最新-贵州省安龙县2018年九年级数学下学期第一次月考试卷 新人教版 精品
- 格式:doc
- 大小:155.51 KB
- 文档页数:2
2018年下学期初三数学第一次月考卷姓名班级考号:总分一.选择题(共10小题,每小题3分,共30分。
)1.下列函数中,y是x的反比例函数的是()A.y=B.y=C.y=3x D.y=x22.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)3.如图,点A在反比例函数的图象上,AB⊥x轴于点B,点C在x轴上,且CO=OB,△ABC的面积为2,则此反比例函数的解析式为()A.B. C.D.4.函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.5.下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=06.对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y27.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>18.若点A(3,﹣2)关于y轴对称的点为B,则经过点B的反比例函数的解析式为()A.y=6x B.y=﹣C.y=﹣6x D.y=9.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变,ρ与V在一定范围内满足ρ=,它的图象如图所示,则该气体的质量m 为()A.1.4kg B.5kg C.7kg D.6.4kg10.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3二.填空题(共8小题,每小题3分,共24分)11.若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为.12.一元二次方程x2﹣9=0的解是.13.反比例函数y=的图象经过点(﹣3,2),则k的值为.14.如图,反比例函数y=的图象经过面积为6的矩形OABC的顶点B,则k的值是.15.已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.16.反比例函数y=(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而.(填“增大”或“减小”)17.点A(1,6),B(﹣2,n)都在反比例函数y=的图象上,则n的值为.18.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C=3,则S△AOC=.(2,0),BD=2,S△BCD三.解答题(共8小题,满分66分,每小题8分,26题10分。
冠湘中学初三数学第一次段考测试卷题号123456789101112答案x2、使分式---- 有意义的兀的取值范围为()A、XM2B、XH—2C. x>-2 C、x + 2x<24、据媒体报道,我国因环境问题造成的经济损失每年高达680 000 000元,这个数用科学记数法可表示为()A、0.68 X109 B、6.8 X108 C、6.8 X107 D、68X1075、下列命题是假命题的是()A、圆的切线垂直于经过切点的半径B、正六边形内角和是720正方形6、如图,把一块含有45。
的直角三角形的两个顶点放在直尺的对边上.如果Zl=20°,那么8、某校体育节有13名同学参加女子百米赛跑,他们的预赛成绩各不相同,正面3、下列计算正确的是(x2 +x4 = X6A、B、2x+3y = 5xyQ^x6十 3 2X —XD、C、角平分线上的点到角两边的距离相等D、对角线互相垂直平分的四边形是Z2的度数是()A、15°B、20°C、25° D、30°7、如图,AABC的顶点A、B、C均在<30上,若ZABC=30° ,则ZAOC 的大小是()A、30° B、45° C、60° D、70°取前6名参加决赛。
小颖已经知道了自己的成绩,她想知道自己能否进入A、方差B、众数C、中位数D、平均数0决赛,还需要知道这13名同学成绩的()9、如图是由五个相同的小正方体搭成的几何体,它的主视图是(10、某果园2015年水果产量为100吨,2017年水果产量为144吨,求该果园水果产量的年平均增长率,设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A、144(1-%)2 =100B、100(1-%)2 =144C、144(1 +%)2 =100D、100(1 +%)2 =14411、点m (2,-1)关于原点对称的点的坐标为( )A、(-2, -1)B、(2, 1)C、(-2, 1)D、(2, -1)12、如图,两个反比例函数丫=5_和(其中ki>kz>0)在第一象限内的图象依次是X XC1和C2,设点P在C1上,PC丄X轴于点C,交C1于点A, PD上y轴于点D,交C2于点B, 则四边形PAOB的面积为( )A、ki - k2B、ki+k2C、ki・k2二、填空题(3分x6=18分)13、分解因式:m一__________14、计算:A/18+ A/2= _______x?+2x+l *15、化简:x 1 x J. _________________ 16、已知抛物线y =-(x-2)2的图像上有两点(2017,旳)和(2018,旳),则刃与旳的大小关系是_________17、圆心角为120。
初中数学试卷桑水出品初三数学第一次月考试卷说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案,请将正确答案的序号填在题后的括号内)1.32-的相反数是( ) A.23- B.23 C.32D.32-2.下列运算正确的是( )A. 236x x x ⋅=B. 22232x x x -+=C. 236()x x -= D. 221(2)4x x --=-3.下列A 、B 、C 、D 四幅“福牛乐乐”图案中,能通过顺时针旋转180°图案(1)得到的是( )B4.某运动场的面积为3002m ,则它的万分之一的面积大约相当于( )A .课本封面的面积B .课桌桌面的面积C .黑板表面的面积D .教室地面的面积5.已知一次函数y=kx+b(k 、b 为常数,且k ≠0),x 与y 的部分对应值如下表所示,那么不等式kx+b<0x -2 -1 0 1 2 3 y322-1-2A.x<0B.x>0C.x<1D.x>16. 如图是由相同小正方体组成的立体图形,它的主视图为( )7.教室地面的瓷砖如图所示,一把钥匙被藏在某种颜色的一块瓷砖下面,则下列判断正确的是( ) A.被藏在白色瓷砖下的概率大 B.被藏在黑色瓷砖下的概率大 C.被藏在两种瓷砖下的概率一样大 D.无法确定 8.若⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-81my nx ny mx 的解,则m,n 的值分别为( )A.m=2,n=1B.m=2,n=3C.m=1,n=8D.m=-2,n=39.将一副三角板按如图所示的位置叠放,则△AOB 与△DOC 的面积之比等于( )A.33 B. 12 C. 13 D. 1410. 如图,一量角器放置在∠AOB 上,角的一边OA 与量角器交于点C 、D ,且点C 处的度数是20°,点D 处的度数为110°,则∠AOB 的度数是( )A.20°B. 25°C.45°D. 55°二、填空题(本大题共6小题,每小题3分,共18分)11.新华网济南2月24日电 ,据山东省经贸委提供的数据,截至22日,山东省累计销售并已登录信息系统的家电下乡试点产品140.46万台,实现销售收入20.53亿元,居全国第一。
最新人教版数学精品教学资料九年级数学试题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.=x -2,那么x 的取值范围是( )A .x ≥2B .x <2C .x ≤2D .x >22.若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为( )A .1B .2C .3D .4 3.如图, AB 是⊙O 的直径,CD 是弦, 连结AC 、AD ,若∠CAB =35°,则∠ADC 为( )A .35°B .45°C .55°D .65° 4.下列事件中,属于随机事件的是( )A .掷一枚均匀的正方体骰子所得的结果超过13B .买一张彩票中奖C .口袋中装有10个红球,从中摸出一个红球D .太阳从西边落下 5.已知135=a b则ba b a +- 的值是( ) A.32 B .23 C .49 D . 946.关于x 的一元二次方程kx 2+1=0有两个不相等的实数根,则k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx .若此炮弹在第8秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? A.第11秒 B.第10秒 C. 第9秒 D. 第8秒 .8.已知二次函数y =ax 2+bx +c 的图象如图所示,现有下列结论:①b 2-4a c >0 ②a >0 ③b >0 ④c >0 ⑤9a +3b +c <0,则其中结论正确的个数是( ). A 、1个 B 、2个 C 、3个 D 、4个9.如图,在梯形ABCD 中,AD ∥BC ,AD=2,AB=3,BC=6,沿AE 翻折梯形ABCD 使点B 落AD 的延长线上,记为点B ’,连结B ’E 交CD 于点F,则FCDF的值为( ) A .31B .41C .51D .61第3题ADBF学校: 班级: 姓名: 座号:10.如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).A .B .C .D .二、填空题(每题4分,共24分)11.要使式子a 有意义,则a 的取值范围为__________________. 12.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是13.抛物线2y ax bx c =++上部分点的坐标对应值如下表:从上表可知,下列说法中正确的是 .(填写序号)①函数2y ax bx c =++的最大值为6;②抛物线与x 轴的一个交点为(3,0);③在对称轴右侧,y 随x 增大而减小; ④抛物线的对称轴是直线12x =;⑤抛物线开口向上. 14.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A ″B ″C ″的位置.若BC=1,AC=,则顶点A 运动到点A ″的位置时,点A 两次运动所经过的路程 _________ .(计算结果不取近似值)15.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=2,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 _________ (结果保留π). 16.如图所示,已知直线133+-=x y 与x 、y 轴交于B 、C 两点,(00)A ,,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B AB △,……则第n 个等边三角形的边长等于 .)(10题图)三、解答题(一)(本大题3小题,每小题5分,共15分)17.计算:021423-⎛⎫+-- ⎪⎝⎭⎝⎭.19.某商场以每台2500元进口一批彩电,如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?四、解答题(二)(本大题3小题,每小题8分,共24分)20.如图:在△ABC 中,点M 是BC 上任一点, MD ∥AC ,ME ∥AB,)(16题图) (17题图)2,.5BD CEAB AC=求21.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm , 求这个圆形截面的半径.22.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 为AB 上的一点,DE =DC ,以D为圆心,DB 长为半径作⊙D ,AB =5,EB =3. (1)求证:AC 是⊙O 的切线;(2)求线段AC 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.已知抛物线y=x 2+ax+a ﹣3(1)求证:不论a 取何值,抛物线与x 轴总有两个交点. (2)当a=5时,求抛物线与x 轴的两个交点间的距离.(3)直接写出a= ______ 时,抛物线与x 轴的两个交点间的距离最小.24.已知:在⊙O 中,AB 是直径,AC 是弦,OE ⊥AC 于点E ,过点C 作直线FC , 使∠FCA =∠AOE ,交AB 的延长线于点D . (1)求证:FD 是⊙O 的切线;(2)设OC 与BE 相交于点G ,若OG =2,求⊙O 半径的长; (3)在(2)的条件下,当OE =3时,求图中阴影部分的面积.第24题图学校: 班级: 姓名: 座号:25.如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (-1,0). 求: ⑴求抛物线的解析式及顶点D 的坐标;⑵判断△ABC 的形状,证明你的结论;⑶点M (m ,0)是x 轴上的一个动点, 当CM +DM 的值最小时,求m 的值.第25题图2013-2014年铜中九年级数学试题(参考答案)一、选择题。
2018-2019学年九年级(下)第一次月考数学试卷一、选择题:(每小题3分,共21分.每小题只有一项是正确答案)1.下列计算正确的是()A.﹣=0 B. += C.=﹣2 D.4÷=22.下列二次根式中与是同类二次根式的是()A. B. C. D.3.方程x2=2x的解是()A.x=0 B.x=2 C.x=0或x=2 D.x=±4.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根5.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m的值为()A.1 B.﹣1 C.1或﹣1 D.6.已知三角形的两边长是4和6,第三边的长是方程x2﹣6x+8=0的根,则此三角形的周长是()A.10 B.12 C.14 D.12或147.在图中,一次函数y=x﹣2与反比例函数的图象交点为A、B.则一次函数值小于反比例函数值时x的取值范围是()A.x<﹣1或0<x<2 B.x<﹣1或0<x<3C.﹣1<x<0或0<x<3 D.x>﹣1或0<x<2二.填空题(每小题4分,共40分)8.要使二次根式有意义,x应满足的条件是.9.计算:•=.10.方程x2﹣3=0的解是.11.已知实数x,y满足=0,则xy=.12.设x1、x2是方程3x2﹣2x﹣7=0的两个实数根,则=.13.若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2=.14.有一个数值转换器,原理如下:当输入x为64时,输出的y的值是.15.一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.16.菱形ABCD的两条对角线长分别是方程x2﹣7x+12=0的两根,则菱形周长为.17.观察下列二次根式的化简,,=,找出规律,并计算(…+)(+1)=.三.解答题(共89分)18.(9分)计算:.19.(9分)计算:a﹣a+.20.(9分)解方程:x(x﹣2)=2﹣x.21.(9分)解方程:2x2﹣x=6.22.(9分)解方程:x2+2x﹣5=0.23.(9分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?24.(9分)商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.设每件降价x元,每天盈利y元.(1)若每件降价4元时,每天可卖件;(2)若商场每天要盈利1200元,每件衬衫应降价多少元?25.(13分)在△ABC中,点A在直线L上,BC平行于直线L,边BC的长与BC 边上的高的和为8cm,设BC的长xcm.(1)写出△ABC的面积y与x之间的函数关系式;(2)当△ABC的面积为6cm2,且BC大于BC边上的高时,求BC的长;(3)当BC多长时,△ABC的面积最大?求出这个最大面积;此时,是否存在其周长最小的情形?如果存在,请求出其最小周长;如果不存在,请说明理由.26.(13分)如图,直线y=kx﹣1与x轴、y轴分别交与B、C两点,且OB、OC (OB<OC)分别是一元二次方程2x2﹣3x+1=0的两根.(1)求B点的坐标;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.①当点A运动过程中,试写出△AOB的面积S与x的函数关系式,并求当S=时点A的坐标;②在①成立的情况下,x轴上是否存在一点P,使△PAB是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共21分.每小题只有一项是正确答案)1.下列计算正确的是()A.﹣=0 B. += C.=﹣2 D.4÷=2【解答】解:A、﹣=0,故选项正确;B、不是同类二次根式,不能合并,故选项错误;C、算术平方根的结果是一个非负数,应该等于2,故选项错误;D、4÷=2,故选项错误;故选A.2.下列二次根式中与是同类二次根式的是()A. B. C. D.【解答】解:,A、,故A不正确;B、被开方数不同,故B不正确;C、,故C正确;D、,故D不正确;故选:C.3.方程x2=2x的解是()A.x=0 B.x=2 C.x=0或x=2 D.x=±【解答】解:方程变形得:x2﹣2x=0,分解因式得:x(x﹣2)=0,解得:x1=0,x2=2.故选C4.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.5.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:m2﹣1=0且m﹣1≠0解得m=﹣1故选B.6.已知三角形的两边长是4和6,第三边的长是方程x2﹣6x+8=0的根,则此三角形的周长是()A.10 B.12 C.14 D.12或14【解答】解:x2﹣6x+8=0,解得x1=2,x2=4,当第三边的长为2时,2+4=6,不能构成三角形,故此种情况不成立,当第三边的长为4时,6﹣4<4<6+4,符合三角形三边关系,此时三角形的周长为:4+4+6=14.故选C.7.在图中,一次函数y=x﹣2与反比例函数的图象交点为A、B.则一次函数值小于反比例函数值时x的取值范围是()A.x<﹣1或0<x<2 B.x<﹣1或0<x<3C.﹣1<x<0或0<x<3 D.x>﹣1或0<x<2【解答】解:解方程组得或,所以A点坐标为(﹣1,﹣3),B点坐标为(3,1),当x<﹣1或0<x<3时,一次函数值小于反比例函数值.故选B.二.填空题(每小题4分,共40分)8.要使二次根式有意义,x应满足的条件是x≥3.【解答】解:依题意有2x﹣6≥0,解得x≥3.9.计算:•=6x.【解答】解:原式==6x.故答案为:6x.10.方程x2﹣3=0的解是±.【解答】解:方程x2﹣3=0,移项得:x2=3,解得:x=±.故答案为:±.11.已知实数x,y满足=0,则xy=32.【解答】解:∵=0,∴,解得,∴xy=32.故答案为32.12.设x1、x2是方程3x2﹣2x﹣7=0的两个实数根,则=.【解答】解:根据题意得=﹣=.故答案为.13.(4分)若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2=5.【解答】解:∵关于x的方程x2+mx﹣5=0的一个根为x1=﹣1,设另一个为x2,∴﹣x2=﹣5,解得:x2=5,则方程的另一根是x2=5.故答案为:5.14.有一个数值转换器,原理如下:当输入x为64时,输出的y的值是2.【解答】解:由题意,得:x=64时,=8,8是有理数,将8的值代入x中;当x=8时,=2,2是无理数,故y的值是2.故答案为:2.15.一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是k >﹣1且k≠0.【解答】解:∵关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即22﹣4×k×(﹣1)>0,解得k>﹣1,∴k的取值范围为k>﹣1且k≠0.故答案为:k>﹣1且k≠016.菱形ABCD的两条对角线长分别是方程x2﹣7x+12=0的两根,则菱形周长为10.【解答】解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,∵菱形ABCD的两条对角线长分别是方程x2﹣7x+12=0的两根,∴菱形ABCD的两条对角线长分别是3与4,设菱形ABCD的两条对角线相交于O,∴AC⊥BD,OA=AC=2,OB=BD=,∴AB==,∴菱形周长为:4AB=10.故答案为:10.17.观察下列二次根式的化简,,=﹣,找出规律,并计算(…+)(+1)=2013.【解答】解:==﹣,(…+)(+1)=(﹣1+﹣+﹣+…+﹣)(+1)=(﹣1)(+1)=2014﹣1=2013,故答案为:﹣,2013.三.解答题(共89分)18.(9分)计算:.【解答】解:原式=﹣2+1=﹣+1.19.(9分)计算:a﹣a+.【解答】解:原式=3a﹣2a+=a+.20.(9分)解方程:x(x﹣2)=2﹣x.【解答】解:由原方程,得x(x﹣2)+(x﹣2)=0,所以,(x+1)(x﹣2)=0,所以,x+1=0或x﹣2=0,解得,x1=﹣1,x2=2.21.(9分)解方程:2x2﹣x=6.【解答】解:方程移项得:2x2﹣x﹣6=0,分解因式得:(2x+3)(x﹣2)=0,可得2x+3=0或x﹣2=0,解得:x1=﹣1.5,x2=2.22.(9分)解方程:x2+2x﹣5=0.【解答】解:∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=5+1,∴(x+1)2=6,∴x+1=±,∴x=﹣1±.23.(9分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.24.(9分)商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.设每件降价x元,每天盈利y元.(1)若每件降价4元时,每天可卖8件;(2)若商场每天要盈利1200元,每件衬衫应降价多少元?【解答】解:(1)根据题意得:每件降价4元时,每天卖出8件;故答案为:8.(2)设每件衬衫应降价x元,根据题意得:(40﹣x)(20+2x)=1200,解得:x1=10,x2=20,则商场每天要盈利1200元,每件衬衫应降价10元或20元.25.(13分)在△ABC中,点A在直线L上,BC平行于直线L,边BC的长与BC 边上的高的和为8cm,设BC的长xcm.(1)写出△ABC的面积y与x之间的函数关系式;(2)当△ABC的面积为6cm2,且BC大于BC边上的高时,求BC的长;(3)当BC多长时,△ABC的面积最大?求出这个最大面积;此时,是否存在其周长最小的情形?如果存在,请求出其最小周长;如果不存在,请说明理由.【解答】解:(1)∵BC+AD=8,BC=x,∴AD=8﹣x.∴y==﹣x2+4x.∴y与x之间的函数关系式为:y=﹣x2+4x;(2)∵x>8﹣x,∴x>4.当y=6时,6=﹣x2+4x,解得:x1=2,x2=6.∴x=6.答:BC的长是6cm.(3)∵y=﹣x2+4x;y=﹣(x﹣4)2+8,∴当x=4时,y最大=8.∴AD=4cm.作点B关于l的对称点E,连接CE交l于点F,∴GB=GE=AD=4cm,EF=BF.∴BE=4cm.在Rt△BCE中,由勾股定理,得CE=4.∵△BFE的最小周长为:BC+BF+CF=BC+EF+CF=BC+CE,∴△BFE的最小周长为:(4+4)cm.26.(13分)如图,直线y=kx﹣1与x轴、y轴分别交与B、C两点,且OB、OC (OB<OC)分别是一元二次方程2x2﹣3x+1=0的两根.(1)求B点的坐标;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.①当点A运动过程中,试写出△AOB的面积S与x的函数关系式,并求当S=时点A的坐标;②在①成立的情况下,x轴上是否存在一点P,使△PAB是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.【解答】解:(1)2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,解得x1=,x2=1,∵OB<OC,∴点B(,0);(2)把点B代入y=kx﹣1得,k﹣1=0,解得k=2,所以,直线解析式为y=2x﹣1,①△AOB的面积S=××(2x﹣1)=x﹣,即S=x﹣,当S=时,x﹣=,解得x=,此时,y=2×﹣1=2,所以,点A的坐标为(,2);②由勾股定理得,AB==,BP=AB时,若点P在点B的左边,则OP=﹣,所以,点P(﹣,0),若点P在点B的右边,则OP=+,所以,点P(+,0);AB=AP时,由等腰三角形三线合一的性质,OP=+2×(﹣)=,所以,点P(,0);AP=BP时,由勾股定理得,BC==,∴cos∠ABP=cos∠OBC==,由等腰三角形三线合一的性质,BP=AB÷cos∠ABP=÷=,所以,OP=+=3,点P(3,0),综上所述,x轴上存在点P(﹣,0)或(+,0)或(,0)或(3,0),使△PAB是等腰三角形.。
长春外国语学校2017—2018学年第二学期初三年级月考数学试卷一、选择题(每小题3分,共24分) 1.-丄的相反数是1A. 5B. - 5C.—52.9月8日,首条跨区域动车组列车运行线一长春至白城至乌兰浩特快速铁路开通运营“满月”。
这条承载着吉林、内蒙古人民希望与企盼的铁路,自开通运营以来,安全优质高效5.若关于x 的方程x 2-6x+a = 0有实数根,则常数d 的值不可能为 ()6.如图, O 的半径为6,四边形内接于 O ,连结04、OC,若ZABC,则劣弧AC 的长为(第6题)D.地发送旅客1250000人,这个数字用科学记数法表示为 A. 12.5x10sB. 1.25X106C. 0.125X1073.计算(2m )3的结果是( ) D. 125xl04( )A. 2m 3B. 8m 3C. 6m 3D. 8m4.右图中几何体的正视图是A. 7B. 9C. 8D. 10ABCD(A. 5B. 4C. 3D. 28.如图,在平面直角坐标系中,矩形ABCD 的顶点A 、C 的坐标分别为(4,6)、(5,4),且AB 平行于x 轴,将矩形ABCD 向左平移,得到矩形ABCD . 若点4'、C'同时落在函数y = -(x>0)的图象上,则k 的值为()X A. 6B. 8C. 10D. 12二、填空题(每小题3分,共18分) 9. 计算:屁—.10. 因式分解:ax 2 一4ax + 4a = _________________ .11. 如图,在平行四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,连结EF,则Z\AEF(11题图) (12题图) (13题图)12. 在 O 中,弦AB = 8,圆心O 到AB 的距离OC = 4,则圆O 的半径长为 _____________ . 13. 如图,在矩形ABCD 中,= 对角线AC 、BD 相交于点O, AE 垂直平分BO 于点E,则AD 的长为 _____________ .14. 如图,在平面直角坐标系中,抛物线y = m (x + 3)2 +n 与y = zw (x-2)2+" +1交于点A.过点A 作x 轴的平行线,分别交两条抛物线于点B 、C (点B 在点C 左侧),则线段 BC 的长为 ________________ .三、解答题(本大题共10小题,共78分) 15. (6分)先化简,再求值:(第8题)7.2-a<0 3a —15<0的最大整数解是与五边形EBCDF 的面积比为_________________ .16. (6分)在一个不透明的盒子中装有三张卡片,分别标有数字1、2、3,这些卡片除数字 不同外其余均相同,小明从盒子里随机抽取一张卡片记下数字后放回,洗匀后在随机抽 一张卡片,用画树状图或列表的方法,求两次抽取的卡片之积是偶数的概率.17. (6分)如图,在厶ABC 中,AD 是BC 边的中线,E 是AD 的中点,过A 点作AF 〃BC交BE 的延长线于点F,连结CF.求证:四边形ADCF 是平行四边形.18. (7分)某车间要加工960个零件,为了尽快完成任务,该车间实际每天加工零件个数比计划原来每天多加工20%,结果提前10天完成任务.原计划每天加工多少个零件?2a + ci Q ? — 2a +1其中a = 2.19.(7分)某部门为了解本市2018年推荐生测试运动与健康、审美与表现两科的等级情况,从推荐生中随机抽取了400名学生的这两科等级成绩,并将得到的数据绘制成了如下统计图.400名推荐生的运动与健康等级成绩扇形统计圉运动与健康审美与表现(1)在抽取的400名学生中,运动与健康成绩为A等级的人数是_____________ ;(2)________________________________________________________________ 在抽取的400名学生中,审美与表现成绩为B等级的人数是_____________________________ ;(3)若2018年该市共有推荐生10000名,估计运动与健康成绩为C、D等级的人数约为多少?20.(7分)如图,两幢大楼相距100米,从甲楼顶部看乙楼顶部的仰角为26°,如果甲楼高为36米,求乙楼的高度.(结果精确到1米)【参考数据:sin26° =0.44, cos26° =0.90, tan26° =0.49 】21.(8分)感知:如图①,在等腰直角AABC中,分别以AABC的三条边为斜边向AABC 外部作等腰直角△ABD、等腰直角△>!(?£、等腰直角ABCF,连结点D、E、F,则易知△DEF为等腰三角形.如果AB = AC = 7,请直接写出ZXDEF的面积为_________________ .探究:如图②,RtzXABC中,AB= 14, AC = 30,分别以/XABC的三条边为斜边向厶红(7外部作等腰直角△ ABD.等腰直角等腰直角ZXBCF,连结点D、E、F,求ADEF 的面积为多少.拓展:如图③,RtAABC 中,AB=]4, AC=15,分别以△ ABC 的三条边为斜边向△ ABC 外 部作 RtAABD. RtAACE> RtABCF,且 tanZBCF = tanZCAE = tanZABD = E 、F,则△DEF 的面积为 _____________.22. (9分)A 、B 、C 三地在同一条公路上,A 地在B 、C 两地之间,甲、乙两车同时从A 地出发匀速行驶,甲车驶向C 地,乙车先驶向B 地,到达B 地后,掉头按原速经过A 地驶向C 地(掉头时间忽略不计),到达C 地停止行驶,甲车比乙车晚0.4小时到达C 地,两车距B 地的路程y (km )与行驶时间x (h )之间的函数关系如图所示.请结合图 象信息,解答下列问题:(1) 甲车行驶的速度是 _____________ km/h, a= ____________ ;(2) 求图象中线段所表示的y 与x 的函数解析式;(3) 在乙车到达C 地之前,甲、乙两车出发后几小时与A 地路程相等?直接写出答案.23. (10分)AABC 是等腰直角三角形,ZACB = 90° , AB =8cm,动点P 、Q 以2cnVs 的 速度分别从点A. B 同时出发,点P 沿A 到B 向终点B 运动,点Q 沿B 到A 向终点A 运动,过点*连结点D 、图② 图③P作PD±AC于点D,以PD为边向右侧作正方形PDEF,过点Q作QG丄AB,交折线BC-CA于点G与点C不重合,以0G为边作等腰直角厶QGH,且点G为直角顶点,点C、H始终在QG的同侧,设正方形PDEF与△QGH重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0</<4).(1)当点F在边QH上时,求/的值.(2)点正方形PDEF与△0GH重叠部分图形是四边形时,求S与/之间的函数关系式;(3)当FH所在的直线平行或垂直AB时,直接写出/的值.24.(12分)在平面直角坐标系中,对于点P(in,n)和点0(x,y).给岀如下定义:若{,y = “-2 则称点Q为点P的'‘伴随点”.例如:点(1,2)的“伴随点”为点(5,0).(1)若点Q(-2, -4)是一次函数y = kx + 2图象上点P的"伴随点”,求仝的值.(2)己知点P (m, n)在抛物线6:尸占/—*上,设点P的“伴随点” Q (x, y)的运动轨迹为C2.①直接写出C2对应的函数关系式.②抛物线G的顶点为A,与x轴的交点为B (非原点),试判断在x轴上是否存在点M,使得以A、B、Q. M为顶点的四边形是平行四边形?若存在,求点M的坐标;若不存在, 说明理由.③若点P的横坐标满足-2<m< a时,点Q的纵坐标y满足-3< y < 1,直接写出。
贵州省九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·钢城月考) 下列方程是关于x的一元二次方程的是()A . x2=1B .C . x+2y=1D . x(x-1)=x22. (2分)从正方形的四个顶点中,任取三个顶点连成三角形,对于事件M:“这个三角形是等腰三角形”.下列说法正确的是()A . 事件M为不可能事件B . 事件M为必然事件C . 事件M发生的概率为D . 事件M发生的概率为3. (2分)(2020·瑶海模拟) 已知点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,则()A . m>nB . m<nC . m=nD . m、n的大小无法确定4. (2分) (2017九下·富顺期中) 关于的函数和在同一坐标系中的图像大致是()A .B .C .D .5. (2分) (2020九上·牡丹期中) 如图,在正方形ABCD中,点E是边BC的中点,连接AE,EF⊥AE交CD 边于点F,已知AB=4,则CF的长为()A . 1B .C . 3D . 26. (2分)(2018·绥化) 抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.其中正确的有A . 5个B . 4个C . 3个D . 2个二、填空题 (共6题;共6分)7. (1分) (2018九上·兴化月考) 已知,则=.8. (1分)从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是.9. (1分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.10. (1分) (2019八上·兖州月考) 一个正方形的边长增加了2cm,面积相增加了36cm2 ,则这个正方形的边长是11. (1分)春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影是可能是(写出符合题意的两个图形即可)12. (1分)(2019·巴中) 如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若,,.则=.三、解答题 (共11题;共135分)13. (10分)(2016·毕节) 如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.14. (10分) (2020九上·齐齐哈尔月考) m是非负整数,关于的方程有两个实数根(1)求m的值;(2)求此时方程的根.15. (10分) (2019九上·洮北月考) 已知抛物线y=ax2+bx+2经过点A(﹣1,﹣1)和点B(3,﹣1).(1)求这条抛物线所对应的二次函数的表达式.(2)写出抛物线的开口方向、对称轴、顶点坐标和二次函数的最值.16. (10分)(2021·青白江模拟) 如图,A型、B型、C型三张矩形卡片的边长如图所示,将三张矩形卡片分别放入三个信封中,三个信封的外表完全相同;(1)从这三个信封中随机抽取1个信封,则抽中A型矩形的概率为;(2)先从这三个信封中随机抽取1个信封(不放回),再从余下的两个信封中随机抽取1个信封,求事件“两次抽中的矩形卡片能拼成(无重叠无缝隙)一个新矩形”发生的概率.(列表法或树状图)17. (10分) (2021八下·沭阳月考) 某儿童娱乐场有一种游戏,规则是:在一个装有6个红球和若干个白球(每个球除颜色外都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为50000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)估计袋中白球接近的个数.18. (15分)“友谊商场”某种商品平均每天可销售100件,每件盈利20元.“五一”期间,商场决定采取适当的降价措施.经调查发现,每件该商品每降价1元,商场平均每天可多售出10件.设每件商品降价x元,请回答:(1)降价后每件商品盈利元,商场日销售量件(用含x的代数式表示);(2)求每件商品降价多少元时,商场日盈利可达到最大?最大日盈利是多少元?19. (10分) (2019七下·天河期末) 我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:(1),.(2)若,则的取值范围是;若,则的取值范围是.(3)已知,满足方程组,求,的取值范围.20. (15分)(2018·沧州模拟) 如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2 ,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.21. (15分) (2020八下·侯马期末) 已知,在直角坐标系中,平行四边形OABC的顶点A,C坐标分别为A(2,0),C(-1,2),反比例函数的图象经过点B (m≠0)(1)求出反比例函数的解析式(2)将 OABC沿着x轴翻折,点C落在点D处,做出点D并判断点D是否在反比例函数的图象上(3)在x轴是否存在一点P使△OCP为等腰三角形,若存在,写出点P的坐标;若不存在,请说明理由.22. (15分)(2021·双阳模拟)(1)(教材呈现)下图是华师版九年级上册数学教材64页的部分内容.如图,在中,是边的四等分点,,,,.求四边形的周长.(2)问题探究如图2,在中,是边上的一点,过点作,交于点,过点作,交于点,延长至,使,连结交于.若.的面积为2,则的面积为.(3)如图3,在中,是边上的一点,且,连结,点为上一点,连结交于点,若为的中点,的面积为,则的面积为.(用含的代数式表示)23. (15分) (2019九上·黄石期末) 如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D 的坐标;(3) P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共6题;共6分)考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、解答题 (共11题;共135分)答案:13-1、答案:13-2、考点:解析:答案:14-1、答案:14-2、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、答案:20-3、答案:20-4、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
九年级下学期第一次月考数学试卷一、选择题:本大题共8小题,每小题3分,共24分.1.﹣的倒数是()A.3 B.﹣3 C.D.﹣2.下列计算中正确的是()A.a2+a3=2a5 B.a2•a3=a6C.a2•a3=a5D.(a3)2=a93.函数y=的自变量x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤14.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A.B.C.D.5.关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是36.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定7.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<38.如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB 为弦的⊙M与x轴相切,若点A的坐标为(0,﹣4),则圆心M的坐标为()A.(﹣2,2.5)B.(2,﹣1.5)C.(2.5,﹣2)D.(2,﹣2.5)二、填空题:本大题共8小题,每小题3分,共24分.9.分解因式:4﹣y2=.10.一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是.11.一组数据2,﹣1,3,5,6,5的中位数是.12.已知x、y满足方程组,则y﹣x的值是.13.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是.14.如图所示,DE是△ABC的中位线,则△ADE与△ABC的周长比为.15.如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=度.16.关于x的分式方程的解为正数,则m的取值范围是.三、解答题:本大题共10小题,172每题6分,234题每题8分,256每题10分,共72分.17.计算:()﹣2﹣2sin60°+.18.求不等式组的整数解.19.先化简(),然后从﹣3≤x≤3的范围内选取一个合适的整数作为x的值代入求值.20.已知:如图,在▱ABCD中,点E、F在对角线AC上,且AF=CE,求证:四边形BFDE 是平行四边形.(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.22.如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.23.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.24.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC.求证:.25.我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.26.如图所示,抛物线y=ax2+bx+3与x轴交于点A、B两点(A在B的左侧)与y轴交于C点,且OA:OC=1:3,S△ABC=6.(1)求抛物线的函数关系式;(2)抛物线上是否存在一点D(点C除外),使S△ABD=S△ABC?若存在,求出D点坐标;若不存在,说明理由.(3)抛物线上是否存在一点E(点B除外),使S△ACE=S△ABC?若存在,求出E点坐标;若不存在,说明理由.九年级下学期第一次月考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.1.﹣的倒数是()A.3 B.﹣3 C.D.﹣【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣的倒数是﹣3,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列计算中正确的是()A.a2+a3=2a5 B.a2•a3=a6C.a2•a3=a5D.(a3)2=a9【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据合并同类项,可判断A,根据同底数幂的乘法,可判断B、C,根据幂的乘方,可判断D.【解答】解:A、指数不能相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相乘,故D错误;故选:C.【点评】本题考查了幂的乘方与积的乘方,根据法则计算是解题关键.3.函数y=的自变量x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1【考点】函数自变量的取值范围.【专题】计算题.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:由题意得x﹣1≥0,解得x≥1.故选C.【点评】考查求函数自变量的取值;用到的知识点为:二次根式的被开方数为非负数.4.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图想象出几何体的特征形状,然后按照三视图的要求,得出该几何体的正视图和侧视图.【解答】解:由俯视图可知,几个小立方体所搭成的几何体如图所示,故正视图为,故选D.【点评】本题是基础题,考查空间想象能力,绘图能力,常考题型.5.关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3【考点】二次函数的性质.【分析】分别利用二次函数的性质分析得出即可.【解答】解:A、∵a=2>0,故它的开口方向是向上,故此选项错误;B、在y轴左侧,y随x的增大而减小,故当x<﹣1时,y随x的增大而减小,正确;C、它的顶点坐标是(0,3),故此选项错误;D、当x=0时,y有最小值是3,故此选项错误;故选:B.【点评】此题主要考查了二次函数的性质,正确把握二次函数的性质是解题关键.6.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定【考点】三角形中位线定理.【专题】压轴题.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.【点评】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.7.已知一次函数y=kx+b的图象如图,则关于x的不等式k(x﹣4)﹣2b>0的解集为()A.x>﹣2 B.x<﹣2 C.x>2 D.x<3【考点】一次函数与一元一次不等式.【分析】根据函数图象知:一次函数过点(3,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣4)﹣2b>0中进行求解.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=﹣3k.将b=﹣3k代入k(x﹣4)﹣2b>0,得k(x﹣4)﹣2×(﹣3k)>0,去括号得:kx﹣4k+6k>0,移项、合并同类项得:kx>﹣2k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<﹣2.故选B.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.8.如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB 为弦的⊙M与x轴相切,若点A的坐标为(0,﹣4),则圆心M的坐标为()A.(﹣2,2.5)B.(2,﹣1.5)C.(2.5,﹣2)D.(2,﹣2.5)【考点】切线的性质;坐标与图形性质;正方形的性质.【分析】过M作MN⊥AB于N,连接MA,设⊙M的半径是R,根据正方形性质求出OA=AB=BC=CO=8,根据垂径定理求出AN,得出M的横坐标,在△AMN中,由勾股定理得出关于R的方程,求出R,即可得出M的纵坐标.【解答】解:∵四边形ABCO是正方形,A(0,﹣4),∴AB=OA=CO=BC=4,过M作MN⊥AB于N,连接MA,由垂径定理得:AN=AB=2,设⊙M的半径是R,则MN=8﹣R,AM=R,由勾股定理得:AM2=MN2+AN2,R2=(4﹣R)2+22,解得:R=,∵AN=2,四边形ABCO是正方形,⊙M于x轴相切,∴M的横坐标是2,即M(2,﹣).故选D.【点评】本题考查了勾股定理、切线的性质、正方形性质,垂径定理等知识点,本题综合性比较强,是一道比较好的题目.二、填空题:本大题共8小题,每小题3分,共24分.9.分解因式:4﹣y2=(2﹣y)(2+y).【考点】因式分解-运用公式法.【分析】直接运用平方差公式进行因式分解.【解答】解:4﹣y2=(2﹣y)(2+y).【点评】此题考查了利用平方差公式分解因式.公式:a2﹣b2=(a+b)(a﹣b).10.一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是3.【考点】圆锥的计算.【分析】根据圆锥的侧面积=底面半径×母线长×π,进而求出即可.【解答】解:∵母线为4,设圆锥的底面半径为x,∴圆锥的侧面积=π×4×x=12π.解得:x=3.故答案为:3.【点评】本题考查了圆锥的计算,熟练利用圆锥公式求出是解题关键.11.一组数据2,﹣1,3,5,6,5的中位数是4.【考点】中位数.【分析】先排序,然后计算该组数据的中位数即可.【解答】解:数据2,﹣1,3,5,6,5的中位数是(5+3)÷2=4,故答案为:4.【点评】本题考查了中位数的定义,特别是求中位数时候应先排序.12.已知x、y满足方程组,则y﹣x的值是﹣1.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相减即可求出y﹣x的值.【解答】解:,②﹣①得:y﹣x=﹣1.故答案为:﹣1.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.13.将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是y=(x+2)2﹣2.【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2+1的顶点坐标为(0,1),向左平移2个单位,向下平移3个单位后的抛物线的顶点坐标为(﹣2,﹣2),所以,平移后的抛物线的解析式为y=(x+2)2﹣2.故答案为:y=(x+2)2﹣2.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.14.如图所示,DE是△ABC的中位线,则△ADE与△ABC的周长比为1:2.【考点】三角形中位线定理.【分析】根据题意DE是△ABC的中位线,那么DE∥BC,再利用平行线分线段成比例定理的推论,可得△ADE∽△ABC,再利用相似三角形的周长比等于相似即可求出答案.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=,根据相似三角形的性质△ADE与△ABC的周长之比是1:2.故选1:2.【点评】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ADE∽△ABC是解题的关键.15.如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD=30度.【考点】垂径定理;特殊角的三角函数值.【专题】计算题;压轴题.【分析】首先在直角三角形OEB中利用锐角三角函数求得∠EOB的度数,然后利用同弧所对的圆心角和圆周角之间的关系求得∠BCD的度数即可.【解答】解:∵直径CD垂直弦AB于点E,AB=,∴EB=AB=,∵⊙O的半径为2,∴sin∠EOB=,∴∠EOB=60°,∴∠BCD=30°.故答案为30.【点评】本题考查了垂径定理及特殊角的三角函数值,解题的关键是利用垂径定理得到直角三角形.16.关于x的分式方程的解为正数,则m的取值范围是m>2且m≠3.【考点】分式方程的解.【专题】计算题.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.【点评】本题考查了分式方程的解,要注意分式的分母不为0的条件,此题是一道易错题,有点难度.三、解答题:本大题共10小题,172每题6分,234题每题8分,256每题10分,共72分.17.计算:()﹣2﹣2sin60°+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项化为最简二次根式,合并即可得到结果.【解答】解:原式=4﹣2×+2=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.求不等式组的整数解.【考点】一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的整数解即可.【解答】解:,由①得x≥3,由②得x<5,则不等式组的解集是:3≤x<5.整数解是3,4.【点评】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.先化简(),然后从﹣3≤x≤3的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解,然后约分得到原式=x+1,再根据分式有意义的条件把x=3代入计算即可.【解答】解:原式=•=•=x+1,当x=3时,原式=3+1=4.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.已知:如图,在▱ABCD中,点E、F在对角线AC上,且AF=CE,求证:四边形BFDE 是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】首先连接BD,交AC于O点,进而得出EO=FO,BO=DO即可得出四边形BFDE 是平行四边形.【解答】证明:连接BD,交AC于O点.∵四边形ABCD是平行四边形,O是对角线AC、BD的交点.∴AO=CO.又∵点E、F在对角线AC上,且AF=CE,∴AF﹣AO=CE﹣CO,即FO=EO①∵四边形ABCD是平行四边形,∴BO=DO②,由①②得四边形BFDE是平行四边形.【点评】此题主要考查了平行四边形的判定与性质,得出BO=DO,EO=FO是解题关键.(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是95个,中位数是95个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.【考点】频数(率)分布直方图;用样本估计总体;中位数;众数.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【解答】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8人,跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5人,(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级不能得满分的有720×=54人.【点评】本题考查了频数分布表及频率分布直方图的知识,解题的关键是读懂题意并读懂两个统计图,难度中等.22.如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分∠BAC;(2)若BE=2,BD=4,求⊙O的半径.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)先连接OD,再由OD⊥BC和AC⊥BC可知OD∥AC从而得证;(2)利用切割线定理可先求出AB,进而求出圆的直径,半径则可求出.【解答】(1)证明:连接OD,∵BC是⊙O的切线,∴OD⊥BC,又∵AC⊥BC,∴OD∥AC,∴∠2=∠3;∵OA=OD,∴∠1=∠3,∴∠1=∠2,∴AD平分∠BAC;(2)解:∵BC与圆相切于点D.∴BD2=BE•BA,∵BE=2,BD=4,∴BA=8,∴AE=AB﹣BE=6,∴⊙O的半径为3.【点评】本题考查了圆的切线性质和切割线定理,遇到圆的切线的问题,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.23.如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.【考点】反比例函数综合题.【分析】(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=OB,AO=AC,即可求出D坐标,由点D在双曲线y=(x>0)的图象上求出k的值;(2)首先直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b 之间的关系,进而也可以求出直线OD的解析式.【解答】解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2).∵△AOB∽△ACD,∴CD=2OB,AO=2AC,∴点D的坐标为(3,4).∵点D在双曲线y=(x>0)的图象上,∴k=3×4=12.(2)直线y=2x+b与坐标轴交点的坐标为A(﹣,0),B(0,b).∵△AOB∽△ACD,∴CD=2OB,AC=2AO,∴点D的坐标为(b,2b)∵点D在双曲线y=(x>0)的图象上,∴k=()•(2b)=3b2,即k与b的数量关系为:k=3b2.直线OD的解析式为:y=x.【点评】本题主要考查反比例函数的综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及反比例函数图象的特征,此题难度不大,是一道不错的2016届中考试题.24.如图,△ABC中,AB=AC,∠A=36°,BD平分∠ABC.求证:.【考点】黄金分割.【专题】证明题.【分析】根据等腰三角形的性质和角平分线的定义证明△ABC∽△BDC,根据黄金分割的概念计算即可.【解答】解∵AB=AC,∠A=36°,∴∠ABC=∠C=(180°﹣36°)=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=36°,∴DA=DB,∵∠BDC=∠A+∠ABD=72°,∴BD=BC,∴AD=BC,∵∠A=∠CBD,∠C=∠C,∴△ABC∽△BDC,∴BC:DC=AC:BC,∴AD:DC=AC:AD,∴点D为AC的黄金分割点,∴=,∴.【点评】本题考查考查的是黄金分割的概念、相似三角形的性质和等腰三角形的性质,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比.25.我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加15吨.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.【考点】一次函数的应用;一元一次不等式组的应用.【专题】销售问题.【分析】(1)根据总利润=批发的利润+零售的利润+加工销售的利润就可以得出结论;(2)由(1)的解析式,根据零售量不超过批发量的4倍,建立不等式求出x的取值范围,由一次函数的性质就可以求出结论.【解答】解:(1)依题意可知零售量为(25﹣x)吨,则y=12x+22(25﹣x)+30×15∴y=﹣10x+1000;(2)依题意有:,解得:5≤x≤25.∵k=﹣10<0,∴y随x的增大而减小.=950百元.∴当x=5时,y有最大值,且y最大∴最大利润为950百元.【点评】本题考查了总利润=批发的利润+零售的利润+加工销售的利润的运用,一元一次不等式组的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.26.如图所示,抛物线y=ax2+bx+3与x轴交于点A、B两点(A在B的左侧)与y轴交于C点,且OA:OC=1:3,S△ABC=6.(1)求抛物线的函数关系式;(2)抛物线上是否存在一点D(点C除外),使S△ABD=S△ABC?若存在,求出D点坐标;若不存在,说明理由.(3)抛物线上是否存在一点E(点B除外),使S△ACE=S△ABC?若存在,求出E点坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据三角形的面积,可得AB的长,根据线段的和差,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据平行线间的距离相等,可得D点的纵坐标,根据函数值,可得答案;(3)根据平行线的一次函数的一次项系数相等,可得BE的解析式,根据解方程组,可得E 点坐标.【解答】解:(1)当x=0时,y=3,即OC=3.由OA:OC=1:3,解得OA=1,即A点坐标为(﹣1,0).由S△ABC=AB•OC=6,解得AB=4.﹣1+4=3,即B(3,0).将A、B点的坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+2x+3;(2)如图1:,根据平行线间的距离相等,可得D点的纵坐标为3或﹣3.当y=3时,﹣x2+2x+3=3,解得x=0(不符合题意,舍),x=2,即D点的坐标为(2,3);当y=﹣3时,﹣x2+2x+3=﹣3.解得x=1﹣,x=1+,即D点坐标为(1﹣,﹣3),(1+,﹣3);综上所述:抛物线上存在一点D(点C除外),使S△ABD=S△ABC,D点坐标(2,3),(1﹣,﹣3),D(1+,﹣3);(3)过点B作AC平行线,如图2,S△ACE=S△ABC,由平行线间的距离相等,得设AC的函数解析式y=kx+b,将A、C点的坐标代入函数解析式,得,解得,函数解析式为y=3x+3,由BE∥AC,设BE的解析式为y=3x+b,将B点坐标代入函数解析式,得3×3+b=0.解得b=﹣9,即BE的解析式为y=3x﹣9,联立BE与抛物线,得,解得x=﹣4,x=3(不符合题意,舍),当x=﹣4时,y=3×(﹣4)﹣9=﹣21,即E(﹣4.﹣21).【点评】本题考查了二次函数解析式,利用待定系数法求函数解析式,利用平行线间的距离相等得出D点的纵坐标是解题关键;利用平行线间的关系得出BE的解析式是解题关键.。
九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、考试号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有6小题,每小题3分,共18分) 1. 在下列实数中,无理数是( )A .sin45°BC .0.3D .3.142.将抛物线2x y =向左平移1个单位,所得抛物线解析式是( ▲ )A.2(1)y x =- B.2(1)y x =+ C.21y x =+ D.21y x =-3.在相同时刻太阳光线是平行的,如果高1.5米的测杆影长3米,那么此时影长30米的旗杆的高度为( ▲ )A .18米B .12米C .15米D .20米4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s 2:平均数根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ▲ ) A.甲 B.乙 C.丙 D.丁5.已知一元二次方程2430x x -+=两根为12x x 、, 则x 1.x 2的值为( ▲ )A. 4B.-3C. -4D. 36.已知顶点为(-3,-6)的抛物线2y ax bx c =++经过点(-1,-4),下列结论中错误的是( ▲ )A .24b ac > B. 26ax bx c ++≥- C.若点(-2,m ),(-5,n ) 在抛物线上,则m n >D. 关于x 的一元二次方程24ax bx c ++=-的两根为-5和-1二、填空题(本题共10小题,每题3分,共30分) 7.已知3x y =,则yyx -的值为 ▲ _. 8.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为 ▲ _. 9.抛物线y =2x 2-bx +3的对称轴是直线x =1, 则b 的值为 ▲ _.10.如图,AD ∥BE ∥CF ,直线l 1、l 2这与三条平行线分别交于点A 、B 、C 和点D 、E 、F .已知AB=1,BC=3,DE=2,则EF 的长为 ▲ _.第10题图 第11题图11.如图,圆锥体的高h =,底面半径1r cm =,则圆锥体的侧面积为 ▲ _2cm .12.四边形ABCD 是⊙O 的内接四边形,且∠A=∠C ,则∠A=___▲___度.13.设A 123(2,),(1,),(2,)y B y C y -是抛物线22y x x m =++上的三点,则123,,y y y 的大小关系 为 ▲ _.14. 如图,△ABC 中,D 为BC 上一点,∠BAD=∠C,AB=6,BD=4,则CD 的长为 ▲ _. 15在Rt △ABC 中,∠C=90°,BC=3,AC=4,点P 在以C 为圆心,5为半径的圆上,连结PA ,PB ,若PB=4,则PA 的长为▲16如图,等边△ABC 中,BC=6,D 、E 分别在BC 、AC 上,且DE ∥AC ,MN 是△BDE 的中位线.将线段DE 从BD=2处开始向AC 平移,当点D 与点C 重合时停止运动,则在运动过程中线段MN 所扫过的区域面积为 . 三、解答题(本题共11小题,共102分) 17.(本题满分10分)第14题第12题( (1)计算:02(3)22sin30π---+; (2)解方程. x 2-4x-5=018.(本题满分8分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案) (2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率。
2017~2018学年度第二学期第一次质量调研测试初三年级数学试卷(考试时间:120分钟 分值:150分)一、 选择题(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中,只有一个是符合题目要求的,请将答案序号填在答题卡相应的位置上.................) 1.3的相反数是( )A .-3B .13-C .13D .3 2. 实数3、0.3、π、32中,无理数有( ▲ )A .1个B .2个C .3个D .4个3.下列计算正确的是( ▲ )A .532=+ B .222a a a =+ C .xy x y x +=+)1( D .632)(mn mn =4a 的取值范围是( ▲ ) A .a ≥﹣1 B . a >2C .a ≠2D .a ≥﹣1且a ≠2 5.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x 个,那么所列方程是( ▲)A .90606x x =+B .90606x x =+C .90606x x=- D .90606x x =- 6.点),(b a P 在第二象限内,则直线b ax y +=不经过的象限是 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限7.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ▲)A .3B .4C .5D .68.滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( ▲ )A . 10分钟B .13分钟 C. 15分钟 D .19分钟二、填空题(本大题共10小题.每小题4分,共40分.请将答案填在答题卡相应的位置上...............) 9.用科学记数法表示136000,其结果是 ▲ .10.分解因式:29xy x -= ▲ .11.若22347a b -+=,则26910a b --= ▲ .12.计算111+++a a a 的结果为 ▲ . 13.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是▲ .14.一次函数的图象交x 轴于(2,0),交y 轴于(0,3),当自变量x >0时,函数值y 的取值范围是 ▲ .15.一次函数y=﹣x+a 与一次函数y=x+b 的图象的交点坐标为(m ,8),则a+b= ▲ .16.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=-.例如:522528⊗=⨯-=.若32011x ⊗=-,则x 的值是 ▲ .17.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范是 ▲ . 18.如上图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则S n 的值为 ▲ .(用含n 的代数式表示,n 为正整数)三、解答题(本大题共10小题,共86分.请将答案....写在答题卡相应的位置上..........,解答时应写出必要的计算过程,推演步骤或文字说明.作图时用铅笔)19.(本题满分6分)计算:())020172cos60131+-+--. 20.(本题满分8分) 解不等式组⎩⎨⎧+>---≥)1(31592x x x x ,并把它的解集在数轴上表示出来.21.(本题满分8分)先化简,再求值: 2(2)()()5()x y x y x y x x y ++-+--,其中1x =,1y =.22.(本题满分8分)解方程:13211x x -=-- 23.(本题满分8分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件.如果每件商品的售价每上涨1元,则每个月少卖10件.当每件商品的售价定为多少元时,每个月的利润恰为2200元?24.(本题满分8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.25.(本题满分8分)已知:O 是坐标原点,P (m ,n )(m >0)是函数y = k x(k >0)上的点,过点P 作直线PA ⊥OP 于P ,直线PA 与x 轴的正半轴交于点A (a ,0)(a >m ). 设△OPA的面积为s ,且s =1+n 44. (1)当n =1时,求点A 的坐标;(2)若OP =AP ,求k 的值.26.(本题满分10分)某风景区门票价格如图所示,环球旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x 人.如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a的值.27.(本题满分10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= ▲米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?28.(本题满分12分)如图,直线y=﹣x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C ,与过点A 且平行于y 轴的直线交于点D .点E 从点A 出发,以每秒1个单位的速度沿x轴向左运动.过点E 作x 轴的垂线,分别交直线AB 、OD 于P 、Q 两点,以PQ 为边向右作正方形PQMN .设正方形PQMN 与△ACD 重叠部分(阴影部分)的面积为S (平方单位),点E的运动时间为t (秒).(1)求点C 的坐标.(2)当0<t <5时,求S 与t 之间的函数关系式,并求S 的最大值.(3)当t >0时,直接写出点(5,3)在正方形PQMN 内部时t 的取值范围.2017-2018学年度第二学期第一次质量调研测试 初三数学参考答案(考试时间:120分钟 分值:150分)一、选择题:(每题3分) 1、A 2、C 3、C 4、D 5、B 6、C 7、C 8、D二、填空题:(每题4分) 9、51.3610⨯ 10、(3)(3)x y y +- 11、- 1 12、1 13、16q <14、y <3 15、16 16、2017 17、m<6且m ≠2 18、24n﹣5三、解答题19.解:原式=2×12+(-1)+3-1 ……2分; =1-1+3-1 ……4分;=2. ……6分;20. 解: ⎩⎨⎧+>---≥)1(31592x x x x ①②由①得,x ≥-3 ……2分;由②得,x >2 ……4分;解集如图所示:……6分;故原不等式组的解集为x >2 ……8分;21.解: 原式=4x 2+4xy+y 2+ x 2 - y 2 - 5x 2+5xy ……2分;=9xy ……4分; 当1x =,1y =时,原式=9(√2+1)(√2-1) ……5分;. = 9 ……8分;22. 解:方程两边同乘以(x-1),得1-2(x-1)=-3 ……3分;解之得x=3 ……5分;经检验: x=3是原方程的根. ……7分;所以原方程的根是x=3 ……8分;23. 解:设每件商品的售价上涨x 元, ……1分;由题意得(50-40+x )(210-10x )=2200 ……4分;解之得x 1=1 ,x 2=10 ……6分;50+x=51或50+x=60答:每件商品的售价定为51或60元 ……8分;24. 解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x =-1. ……2分;∴有-b2×2=-1.∴b=4.……4分;(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8 k<0 ……6分;解得k>1 ……8分;25. 解:以上从此处评分改动为:k2-4k+4=0 ……7分;k=2 ……8分;26.解:以上各小题评分为:(1)……4分; (2)……7分; (3)……10分;27. (1)乙的速度=120÷3=40(米/分),……2分;(2)(米/分),60÷60=1(分钟),a=1,……3分;;……5分;(3),……6分;当时,,即,解得,∴当时,两遥控车的信号不会产生相互干扰;……8分;当时,,即,解得,∴当时,两遥控车的信号不会产生相互干扰;综上所述:当或时,两遥控车的信号不会产生相互干扰.……10分;28、(1)x+6x,解得);的纵坐标为的纵坐标为PQ=()﹣t≤≤t∵252>1009,∴S最大=252……9分;(3)3<t<4 或t>7 ……12分;。
2017—2018学年(下)学期 九年级第一次月考数学试卷(考试时间:120分钟 总分:150分 )一、选择题:(本大题有10小题,每小题4分,共40分。
每小题只有一个正确的选项!)1、将抛物线2y x =向下平移3个单位长度,得到抛物线的表达式为( ) A .y=x 2﹣3 B .y=x 2+ 3 C .y =(x -3)2 D .y =(x +3)22、如图2,在⊙O 中,弦AB 与CD 交于点M ,∠C=45°,∠AMD=75°,则∠D 的度数是( ) A .15°B .25°C .30°D .75°3、抛物线y =(x +1)2- 4的开口方向、顶点坐标分别是( ) A .开口向上,顶点坐标为(﹣1,﹣4) B .开口向下,顶点坐标为(1,4) C .开口向上,顶点坐标为(1,4) D .开口向下,顶点坐标为(﹣1,﹣4)4、设抛物线2(3)4y x =--的对称轴为直线l ,若点M 在直线l 上,则点M 的坐标可能是( ) A .(1,0)B .(3,0)C .(-3,0)D .(0,-4)5、如图5,四边形ABCD 内接于⊙O ,四边形ABCO 是平行四边形,则∠ADC=( ) A. 450 B. 500 C. 600 D. 7506、如图6,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦, 则sin ∠OBD=( )A .B .C .D .7、二次函数y=ax 2+bx+c (a ≠0)的图象如图7所示,下列结论:①a <0;②c >0;③a-b+c <0;④b 2﹣4ac >0,其中正确的个数是( ) A .1 B .2 C .3 D .4(图2)(图5)(图6)(图7)8、二次函数y=ax2+bx+c的图像如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图像大致为()9、若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1 10、如图10,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()二、填空题:(本大题有8小题,每小题4分,共32分。
一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一3的倒数是( )A .一3B .3C 、—13D 、13 2.长城总长约为6700000米,用科学记数法表示是( )A .6.7×106米B .6.7×105米C .6.7×108米D .6.7×107米3、在如图所示的四个汽车标志图案中,能用平移变换米分析其形成过程的图案是( )4.下面几何体的主视图是5.下列运算中,结果正确的是A 、235()a a = B 、1025a a a ÷= C 、235a a a += D 、43a a a -= 6.李明家小院子的四棵小树E 、F 、G 、Ⅳ刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是 ( )A .平行四边形B .矩形C .菱形D .正方形7.如图,一宽为2㎝的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:㎝),则该圆的半径为 ( )A .3cmB .3.25cmC .23cmD .4cm8、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形。
如图,是一个“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4,小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( )A .12B 、14C 、15D 、1109、红星服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( )A 、16040018(120%)x x +=+B 、16040016018(120%)x x-+=+ C 、1604001601820%x x -+= D 、40040016018(120%)x x -+=+ 10.如图,在正三角形ABC 中,D 、E 、F 分别是BC 、AC 、AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则∆DEF 的面积与△ABC 的面积之比等于( )A .1:3B .2:3C .3:2D .3:3二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上.11.比较火小:3__________2。
2015-2016学年某某省某某市某某区永昌镇和寨九年制学校九年级(下)第一次月考数学试卷一、选择题(每小题3分,共60分)1.下列图形一定是相似图形的是()A.任意两个菱形 B.任意两个正三角形C.两个等腰三角形D.两个矩形2.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A.不变 B.扩大5倍 C.缩小5倍 D.不能确定3.在Rt△ABC中,∠C=90°,AB=4,AC=1,则tanA的值是()A.B. C.D.44.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.45.已知a为锐角,且sin(a﹣10°)=,则a等于()A.50° B.60° C.70° D.80°6.在Rt△ABC中,∠C=90°,则下列式子定成立的是()A.sinA=sinB B.cosA=cosB C.tanA=tanB D.sinA=cosB7.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:58.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②③B.①③④C.②③④D.①②④9.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A.B.C.D.1≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.二、填空题(每小题3分,共30分)11.计算20160+()﹣1﹣2sin60°﹣|﹣2|=______.12.若sin28°=cosα,则α=______度.13.若,则=______.14.如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足______条件时,有△ABC∽△AED.15.若两个相似多边形的面积比是16:25,则它们的相似比等于______.16.一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为______.17.在△ABC中,若+|tanB﹣1|=0,则∠C=______.18.已知α为锐角,当无意义时,tan(α+15°)﹣tan(α﹣15°)的值是______.19.如图,已知A(3,0),B(2,3),将△OAB以点O为位似中心,相似比为2:1,放大得到△OA′B′,则顶点B的对应点B′的坐标为______.20.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为______米.三、解答题(共60分)21.计算:sin230°+cos245°+sin60°•tan45°.22.在△ABC中,∠C=90°,已知BC=5,AC=5,解这个直角三角形.23.如图,点P为△ABC的边AB上的一点,连结PC,若∠1=∠B.(1)求证:△ABC∽△ACP;(2)若PA=4,PB=5,求AC的长.24.如图,AB是圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.25.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.26.如图,李军在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,李明测得风筝的仰角为60°.求风筝此时的高度.(结果保留根号)27.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?2015-2016学年某某省某某市某某区永昌镇和寨九年制学校九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共60分)1.下列图形一定是相似图形的是()A.任意两个菱形 B.任意两个正三角形C.两个等腰三角形D.两个矩形【考点】相似图形.【分析】根据相似图形的定义和图形的性质对每一项进行分析,即可得出一定相似的图形.【解答】解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.2.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A.不变 B.扩大5倍 C.缩小5倍 D.不能确定【考点】锐角三角函数的增减性.【分析】易得边长扩大后的三角形与原三角形相似,那么对应角相等,相应的三角函数值不变.【解答】解:∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选A.3.在Rt△ABC中,∠C=90°,AB=4,AC=1,则tanA的值是()A.B. C.D.4【考点】锐角三角函数的定义.【分析】首先利用勾股定理得出BC的长,再利用锐角三角函数关系得出tanA的值.【解答】解:如图所示:∵∠C=90°,AB=4,AC=1,∴BC==,则tanA===.故选:B.4.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.5.已知a为锐角,且sin(a﹣10°)=,则a等于()A.50° B.60° C.70° D.80°【考点】特殊角的三角函数值.【分析】根据sin60°=得出a的值.【解答】解:∵sin60°=,∴a﹣10°=60°,即a=70°.故选C.6.在Rt△ABC中,∠C=90°,则下列式子定成立的是()A.sinA=sinB B.cosA=cosB C.tanA=tanB D.sinA=cosB【考点】互余两角三角函数的关系.【分析】根据一个锐角的正弦等于它的余角的余弦解答.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∴sinA=cosB.故选D.7.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:5【考点】相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.【分析】先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3.【解答】解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选:A.8.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②③B.①③④C.②③④D.①②④【考点】相似三角形的判定.【分析】根据相似三角形的判定方法对各个条件进行分析,从而得到最后答案.【解答】解:∵∠A=∠A∴①∠ACP=∠B,②∠APC=∠ACB时都相似;∵AC2=AP•AB∴AC:AB=AP:AC∴③相似;④此两个对应边的夹角不是∠A,所以不相似.所以能满足△APC与△ACB相似的条件是①②③.故选A.9.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A.B.C.D.1【考点】解直角三角形的应用;菱形的性质;菱形的判定.【分析】如图所示,过A作AE⊥BC,AF⊥CD,垂足分别为E、F,依题意,有AE=AF=1,可证得∠ABE=∠ADF=α.然后可证得△ABE≌△ADF,得AB=AD,则四边形ABCD是菱形.在Rt△ADF中,AD=,由此根据菱形的面积公式即可求出其面积.【解答】解:如图所示,作AE⊥BC,AF⊥CD,垂足分别为E、F,依题意,有AE=AF=1,根据已知得∠ABE=∠ADF=α,所以△ABE≌△ADF,∴AB=AD,则四边形ABCD是菱形.在Rt△ADF中,AD=.所以S菱形ABCD=DC•AF=故选A.≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象.【解答】解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.二、填空题(每小题3分,共30分)11.计算20160+()﹣1﹣2sin60°﹣|﹣2|= 1 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2﹣2×﹣2+=1,故答案为:112.若sin28°=cosα,则α=62 度.【考点】互余两角三角函数的关系.【分析】一个角的正弦值等于它的余角的余弦值.【解答】解:∵sin28°=cosα,∴α=90°﹣28°=62°.13.若,则=.【考点】比例的性质.【分析】直接根据等比性质求解.【解答】解:∵,∴==.故答案为.14.如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足∠ADE=∠C 或∠AED=∠B或=条件时,有△ABC∽△AED.【考点】相似三角形的判定.【分析】由于∠D≠∠B,∠DAE=∠CAB,则∠ADE=∠C或∠AED=∠B,可根据有两组角对应相等的两个三角形相似判定△ABC∽△AED;当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判定△ABC∽△AED.【解答】解:∵DE与BC不平行,∴∠D≠∠B,而∠DAE=∠CAB,∴当∠ADE=∠C或∠AED=∠B时,△ABC∽△AED.当=时,△ABC∽△AED.故答案为:∠ADE=∠C或∠AED=∠B或=.15.若两个相似多边形的面积比是16:25,则它们的相似比等于4:5 .【考点】相似多边形的性质.【分析】根据相似多边形的面积比等于相似比的平方解答即可.【解答】解:∵两个相似多边形的面积比是16:25,∴它们的相似比等于4:5,故答案为:4:5.16.一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为或.【考点】锐角三角函数的定义;等腰三角形的性质;勾股定理.【分析】可分4cm为腰长和底边长两种情况,求得直角三角形中底角的邻边与斜边之比即可.【解答】解:①4cm为腰长时,作AD⊥BC于D.∴BD=CD=3cm,∴cosB=;②4cm为底边时,同理可得BD=CD=2cm,∴cosB==,故答案为或.17.在△ABC中,若+|tanB﹣1|=0,则∠C= 75°.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;特殊角的三角函数值.【分析】根据非负数的性质分别求出∠A,∠B的度数即可解决问题.【解答】解:∵+|tanB﹣1|=0,又∵≥0,|tanB﹣1|≥0,∴sinA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=75°.故答案为75°.18.已知α为锐角,当无意义时,tan(α+15°)﹣tan(α﹣15°)的值是.【考点】特殊角的三角函数值;分式有意义的条件.【分析】根据特殊角的三角函数值和分式有意义的条件求解.【解答】解:当无意义时,tanα=1,∠α=45°,则tan(α+15°)﹣tan(α﹣15°)=tan60°﹣tan30°=﹣=.故答案为:.19.如图,已知A(3,0),B(2,3),将△OAB以点O为位似中心,相似比为2:1,放大得到△OA′B′,则顶点B的对应点B′的坐标为(﹣4,﹣6)或(4,6).【考点】位似变换;坐标与图形性质.【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k进行解答.【解答】解:∵以原点O为位似中心,相似比为2:1,将△OAB放大为△OA′B′,B(2,3),则顶点B的对应点B′的坐标为(﹣4,﹣6)或(4,6),故答案为(﹣4,﹣6)或(4,6).20.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5 米.【考点】相似三角形的应用.【分析】根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.【解答】解:如图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:=,解得:h=22.5,∴河宽为22.5米.故答案为:22.5.三、解答题(共60分)21.计算:sin230°+cos245°+sin60°•tan45°.【考点】特殊角的三角函数值.【分析】牢记特殊角的三角函数值是解答本题的关键,然后根据实数运算法则计算出结果.【解答】解:原式=.22.在△ABC中,∠C=90°,已知BC=5,AC=5,解这个直角三角形.【考点】解直角三角形.【分析】在直角三角形ABC中,由BC与AC的值,利用勾股定理求出AB的值即可.【解答】解:∵在△ABC中,∠C=90°,BC=5,AC=5,∴根据勾股定理得:AB===10.23.如图,点P为△ABC的边AB上的一点,连结PC,若∠1=∠B.(1)求证:△ABC∽△ACP;(2)若PA=4,PB=5,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定定理即可得到结论;(2)根据相似三角形的想知道的,代入数据即可得到结论.【解答】(1)证明:∵∠1=∠B,∠A=∠A,∴△ABC∽△ACP;(2)∵PA=4,PB=5,∴AB=9,∵△ABC∽△ACP,∴,即:,∴AC=6.24.如图,AB是圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】连结AC,根据圆周角定理由AB是圆O的直径得到∠ACB=90°,由CD⊥AB得到∠CDA=90°,再根据等角的余角相等得到∠ACD=∠B,则根据三角形相似的判定方法得到Rt△ACD∽Rt△CBD,利用相似比可计算出CD=6,然后在Rt△BCD中,根据勾股定理计算CB.【解答】解:连结AC,如图,∵AB是圆O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵CD⊥AB,∴∠CDA=90°,∴∠A+∠ACD=90°,∴∠ACD=∠B,∴Rt△ACD∽Rt△CBD,∴CD:AD=BD:CD,即CD:4=9:CD,即得CD=6,在Rt△BCD中,CB===3(cm).25.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.【考点】相似三角形的应用.【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.【解答】解:设正方形的边长为xmm,则AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴=,即=,解得x=48mm,所以,这个正方形零件的边长是48mm.26.如图,李军在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,李明测得风筝的仰角为60°.求风筝此时的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】先求出AB=BC,在Rt△CBD中,CD=sin60°×BC,得出答案.【解答】解:∵∠A=30°,∠CBD=60°,∴∠ACB=30°,∴BC=AB=30,在Rt△BCD中,∠CBD=60°,BC=30,sin∠CBD=,sin60°=,∴米.答:风筝此时的高度15米.27.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【考点】解直角三角形的应用-方向角问题.【分析】本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB的长,来求出CD的长.【解答】解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.。
2017-2018学年下学期九年级数学第一次月考试题一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若3||=a ,则a 的值是 ( ) A .3- B.3 C. 31D. ±32. 下列计算正确的是:( ) A .3a ²62a a = B .532)(a a=C .2)21(1=- D .0)21(= 3.下列图形中,既是中心对称,又是轴对称图形的是( )A.B. C. D.4.下列说法中,正确的是A.“打开电视,正在播放新闻联播节目”是必然事件B. 某种彩票中奖概率为10%是指买10张一定有一张中奖C. 了解某种节能灯的使用寿命应采用全面检查D. 一组数据3,5,4,6,7的中位数是5,方差是25.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM .若∠AOC =70°,则∠CON 的度数为 ( )A .65°B .55°C .45°D .35°6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为 ( )A.(x +1)(x +2)=18B.x 2-3x +16=0C.(x -1)(x -2)=18D.x 2+3x +16=07.二次函数c bx ax y ++=2的图象如图所示,那么一次函数b ax y +=的图象大致是:()主视图俯视图BO AM CD(第5题)A B C D8.如图是某几何体的三视图,这个几何体的侧面积是 ( )A .6πB .210 πC .10 πD .3π9.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,6),则⊙C 的半径长为5,则C 点坐标为A.(3,4)B.(4,3)C.(-4,3)D.(-3,4)10. 如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①21=BC DE ;②21=∆∆COB ODE S S ;③21=OB OE ;④21=∆∆OEC ODE S S 其中正确的个数有 ( ) A.1个 B.2个 C.3个 D.4个二、填空题:(本大题共6个小题,每小题3分,共18分)11.有一种花的孢子质量大约只有 0.0000086克,将0.0000086克用科学记数法表示为________________________.12. . 不等式组⎩⎪⎨⎪⎧x -2>0x 2+1≥x -3的解集是 .13.如图,在△ABC 中,∠BAC=45°,AB=4cm ,将△ABC 绕点B 按逆时针方向旋转45°后得到△A ′BC ′,则阴影部分的面积为 ___ ___cm 2 .14.已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km/h .15. 在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为______16. .等腰三角形ABC 的周长为30,其中一个内角的余弦值为32,则其腰长为__________. 三、解答题:(本大题共9个小题,共72分)17.(6分)先化简,再求值:121)1(222++-÷-+x x x x x x ,其中0tan 601x =-.第19题图18.(6分)某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①则a= ;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.19.(6分)如图,在平面直角坐标系xoy 中,一次函数y 1=ax +b 的图象分别与x ,y 轴交于点B ,A ,与反比例函数y 2=m x 的图象交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO =12,OB=4,OE =2.(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出当y 1<y 2时x 的取值范围.20. (6分)如图,在平行四边形ABCD 中,AD >AB .(1)作出∠ABC 的平分线(尺规作图,保留作图痕迹,不写作法); (2)若(1)中所作的角平分线交AD 于点E ,AF ⊥BE ,垂足为点O ,交BC 于点F ,连接EF .求证:四边形ABFE 为菱形.第24题图21.(8分)一项工程,甲,乙两公司合作,12天可以完成;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元. (1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,要使乙公司的总施工费较少,则甲公司每天的施工费应低于多少元?22、(8分)如图,AB 是⊙O 的直径,BC 是⊙O 的切线,D 是⊙O 上的一点,且AD ∥CO ,连结CD (1)求证:CD 是⊙O 的切线; (2)若AB=2,2 CD ,求AD 的长.(结果保留根号)23(10分)某玩具专柜要经营一种新上市的儿童玩具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出专柜销售这种玩具,每天所得的销售利润W(元)与销售单价x (元)之间的函数关 系式;(2)求销售单价为多少元时,该玩具每天的销售利润最大; (3)专柜结合上述情况,设计了A 、B 两种营销方案: 方案A :该玩具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件玩具的利润至少为25元. 请比较哪种方案的最大利润更高,并说明理由.24. (10分) 如图,△ABC 中,∠ACB =90°,tan A =2,点D 是边AC 上一点,连接BD ,并将△BCD 沿BD 折叠,使点C 恰好落在边AB 上的点E 处,过点D 作DF ⊥BD ,交AB 于点F.(1)求证:∠ADF =∠EDF ;(2)探究线段AD ,AF ,AB 之间的数量关系,并说明理由; (3)若EF =1,求BC 的长.第25题图25. (12分)已知二次函数y =-x 2+ax +b 的图象与y 轴交于点A(0,-2),与x 轴交于点B(1,0) 和点C ,D(m ,0)(m >2)是x 轴上一点. (1)求二次函数的解析式;(2)点E 是第四象限内的一点,若以点D 为直角顶点的 Rt △CDE 与以A ,O ,B 为顶点的三角形相似,求点E 坐标(用含m 的代数式表示); (3)在(2)的条件下,抛物线上是否存在一点F ,使得四边形BCEF 为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.。
人教版九年级下学期数学第一次月考试卷B卷姓名: 班级: 成绩:考试须知:1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
、单选题供10题;共20分)1.(2分)a和5a大小比较是( )A . a小于5aB . a等于5aC . a大于5aD .不能确定2.(2分)以下式子化简正确的是( )A . — (X —3) =—X —3B . 4 (a+b) +2 (a+b) — (a+b) =5 (a+b)C . —5( —1 —0.2x)二一5+xD . (a+b) + (a—b) — (—a+b)=3a+b3.(2分)要使式子Jb-5在实数范围内有意义,则x应满足( )5A . xN 2B ・ x<I5 C . x<24.(2分)不等式组Li<2 的解集在数轴上表示正确的是()c. 0 1 'HD . -1 0 1 2 35.(2分)(2019 •安徽)一个由圆柱和圆锥组成的几何体如图水平放置,它的俯视图是()6.(2分)(2020九上•来宾期末)已知反比例函数y=〒,则其图象在平面直角坐标系中可能是()7.(2分)为了解某班学生每天使用零花钱的情况,小明随机调查了 15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法正确的是()A .众数是5元B .平均数是3. 5元C .极差是4元D .中位数是3元8.(2分)(2019七下•北京期中)如图所示,AB〃EF〃DC, EG〃DB,则图中与Z1相等的角(Z1除外)共有()b9.(2分)(2019八下•靖远期中)如果kb<0,且不等式kx+b>0解集是x<- k ,那么函数y=kx+b的图像只可能是下列的()D . I10.(2分)(2017 •祁阳模拟)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是()二、填空题(共8题;共11分) 11. (1分)第十八届中国(重庆)国际投资暨全球采购会上,重庆共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 .12. (1分)(2018八上•江汉期末)分解因式:x3+x2+x+l=.13. (1分)(2016七上•桐乡期中)绝对值不大于3的所有整数的积14. (2分)(2018九上•杭州期中)如图,AABC 内接于圆0,若ZA=m° ,则Z0BC=度(用含m 的 代数式表示)R15. (2分)(2018 •朝阳模拟)一元二次方程£-3.1+1 = 0根的判别式的值为.16. (1分)(2017 •马龙模拟)如图,已知在坐标平面中,矩形ABCD 的顶点A (1, 0), B (2, - 2), C (6, 0), D (5, 2),将矩形ABCD 绕点A 逆时针旋转90°得到矩形AB'C'D',则点D 的对应点D'的坐标是.17. (1分)(2019 •瑞安模拟)圆心角为120° ,半径为2的扇形,则这个扇形的面积为.18. (2分)已知,如图,把一矩形纸片ABCD 沿BD 对折,使点C 落在E 处,BE 与AD 交于M 点,写出一组相 等的线段 (不包括AB=CD 和AD=BC ). ★★图形①★ ★ ★ ★ ★★ 图形② ★ ★ ★ ★ ★★ ★ ★★★★ 图形③ ★ ★ ★ ★ ★★ ★ ★★★ ★★★★★★★ 图形④5三、解答题(共9题;共69分)19.(5 分)(2017 •响水模拟)计算:2-l+4cos45° - 5-2013)0-代.20.(5分)解方程(1)x2 - 2x - 3=0(2)2x2+5x - 1=0(3)(2x - 3) 2 - 121=0(4)(x - 3) 2=2 (3 - x).4 6 2 厂21.(5分)(2017 •剑河模拟)先化简W ,再求代数式的值,其中a= V ' -3.22.(10分)(2017 •天津模拟)在一个不透明的盒子中,共有“一白三黑”四个围棋子,其除颜色外无其他区别.(1)随机地从盒子中取出1子,则提出的是白子的概率是多少?(2)随机地从盒子中取出1子,不放回再取出第二子,请用画树状或列表的方式表示出所有可能的结果,并求出恰好取出"一黑一白”的概率是多少?4^323.(2分)(2019 •无锡模拟)小明坐于堤边垂钓,如图,河堤.9的坡角为30。
德卧教育集团初中部2018—2018学年度第二学期第一次月考试卷九年级 数
学
班级 姓名 学号 成绩
(本试卷满分150分,考试时间120分钟) 一、选择题。
(每小题4分,共60分) 1、114
-的倒数是【 】 (A )54- (B )
54 (C )45- (D )45
2、下列运算正确的是【 】
(A )437a a =a -⋅ (B )4312a a =a ⋅ (C )()3
4
12
a =a
(D )437a a =a +
3
a 的取值范围【 】
(A )a≥3 (B )a≤3 (C )a≥-3 (D )a≤-3
4、三角形的两边长分别为2和6,第三边是方程2x 10x+21=0-的解,则第三边的长为【 】 (A )7 (B )3 (C )7或3 (D )无法确定
5、袋子里有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是【 】 (A )
25 (B )35 (C )23 (D )3
2
6、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有【 】
A 、1个
B 、2个
C 、3个
D 、4个
7、兴义市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高2m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为【 】
(A
)()
m (B
)()m (C
)()m (D
)()
m
8、已知一次函数1y =x 1-和反比例函数22
y =x
的图象在平面直角坐标系中交于A 、B 两点,当y 1>y 2时,x 的取值范围是【 】
A .x 2>
B .1x 0<<-
C .x 2>,1x 0<<-
D .x 2<,x 0> 9、下列运算正确的是【 】
A .()2
22a+b =a +b B .426a a =a ⋅ C .623a a =a ÷ D .2a+3b=5ab
10、如图,已知直线AB∥CD,BE 平分∠ABC,交CD 于D ,∠CDE=1500
,则∠C 的度数是【 】
A .1500
B .1300
C .1200
D .1000
11、如图,将正方体的平面展开图重新折成正方体后,“祝”字对面的字是【 】
A .中
B .考
C .成
D .功
12、已知抛物线2y=x x 1--与x 轴的交点为(m ,0),则代数式2m m+2011-的值为【 】 A .2018 B .2018 C .2018 D .2018
13、在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值
【 】
A 也扩大3倍
B 缩小为原来的
3
1
C 都不变
D 有的扩大,有的缩小 14、已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是【 】
A .16厘米
B .10厘米
C .6厘米
D .4厘米 15、若tan(a+10°)=3,则锐角a 的度数是
【 】
A 、20°
B 、30°
C 、35°
D 、50°
二、填空题。
(每小题3分,共30分)
16.在Rt △ABC 中,∠C =90°,a =2,b =3,则cos A = ,sin B = ,tan B = 。
17、在2018年,贵州省“旅发大会”在我州召开,据统计,“万峰林”风景区招待游客的人数一年大约为30.1万人,这一数据用科学计数法表示为 。
18、已知一个样本-1,0,2,x ,3,它们的平均数是2,则这个样本的方差S 2
= 。
19
2=π
- 。
20、已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 。
21、已知圆锥的底面半径为10cm ,它的展开图的扇形的半径为30cm ,则这个扇形圆心角的度数是 。
22、如图,在梯形ABCD 中,AD//BC ,对角线AC 、BD 相交于点O ,若AD =1,BC =3,△AOD 的面积为3,
则△BOC 的面积为。
23、已知m 13
2x
y --和n m+n 1x y 2
是同类项,则()
2012
n m =- 。
24、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2
,那么较小的多边形的面积是 cm 2。
25、分解因式:42a 16a =- 。
三、解答题。
(26题20分,27、28题各10分,29题8分,30题12分,共60分)
26. (1
)计算:1
0012012+tan 603-⎛⎫
--- ⎪⎝⎭
;
(2
)计算:)
()
2
2012
12sin30+
13π
-⎛⎫
---- ⎪⎝⎭
(3)先化简:2
2
4x 2x+2x 4⎛
⎫-÷ ⎪-⎝
⎭,然后求当x=1时,这个代数式的值。
(4)解方程:
2x 23
=1x+2x 4
---. 27.已知,如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的的延长线上,∠BCD=∠A。
(1)求证:CD 是⊙O 的切线;(2)过点C 作CE⊥AB 于E 。
若CE=2
,4
cosD=5
,求AD 的长。
28. (8分) 已知Rt△ABC 的斜边AB 的长为10cm , sinA 、sinB 是方程m(x 2
-2x)+5(x 2
+x)+12=0的两
根。
(1)求m 的值;(2)求Rt△ABC 的内切圆的面积。
29、(6分)阳光通过窗口照射到室内,在地面上留下2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.
30、某工厂计划生产A 、B 两种产品共10件,其生产成本和利润如下表:
(1)若工厂计划获利14万元,问A 、B 两种产品应分别生
产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?
(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润。