生的概率之和。
2.乘法公式对于两个独立事件A和B,其同时发生的概率等于两个事件分别发生的概率之积。
3.全概率公式全概率公式是在事件A的基础上,将样本空间划分为若干互斥事件,并计算这些事件的概率之和等于事件A的概率。
4.条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
通过条件概率,我们可以计算两个事件的相关性。
四、排列与组合排列与组合是概率中常见的计数方法。
排列是指从n个不同元素中选取m个元素按照一定顺序排列的方法数,计算公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中选取m个元素并不考虑顺序的方法数,计算公式为C(n,m)=n!/[(n-m)!m!]。
五、常见的概率模型1.简单随机抽样简单随机抽样是指从总体中随机选择样本的抽样方法,其样本容量n较小时,可以近似认为是简单随机抽样,使用古典概型法计算概率。
2.二项分布二项分布是一种离散型概率分布,适用于只有两种可能结果的重复试验。
高考数学《概率》综合复习练习题(含答案)一、单选题1.如图,用随机模拟方法近似估计在边长为e (e 2.718≈为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间[]0,e 上的随机数1231000,,,x x x x 和1y ,2y ,3y ,…,1000y ,从而得到1000个点的坐标(),i i x y (1,2,3,1000i =),再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为( )A .0.70B .1.04C .1.26D .1.922.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为( ) A .125 B .85C .35D .253.从1,2,3,4,5中选出三个不同的数字组成一个三位数,则这个三位数是3的倍数的概率为( ) A .320B .310 C .25D .154.已知ABC 和ABD △都内接于同一个圆,ABC 是正三角形,ABD △是直角三角形,则在ABD △内任取一点,该点取自ABC 内的概率为( )A .14B .12C .34D 35.现代健康生活的理念,每天锻炼1小时,健康工作50年,幸福生活一辈子.我国每所学校都会采取一系列措施加强学生的体育运动.在某校举行的秋季运动会中,来自同一队的甲乙丙丁四位同学参加了4100⨯米接力赛,则甲乙互不接棒的概率为( ) A .16B .13C .12D .236.某校对高一新生进行体能测试(满分100分),高一(1)班有40名同学成绩恰在[]60,90内,绘成频率分布直方图(如图所示),从[)60,70中任抽2人的测试成绩,恰有一人的成绩在[)60,65内的概率是()A.715B.815C.23D.137.我国拥有包括民俗、医药、文学、音乐等国家级非物质文化遗产3000多项,下图为民俗非遗数进前10名省份排名,现从这10个省份中任取2个,则这2个省份民俗非遗数量相差不超过1个的概率为()A.215B.15C.415D.258.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .5519.在各不相同的10个球中有6个红球和4个白球,不放回地依次摸出两个球,第一次摸出红球的条件下,第二次也摸出红球的概率为 A .110 B .13C .25D .5910.有5把外形一样的钥匙,其中3把能开锁,2把不能开锁,现准备通过一一试开将其区分出来,每次随机抽出一把进行试开,试开后不放回,则恰好试开3次就将能开锁的和不能开锁的钥匙区分出来的概率是( )A .35B .310 C .45D .2511.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为 A .27B .57C .29D .5912.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请200名同学,每人随机写下一个都小于1的正实数对(),x y ,再统计x 、y 两数能与1构成钝角三角形时的数对(),x y 的个数m ,最后再根据m 来估计π的值.假如统计结果是60m =,那么π≈( )A .165 B .65C .7825D .14245二、填空题13.已知某人同时抛掷了两枚质地均匀的正方体骰子,记“两枚骰子的点数之和是6的倍数”为事件A ,则()P A =______________.14.如图,连接△ABC 的各边中点得到一个新的111A B C △,又连接111A B C △的各边中点得到222A B C △,如此无限继续下去,得到一系列三角形:ABC ,111A B C △,222A B C △,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是______.15.某校有高一、高二、高三、三个年级,其人数之比为2:2:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,现从所抽取样本中选两人做问卷调查,至少有一个是高一学生的概率为___________.16.一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位,如果他记得密码的最后一位是奇数,则他不超过两次就按对密码的概率是________.三、解答题17.在第29届“希望杯”全国数学邀请赛培训活动中,甲、乙两名学生的6次培训成绩(单位:分)如茎叶图所示.(1)若从甲、乙两名学生中选择一人参加第29届“希望杯”全国数学邀请赛,你会选择哪一位?说明理由;(2)从甲的6次成绩中随机抽取2次,试求抽到119分的概率.18.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,甲、乙都中靶的概率为0.72,求下列事件的概率; (1)乙中靶; (2)恰有一人中靶; (3)至少有一人中靶.19.从0,1,2,3,4,5,6,7,8,9这10个自然数中,任取3个不同的数. (1)这3个数组成一个三位数,求这个三位数能够被5整除的概率; (2)设X 为所取的3个数中奇数的个数,求X 的可能取值及相应的概率.20.在全国防控疫情阻击战关键阶段,校文艺团排练了4个演唱节目,2个舞蹈节目参加社区慰问演出.(结果用数字作答)(1)若从6个节目中选3个参加市演出汇报,求3个节目中恰有1个舞蹈节目的选法种数; (2)现对6个节目安排演出顺序,求4个演唱节目接在一起的概率;(3)现对6个节目安排演出顺序,求节目甲不在第一个且不在最后一个演出的概率.21.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.22.为了研究性格和血型的关系,随机抽查了100个人的血型和性格,其情况如下表:(1)根据上面的22⨯列联表,判断是否有95%的把握认为性格与血型有关?(2)在“内向型”性格的人中,用分层抽样的方法抽取5人.若从5人中抽取3人进一步分析性格和血型的关系,求恰好抽到两名“O型或A型”人的概率.附表:其中22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++23.某科研机构为了研究喝酒与糖尿病是否有关,对该市30名成年男性进行了问卷调查,并得到了如下列联表,规定“”平均每天喝100mL以上的”为常喝.已知在所有的30人中随机抽取1人,患糖尿病的概率为4 .(1)请将上表补充完整,并判断是否有99.5%的把握认为糖尿病与喝酒有关?请说明理由;(2)已知常喝酒且有糖尿病的6人中恰有两名老年人,其余为中年人,现从常喝酒且有糖尿病的这6人中随机抽取2人,求恰好抽到一名老年人和一名中年人的概率.参考公式及数据:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.24.A,B,C三个班共有180名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):(Ⅰ)试估计B班的学生人数;(Ⅱ)从这180名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率; (Ⅲ)从A班抽出的6名学生中随机选取2人,从C班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率。
高三数学总复习讲义--概率第一讲:随机事件的概率随机事件:在一定条件下可能发生也可能不发生的事件。
必然事件:在一定条件必然要发生的事件。
不可能事件:在一定条件下不可能发生的事件。
事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
由定义可知,必然事件的概率是1,不可能事件的概率是0。
等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。
如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。
在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值:(古典概型)这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。
题型一:与排列组合综合例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________;练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为________________;甲、乙分在同一组的概率P=________________。
题型二:与两个计数原理综合例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;练习2.由数字0、1、2、3、4、5组成没有重复数字的五位数,所得数是大于20000的偶数的概率是________________;题型三:有、无放回抽样问题例3.从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有1件次品的概率。
高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
高三数学知识点概率和统计概率和统计是高中数学中一门重要的知识点,它不仅在学术领域具有广泛的应用,而且在日常生活中也起着重要的作用。
本文将以深入浅出的方式,介绍概率和统计的基本概念、应用及其在现实生活中的意义。
一、概率的基本概念概率是研究随机事件发生可能性的数学工具。
在概率论中,我们通过定义事件、样本空间以及事件发生的概率来进行研究。
在一个随机试验中,样本空间是指所有可能的结果的集合。
而事件则是样本空间的一个子集,它表示我们所关心的具体结果。
通过定义样本空间和事件,我们可以计算出事件发生的概率。
概率的计算一般使用频率的概念,即某个事件发生的次数与总试验次数的比值。
二、概率的应用概率在现实生活中有着广泛的应用。
例如,在购买彩票时,我们可以利用概率的知识来判断购买中奖的可能性。
概率计算还可以应用于投资决策、风险管理等领域。
此外,概率还可以用来解决排列和组合问题。
在排列问题中,我们关注的是有顺序的一组对象的不同排列方式的数量。
而在组合问题中,我们考虑的是从一组对象中选择出一部分对象的不同组合方式的数量。
三、统计的基本概念统计是研究数据收集、分析和解释的学科。
在现实生活中,我们经常会遇到各种各样的数据,统计学可以帮助我们从数据中发现规律,做出推断和预测。
统计学中的重要概念包括样本和总体。
样本是指从总体中抽取的一部分数据,而总体是我们希望研究的对象的全体数据。
利用统计学的方法,我们可以对数据进行描述和分析。
例如,通过计算数据的平均值、标准差、方差等指标,我们可以对数据的特征进行量化描述。
同时,统计学还涉及概率分布、假设检验、回归分析等复杂的概念和方法。
四、统计的应用统计学在各个领域都有着广泛的应用。
在医学领域,统计学可以帮助医生进行临床试验和疾病预测。
在市场营销中,统计学可以帮助企业了解客户的需求、评估营销策略的效果。
除此之外,统计学还可以应用于财务分析、社会调查、教育研究等领域。
统计学的方法可以帮助我们更好地理解和解决实际问题。
概率专题复习1.某临时车站:每天有3辆开往上海的分为上、中、下等级的客车:一天赵先生准备在该临时车站乘车前往上海办事:但他不知道客车的车况:也不知道发车顺序:为了尽可能乘上上等车:他采取如下策略:先放弃第一辆:如果第二辆比第一辆好则上第二辆:否则上第三辆:那么他乘上上等车的概率为多少?2.某种电路开关闭合后:会出现红灯或绿灯闪动:已知开关第一次闭合后:出现红灯和出现绿灯的概率都是21。
从开关第二次闭合起:若前次出现红灯:则下一次出现红灯的概率是31:出现绿灯的概率是32:若前次出现绿灯:则下一次出现红灯的概率是53:出现绿灯的概率是52。
问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中:出现一次红灯:两次绿灯的概率是多少?3.有一批食品出厂前:要进行五项指标抽检:如果有两项指标不合格:则这批食品不能出厂。
已知每项指标抽检是相互独立的:且每项抽检出现不合格的概率都是0.2。
(1) 求这批食品不能出厂的概率:(保留三位有效数字)(2) 求直至五项指标全部检验完毕:才能确定这批食品是否出厂的概率。
(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局:加时30分钟仍成平局:现决定各派5名队员:每人射一个点球决定胜负:设甲乙两足球队每个队员的点球命中率都为0.5。
(1) 不考虑乙队:求甲队仅有3名队员点球命中:且其中恰有2名队员连续命中的概率:(2) 求甲乙两队各射5个点球后:再次出现平局的概率。
5.高三(1)班、高三(2)班已各选出3名学生组成代表队:进行羽毛球比赛:比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛:② 代表队中每名队员至少参加一局比赛:不得参加两局单打比赛: ③ 先胜两局的队获胜:比赛结束。
已知每局比赛双方胜出的概率均为21。
(1) 根据比赛规则:高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛:省队获胜的概率为0.6:现在双方商量对抗赛的方式:提出了两种方案:①双方各出3人:②双方各出5人。
数学高三知识点总概率概率是数学中的一个重要分支,它研究随机事件发生的可能性大小。
在高三数学中,总概率是一个基础而又重要的知识点。
本文将详细介绍高三数学中的总概率的相关概念、性质和应用。
一、总概率的概念总概率是指在一组互不相容的事件中,每个事件发生的可能性的加和。
换句话说,如果事件A、B、C……是一组互不相容的事件,并且它们的和恰好构成了样本空间S,那么对于任意一个事件X,它的概率可以通过总概率公式来计算。
二、总概率的性质1. 总概率的值介于0和1之间。
总概率是事件发生的概率,因此它的取值范围必须在0和1之间。
2. 总概率公式设事件A1,A2,A3......是一组互不相容的事件,且它们的概率均大于0。
则对于任意一个事件X,可以使用总概率公式来计算其概率:P(X) = P(X|A1)P(A1) + P(X|A2)P(A2) + P(X|A3)P(A3) + ...其中,P(X|A1)表示在事件A1发生的前提下事件X发生的概率,P(A1)表示事件A1发生的概率。
三、总概率的应用总概率广泛应用于生活和实际问题的解决中。
以下是一些常见的应用情景。
1. 一袋球中有红球和蓝球,红球的数量和蓝球的数量不一定相同。
现从中任取1个球,则取出红球的概率为多少?解:设红球的概率为P(红球),蓝球的概率为P(蓝球)。
由于红球和蓝球是一组互不相容的事件,并且它们的和构成了样本空间S(即总共的可能取球结果),所以可以使用总概率公式:P(红球) = P(红球|红球袋)P(红球袋) + P(红球|蓝球袋)P(蓝球袋)。
2. 一个班级有60%的学生喜欢数学,30%的学生喜欢英语,其余的学生都喜欢物理。
现在随机抽取一个学生,他喜欢数学的概率是多少?解:设喜欢数学的概率为P(数学),喜欢英语的概率为P(英语),喜欢物理的概率为P(物理)。
由于数学、英语和物理是一组互不相容的事件,并且它们的和构成了样本空间S(即学生喜欢的所有学科情况),所以可以使用总概率公式:P(数学) = P(数学|数学班级)P(数学班级) + P(数学|英语班级)P(英语班级) + P(数学|物理班级)P(物理班级)。
概率专题复习1.某临时车站,每天有3辆开往上海的分为上、中、下等级的客车,一天赵先生准备在该临时车站乘车前往上海办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略:先放弃第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为多少?2.某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21。
从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52。
问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中,出现一次红灯,两次绿灯的概率是多少?3.有一批食品出厂前,要进行五项指标抽检,如果有两项指标不合格,则这批食品不能出厂。
已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2。
(1) 求这批食品不能出厂的概率;(保留三位有效数字)(2) 求直至五项指标全部检验完毕,才能确定这批食品是否出厂的概率。
(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局,加时30分钟仍成平局,现决定各派5名队员,每人射一个点球决定胜负,设甲乙两足球队每个队员的点球命中率都为0.5。
(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率;(2) 求甲乙两队各射5个点球后,再次出现平局的概率。
5.高三(1)班、高三(2)班已各选出3名学生组成代表队,进行羽毛球比赛,比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛;② 代表队中每名队员至少参加一局比赛,不得参加两局单打比赛; ③ 先胜两局的队获胜,比赛结束。
已知每局比赛双方胜出的概率均为21。
(1) 根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛,省队获胜的概率为0.6,现在双方商量对抗赛的方式,提出了两种方案:①双方各出3人;②双方各出5人。
2011年高考数学正态分布几何分布超几何分布离散型随机变量专项突破精选真题汇编与讲解分析答案第一部分第五节离散型随机变量的分布列一、选择题1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是2点B 一颗是3点,一颗是1点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:对A、B中表示的随机试验的结果,随机变量均取值4,而D是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列分布列中,是离散型随机变量分布列的是()A.B.C.D.解析:只有选项C中的概率之和等于1,选C.答案:C3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次该项试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12 D.23解析:1-P (ξ=0)=2P (ξ=0),即P (ξ=0)=13.答案:B4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:由分子C47C68可知是从7个不方便的村庄中选4个,从8个方便的村庄中选6个,∴X =4,∴是P (X =4)的概率.答案:C5.若离散型随机变量X 的分布列为:则常数q 的值为( )A .1 B. 1±22 C. 1+22 D. 1-22解析:由12+(1-2q )+q 2=1,解得q =1-22或q =1+22,又∵q 2∈[0,1],∴q =1+22舍去.∴q =1-22. 答案:D 二、填空题6.随机变量X 等可能取值为1,2,3,……,n ,如果P (X <4)=0.3,那么n =________. 解析:∵P (X <4)= P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 答案:107.随机变量ξ的分布列为若a +c =2b ,则P (|ξ|=1)=________.解析:∵a +c =2b ,又∵a +b +c =1,∴b =13,a +c =23,于是P (|ξ|=1)=P (ξ=1)+P (ξ=-1)=a +c =23.答案:238.若离散型随机变量X 的分布列为P (X =k )=c2k ,k =1,2,3,4,5,6.其中c 为常数,则P (X ≤2)的值是________.解析:由c 2+c 4+c 8+c 16+c 32+c 64=1,可得c =6463.∴P (X ≤2)=P (X =1)+P (X =2)=3263+1663=4863=1621.答案:1621三、解答题9.(2009年广州调研)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列.解析:(1)设“这箱产品被用户接收”为事件A ,P (A )=8×7×610×9×8=715,即这箱产品被用户接收的概率为715. (2)ξ的可能取值为1,2,3.P (ξ=1)=210=15,P (ξ=2)=810×29=845,P (ξ=3)=810×79=2845,∴ξ的分布列为10.(2009年广州模拟)50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这50(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机变量ξ的分布列. 解析:(1)从50名教师中随机选出2名的方法数为C250=1225. 选出2人使用版本相同的方法数为C 220+C 215+C 25+C 210=350, 故2人使用版本相同的概率为:P =3501225=27.(2)∵P (ξ=0)=C215C235=317,P (ξ=1)=C120C115C235=60119,P (ξ=2)=C220C235=38119,∴ξ的分布列为第二部分第六节 二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.716 解析:P (ξ=3)=C36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.1927解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D. 答案:D3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p , ∴p ≥0.4.又∵p <1,∴0.4≤p <1. 答案:A5.(2009年湖南四市联考)已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0) =P (ξ>4)=1-0.84=0.16.故选A. 答案:A 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答)解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:答案:8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________.解析:根据3σ原则,在4-3×0.5=2.5——4+3×0.5=5.5之外为异常,所以这批零件不合格. 答案:不合格 三、解答题9.(2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”, i =1,2.B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”, i =1,2.C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10.(2009年南海一中月考的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.解析:(1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则 P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445第三部分第七节 离散型随机变量的期望与方差一、选择题1.下列是4个关于离散型随机变量ξ的期望和方差的描述①Eξ与Dξ是一个数值,它们是ξ本身所固有的特征数,它们不具有随机性 ②若离散型随机变量一切可能取值位于区间[]a ,b 内,则a ≤Eξ≤b③离散型随机变量的期望反映了随机变量取值的平均水平,而方差反映的是随机变量取值的稳定与波动,集中与离散的程度④离散型随机变量的期望值可以是任何实数,而方差的值一定是非负实数 以上4个描述正确的个数是( )A .1B .2C .3D .4 答案:D2.设Eξ=10,Eη=3,则E (3ξ+5η)=( ) A .45 B .40 C .35 D .15 解析:E (3ξ+5η)=3Eξ+5Eη=3×10+5×3=45. 答案:A3.已知随机变量X 的分布列是:且EX =7.5,则a 的值为( A .5 B .6 C .7 D .8 解析:b =1-0.3-0.1-0.2=0.4EX =4×0.3+a ×0.1+9×0.4+10×0.2=7.5. ∴a =7. 答案:C4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4 解析:ξ=0,1,2,3,此时P (ξ=0)=0.43,P (ξ=1)=0.6×0.42,P (ξ=2)=0.6×0.4,P (ξ=3)=0.6,Eξ=2.376. 答案:C5.口袋中有5只相同的球,编号为1、2、3、4、5,从中任取3球,用ξ表示取出的球的最大号码,则Eξ=( )A .4B .4.75C .4.5D .5 解析:P (ξ=3)=1C 35=110, P (ξ=4)=C 23C 35=310,P (ξ=5)=C 24C 35=35Eξ=3×0.1+4×0.3+5×0.6=4.5. 答案:C 二、填空题6.利用下列盈利表中的数据进行决策,应选择的方案是______.解析:EA 1=50×0.25+65×0.30+26×0.45=43.7, EA 2=70×0.25+26×0.30+16×0.45=32.5, EA 3=-20×0.25+52×0.30+78×0.45=45.7, EA 4=98×0.25+82×0.30+(-10)×0.45=44.6. 在四个均值中,EA 3最大,所以应选择的方案是A 3. 答案:A 37.(2009年上海卷)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=________(结果用最简分数表示).解析:首先ξ∈{0,1,2}.∴P (ξ=0)=C25C27=1021,P (ξ=1)=C12C15C27=1021,P (ξ=2)=C22C27=121.∴Eξ=0·1021+1·1021+2·121=1221=47.答案:478.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的方差是________.解析:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,则P (ξ=0)=C 13C 13+C 13C 12+C 12C 13+C 13C 11+C 11C 13C 16C 16=34, P (ξ=1)=C 12C 12C 16C 16=19,P (ξ=2)=C 12C 11+C 11C 12C 16C 16=19,P (ξ=4)=C 11C 11C 16C 16=136, ∴ Eξ=19+29+436=49.∴Dξ=⎝⎛⎭⎫0-492×34+⎝⎛⎭⎫1-492×19+⎝⎛⎭⎫2-492×136=182729. 答案:182729三、解答题9.(2009年浙江卷)在1,2,3,…,9这9个自然数中,任取3个数. (1)求这3个数中恰有1个偶数的概率;(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ. 解析:(1)记“这3个数中恰有一个是偶数”为事件A , 则P (A )=C14C25C39=1021.(2)随机变量ξ的取值为0,1,2.ξ的分布列是所以ξ的数学期望Eξ=0×512+1×12+2×112=23. Dξ=⎝⎛⎭⎫0-232×512+⎝⎛⎭⎫1-232×12+⎝⎛⎭⎫2-232×112=2154. 10.(2009年山东卷)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 1为0.25,在B 处的命率为q 2.该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小. 解析:(1)由题设知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知P (ξ=0)=(1-q 1)(1-q 2)2=0.03,解得q 2=0.8.(2)根据题意P 1=P (ξ=2)=(1-q 1)C12(1-q 2)q 2=0.75×2×0.2×0.8=0.24.P 2=P (ξ=3).=q 1(1-q 2)2=0.25×(1-0.8)2=0.01.P 3=P (ξ=4)=(1-q 1)q 22=0.75×0.82=0.48.P 4=P (ξ=5)=q 1q 2+q 1(1-q 2)q 2=0.25×0.8+0.25×0.2×0.8=0.24.因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=P3+P4=0.48+0.24=0.72.P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处投以后都在B处投得分超过3分的概率。
高三数学知识点统计概率统计概率是高三数学中的重要知识点之一,它通过对统计数据进行分析和计算,帮助我们了解事件发生的概率。
下面将从基本概念、概率计算方法和应用实例三个方面进行介绍。
一、基本概念概率是指某一事件在相同条件下发生的可能性大小。
在统计学中,常用的概率计算方法包括频率概率和几何概率两种。
1.1 频率概率频率概率是通过统计大量实验结果得到的概率。
它的计算公式为:事件发生次数/总实验次数。
1.2 几何概率几何概率是通过计算事件所占的样本空间的面积或体积得到的概率。
它的计算公式为:事件发生的可能结果数/总可能结果数。
二、概率计算方法在统计概率的计算中,常用的方法有加法法则、乘法法则和条件概率。
2.1 加法法则加法法则用于计算两个事件中至少发生一个事件的概率。
当两个事件互斥时(即两个事件不可能同时发生),可以直接使用加法法则计算:P(A∪B) = P(A) + P(B)。
2.2 乘法法则乘法法则用于计算两个事件同时发生的概率。
当两个事件独立时(即一个事件的发生不影响另一个事件的发生),可以直接使用乘法法则计算:P(A∩B) = P(A) × P(B)。
2.3 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)。
三、应用实例统计概率在实际生活中有广泛的应用,下面以两个常见的例子介绍其应用。
3.1 投掷骰子假设我们有一枚均匀的六面骰子,每个面上的点数为1~6。
现在我们想知道投掷一次骰子后,点数为偶数的概率是多少。
根据频率概率,我们可以进行一系列实验,统计出点数为偶数的次数,再除以总实验次数,就可以得到概率。
根据几何概率,点数为偶数的可能结果数为3,总可能结果数为6,因此概率为1/2。
3.2 抽奖活动某个电商平台举办了一个抽奖活动,奖品包括一等奖、二等奖和三等奖。
现在我们想知道抽奖时至少抽到二等奖的概率是多少。
概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。
高中高三概率统计知识点概率统计是高中数学中的一门重要课程,也是高考数学中的一项必考内容。
理解和掌握概率统计的知识,不仅可以帮助我们解决实际问题,还可以提高我们的逻辑思维和数学能力。
下面将介绍高三概率统计的几个重要知识点。
一、概率的基本概念和性质概率是指某个事件发生的可能性大小。
事件的概率一般用一个介于0和1之间的数来表示,其中0表示不可能发生,1表示必然发生。
概率的性质包括非负性、规范性和可列可加性。
非负性:对于任何事件A,有0≤P(A)≤1;规范性:必然事件的概率为1,即P(S)=1,其中S表示样本空间;可列可加性:对于任意的两个或多个互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...) = P(A1) + P(A2) + ...。
二、独立事件和条件概率独立事件是指事件A和事件B的发生(或不发生)相互不影响。
设A、B是两个事件,如果P(A∩B)=P(A)P(B),则称事件A和事件B是相互独立的。
条件概率是指在事件B已发生的条件下,事件A发生的概率,用P(A|B)表示。
三、随机变量和概率分布随机变量是一个变量,其取值是根据概率分布来决定的。
离散型随机变量的概率分布可以用概率函数(或称为概率质量函数)表示,连续型随机变量的概率分布可以用概率密度函数表示。
离散型随机变量的概率函数具有以下性质:1) 非负性:对于任意的x,P(X=x)≥0;2) 规范性:对于所有可能的x,有ΣP(X=x)=1。
连续型随机变量的概率密度函数具有以下性质:1) 非负性:对于任意的x,f(x)≥0;2) 规范性:∫f(x)dx=1。
四、常见的概率分布在概率统计中,有许多常见的概率分布,例如二项分布、泊松分布、正态分布等。
1) 二项分布:适用于只有两种结果的重复试验,每次试验的结果相互独立,并且每次试验成功的概率相同。
2) 泊松分布:适用于描述单位时间(或单位面积)内某事件发生的次数,满足平均发生率稳定的条件。
高三数学概率知识点全面理解概率是数学中的一个重要分支,也是高中数学的重点和难点之一。
本文将对高三数学概率知识点进行全面解析,帮助大家更好地理解和掌握概率知识。
一、概率的基本概念1.1 随机试验随机试验是指在相同的条件下,可能出现多种结果的试验。
例如,掷骰子、抽奖、天气预报等都是随机试验。
1.2 样本空间样本空间是指随机试验所有可能结果的集合。
例如,掷骰子的样本空间为 {1, 2, 3, 4, 5, 6}。
1.3 事件事件是指样本空间中的一部分,通常用大写字母表示。
例如,在掷骰子的样本空间中,事件A表示掷出的点数为偶数,即A = {2, 4, 6}。
1.4 概率概率是指某个事件发生的可能性。
通常用P(A)表示事件A的概率,取值范围为0到1。
二、概率的基本性质2.1 概率的非负性概率P(A)的非负性表示:P(A) ≥ 0。
2.2 概率的和为1如果一个试验有n个互斥的事件,记为A1, A2, …, An,那么这n个事件的概率之和等于1,即:P(A1) + P(A2) + … + P(An) = 12.3 互斥事件互斥事件是指两个事件不可能同时发生。
例如,在掷骰子的试验中,事件B表示掷出的点数为奇数,即B = {1, 3, 5}。
则事件A和事件B是互斥的,因为A = {2, 4, 6},且A ∩ B = ∅。
三、条件概率和独立事件3.1 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率。
记为P(A|B),表示“在B发生的条件下A发生的概率”。
条件概率的计算公式为:P(A|B) = P(A ∩ B) / P(B)3.2 独立事件独立事件是指两个事件的发生互不影响。
如果事件A和事件B相互独立,那么事件A发生的概率不受事件B发生与否的影响,即:P(A ∩ B) = P(A) × P(B)四、全概率公式和贝叶斯公式4.1 全概率公式全概率公式是指在一个试验中,如果有两个互斥的事件B1, B2, …, Bn,它们的概率和为1,那么任意事件A的概率可以表示为:P(A) = P(A ∩ B1) + P(A ∩ B2) + … + P(A ∩ Bn)4.2 贝叶斯公式贝叶斯公式是指在已知事件B发生的条件下,事件A的概率的计算公式。
文科数学高考知识点概率概率是数学中的一个重要分支,也是文科数学高考中的一个重要考点。
概率可以说是一种描述随机性的工具,它可以帮助我们分析和预测各种事件的发生可能性。
在高考中,概率常常和统计一起出现,共同构成了数学的一大门类。
一、概率的基本概念在学习概率之前,我们首先需要了解一些基本的概念。
概率的基本单位是事件,而事件是指某件事情发生或者不发生。
在概率的计算中,我们通常使用事件发生的可能性大小来描述概率的大小。
概率的取值范围是0到1之间,其中0表示不可能事件,而1表示必然事件。
二、概率的计算方法1.古典概型古典概型是最简单的概率计算方法之一。
在古典概型中,我们假设每个样本点出现的机会是相等的,然后通过计算有利事件出现的样本点数目与总样本点数目的比值来计算概率。
2.频率概率频率概率是根据事件发生的频率来计算概率。
通过大量的实验或观察,我们可以统计出事件发生的次数,然后计算事件发生的频率作为概率的近似值。
3.几何概型在几何概型中,我们通常是通过计算几何图形的面积或者长度来求解概率。
几何概型常常应用在正方形、圆形、三角形等几何图形的计算中。
4.条件概率条件概率是指在已知某个事件发生的前提下,另一个事件发生的概率。
条件概率的计算对于解决一些实际问题非常有用,它能够帮助我们预测在特定条件下事件发生的可能性。
5.全概率全概率是利用分区思想来计算概率的一种方法。
通过将一个事件分解成若干个互斥且穷尽的事件,然后计算各个事件发生的概率并相加,就可以得到整个事件发生的概率。
三、概率的应用概率在现实生活中有着广泛的应用。
在商业领域中,概率可以用于市场调研、销售预测等方面。
在医学领域中,概率可以帮助医生分析疾病的风险和预后。
在金融领域中,概率可以用于投资决策和风险控制。
在运输和物流领域中,概率可以帮助我们进行货物运输和交通流量的规划。
总之,概率在各个领域中都发挥着重要的作用。
结语概率作为一门重要的数学学科,是文科数学高考中的重要考点之一。
一、选择题(每题5分,共50分)1. 从一副52张的扑克牌中(去掉大小王),随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 1/2C. 1/13D. 4/132. 一个袋子里装有5个红球和7个蓝球,随机取出一个球,取出红球的概率是多少?A. 5/12B. 7/12C. 1/2D. 5/73. 一枚均匀的硬币连续抛掷两次,至少出现一次正面的概率是多少?A. 3/4B. 1/2C. 1/4D. 1/34. 一个班级有40名学生,其中有20名男生和20名女生。
随机选择一名学生,这名学生是女生的概率是多少?A. 1/2B. 1/4C. 1D. 05. 一批产品中有10个正品和5个次品,随机抽取3个产品,至少抽取到2个正品的概率是多少?A. 21/55B. 36/55C. 45/55D. 54/55二、填空题(每题5分,共50分)6. 从1到10这10个数字中随机抽取一个数字,抽到偶数的概率是______。
7. 一批产品中有30%是次品,随机抽取5个产品,其中至少有1个次品的概率是______。
8. 抛掷两个均匀的正方体,两个正方体上点数之和为7的概率是______。
9. 一个密码锁由3位数字组成,每个数字可以是0到9中的任意一个,随机输入一个密码,输入正确的概率是______。
10. 一个班级有30名学生,其中有10名喜欢数学,15名喜欢物理,5名两者都喜欢。
随机选择一名学生,这名学生既喜欢数学又喜欢物理的概率是______。
三、解答题(每题20分,共40分)11. 甲、乙两人进行一场比赛,甲获胜的概率是0.6,乙获胜的概率是0.4。
如果比赛进行到一半时,甲领先2分,请问此时甲最终获胜的概率是多少?12. 一个袋子里装有10个球,其中有3个红球、4个蓝球和3个绿球。
随机取出3个球,求以下事件的概率:(1)取出3个球都是同一种颜色的概率;(2)取出3个球中有2个红球和1个蓝球的概率。
答案一、选择题1. A2. A3. A4. A5. B二、填空题6. 1/27. 0.7298. 6/36 = 1/69. 1/100010. 5/30 = 1/6三、解答题11. 由于甲领先2分,且甲获胜的概率为0.6,所以甲最终获胜的概率仍然是0.6。