杨柳木材增强沙柳材MDF力学性能
- 格式:pdf
- 大小:1.55 MB
- 文档页数:3
杨、柳软质木材改性工艺研究及其物理性能比较兰亚军;杨志斌;李晖;杨丽森【摘要】杨树、柳树是中原地区主要的速生树种,为充分利用速生林软质木材,研究其改性工艺,提高木材品质。
作者通过对杨、柳木干燥改性实验,对软质木材进行改性。
改性后木材尺寸稳定性增强、硬度大幅增大,杨树、柳树硬度分别提高49.2%、40.1%;木材的抗弯强度分别提高49.0%、51.5%。
%The poplar and willow have been main fast growing species in the central plains.In order to make full use of fast-growing softwood,research on modification process and improving wood quality has been very necessary.In this paper,research on the modification experiment of poplar and willow was made.The dimensional stability and hardness of modified wood increased significantly.The hardness of poplar and willow increased by 49.2% and 40.1% respectively;the bending strength of poplar and willow increase by 49.0% and 51.5% respectively.【期刊名称】《湖北林业科技》【年(卷),期】2012(000)004【总页数】3页(P28-30)【关键词】杨木;柳木;干燥改性工艺;硬度;抗弯强度【作者】兰亚军;杨志斌;李晖;杨丽森【作者单位】湖北省林业科学研究院,武汉430075;湖北省林业科学研究院,武汉430075;湖北省林业科学研究院,武汉430075;湖北省林业科学研究院,武汉430075【正文语种】中文【中图分类】S792.11杨树、柳树Salix matudana 是中原地区重要的速生树种,人工林杨树除了速生丰产以外,其木材的密度低、材质松软、颜色浅、含水率高且分布不均,易变形[1];柳树也由于材质疏松、含水率高、尺寸稳定性不好等原因,导致杨柳木都不能直接利用,目前仅作为纤维板、胶合板等用材。
木材的力学性质主要介绍了木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。
木材力学是涉及木材在外力作用下的机械性质或力学性质的科学,它是木材学的一个重要组成部分。
木材力学性质是度量木材抵抗外力的能力,研究木材应力与变形有关的性质及影响因素。
木材作为一种非均质的、各向异性的天然高分子材料,许多性质都有别于其它材料,而其力学性质和更是与其它均质材料有着明显的差异。
例如,木材所有力学性质指标参数因其含水率(纤维饱和点以下)的变化而产生很大程度的改变;木材会表现出介于弹性体和非弹性体之间的黏弹性,会发生蠕变现象,并且其力学性质还会受荷载时间和环境条件的影响。
总的来说,木材的力学性质涉及面广,影响因素多,学习时需结合力学、木材构造、木材化学性质的有关知识。
木材力学性质包括应力与应变、弹性、黏弹性(塑性、蠕变)、强度(抗拉强度、抗压强度、抗弯强度、抗剪强度、扭曲强度、冲击韧性等)、硬度、抗劈力以及耐磨耗性等。
8.1 应力与应变8.1.1 应力与应变的概念8.1.1.1 应力 物体在受到外力时具有形变的趋势,其内部会产生相应的抵抗外力所致变形作用的力,成为内力,当物体处于平衡状态时,内力与外力大小相等,方向相反。
应力就是指物体在外力作用下单位面积上的内力。
当外力均匀地作用于顺纹方向的短柱状木材端面上,柱材全长的各个断面上都将受到应力,此时,单位断面面积上的木材就会产生顺纹理方向的正应力(图8-1a )。
把短柱材受压或受拉状态下产生的正应力分别称为压缩应力和拉伸应力。
当作用于物体的一对力或作用力与反作用力不在同一条作用线上,而使物体产生平行于应力作用面方向被剪切的应力,这种应力被称为剪应力(图8-1b )。
应力单位曾一度使用dyn/cm 2、kgf/cm 2等,近年来开始采用国际单位中的N/mm 2(=MPa )。
1.化学性质化学组成——纤维素、木质素和半纤维素是构成细胞壁的主要成分,此外还有脂肪、树脂、蛋白质、挥发油以及无机化合物等。
木材对酸碱有―定的抵抗力,对氧化性能强的酸,则抵抗力差;对强碱,会产生变色、膨胀、软化而导致强度下降。
―般液体的浸透对木材的影响较小。
2.物理性质1)含水量木材中的含水量以含水率表示,指所含水的质量占干燥木材质量的百分比。
木材内部所含水分,可分为以下三种。
(1)自由水。
存在于细胞腔和细胞间隙中的水分。
自由水的得失影响木材的表观密度、保存性、燃烧性、抗腐蚀性、干燥性、渗透性。
(2)吸附水。
被吸附在细胞壁内细纤维间的水分。
吸附水的得失影响木材的强度和胀缩。
(3)化合水。
木材化学成分中的结合水。
对木材性能无大影响。
纤维饱和点——指当木材中无自由水,仅细胞壁内充满了吸附水时的木材含水率。
树种不同,纤维饱和点随之不同,―般介于25%~35%,平均值约为30%。
纤维饱和点是木材物理力学性质发生变化的转折点。
平衡含水率——木材长期处于―定温、湿度的空气中,达到相对稳定(即水分的蒸发和吸收趋于平衡)的含水率。
平衡含水率是随大气的温度和相对湿度的变化而变化的。
木材的含水率:新伐木材常在35%以上;风干木材在15%~25%;室内干燥木材在8%~15%。
2)湿胀、干缩的特点当木材从潮湿状态干燥至纤维饱和点时,自由水蒸发,其尺寸不变,继续干燥时吸附水蒸发,则发生体积收缩。
反之,干燥木材吸湿时,发生体积膨胀,直至含水量达纤维饱和点为止。
继续吸湿,则不再膨胀,见图10.7.1。
―般地,表观密度大的,夏材含量多的,胀缩就较大。
因木材构造不均匀,其胀缩具有方向性,同―木材,其胀缩沿弦向最大,径向次之,纤维方向最小,见图10.7.1。
这主要是受髓线的影响,其次是边材的含水量高于心材含水量。
图10.7.1含水量对松木胀缩变形的影响木材长期湿胀干缩交替,会产生翘曲开裂。
因而潮湿的木材在加工或使用前应进行干燥处理,使木材的含水率达到平衡含水率,与将来使用的环境湿度相适应。
柳杉物理力学性质综述柳杉(CryptomeriafortuneiHooibrenk)为杉科柳杉属常绿乔木,既是高山速生用材树种,又是优良的庭园观赏树种,成为我国珍贵用材树种之一,具有广泛的用途[1-2]。
同时柳杉作为广西东南地区的引进树种之一,在广西具有相当大的资源优势。
但迄今为止,对柳杉材性的研究鲜见报道,而木材物理力学性质对木材加工处理和利用均有重要意义[3]。
因此,笔者对柳杉木材主要物理力学性质进行了测定,以期为柳杉木材材质改良和合理、全面利用该树种提供理论依据。
1材料与方法1.1试验材料选择柳杉为研究对象,试材采自广西国营六万林场,采集按照国家标准GB/T1927-2009《木材物理力学试材采集方法》规定,选取生长良好、无病虫害、树干通直且代表性强的作为试验样木。
共采集14株,其中树龄为20年生的5株,30年生的9株。
1.2试验方法试件的加工和测定按照国家标准GB/T1927~1943-2009《木材物理力学性质试验方法》要求进行。
测定指标包括木材基本密度、气干密度、全干密度,木材弦向、径向和体积气干干缩率、全干缩率及干缩系数,从全干至气干的湿胀率和从全干至饱水的湿胀率,吸水率,顺纹抗压强度,横纹全部抗压强度,抗弯强度,抗弯弹性模量,冲击韧性等。
各项力学性质在万能力学试验机和摆锤式冲击试验机上测定,试验结果均换算成含水率为12%时的数据。
2结果与分析2.1木材物理性质及其变化规律2.1.1杉木材的基本密度、气干密度和全干密度分别为0.4080、0.5030、0.4640g/cm3。
根据《木材的主要物理力学性质分级表》[3],其气干密度属小(0.351~0.550g/cm3)。
由图1、2、3可知,柳杉木材的基本密度、气干密度和全干密度在不同树龄、不同方位以及纵向的变化规律基本一致。
30年生柳杉的密度均小于20年生柳杉的密度,不同树龄之间基本密度、气干密度和全干密度差异分别是21.58%、21.08%和22.96%。
不同树种的木材物理力学性能不同树种的木材物理力学性能包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。
树木是木材的原体,是由它本身生命生存与繁衍的整个生长过程,积累了成为不同木材的物质,直到生命自然终结,或被认为终结生命,而成为被利用的材料。
树木是木质多年生植物,通常把它分为乔木和灌木两种。
乔木是l.3米以上,只有一个直立主干的树木;灌木是直立的、具有丛生茎的树木。
我国现有木本植物约7000多种,属乔木者约占1/3以上,但是作为工业用材而供应市场的只不过1000种,常见的约300种。
树木是人类繁衍延续到今天的必要条件。
它靠空气、水和阳光存活,通过一系列化学反应,形成树木肢体的物理变化,为人类营造出了天然的乐园。
“碳”是形成木材物理力基础。
树木在生长发育过程中,形成了高度发达的营养体。
水分及营养液等流体的输运现象始终伴随着树木营养生长的生理过程。
树木由树梢沿主轴向上生长(高生长),也在土壤深处向下生长(根生长),中间的树干部分沿着径向生长。
前一年形成的树干部分到了次年不会再进行高生长。
树木从天上接受阳光的沐浴,到地下去寻觅水分,把原料从树根输送到叶片。
由叶子制造养分,将养分向下输送,供给树木生长需要。
这样,树木生长过程中,形成了非常协调完备的水分及养分的输送系统。
一株红杉(美)树高达112米,一株杏仁桉(奥)树竟高达156米,一株银杏(中)树龄达3000年,一株世界爷(美)树龄竟达7800年。
那么对于如此高大、如此年久的树木,体内各种物质(水、矿物质、可溶性碳水化合物和激素等等)是它的最外层是树皮(外皮),树皮里边一层是韧皮部(也叫内皮),经它将营养液由叶部输送到树木的其他部分(包括根在内)。
再向内一层是形成层,它的细胞不断分裂,使树木沿径向生长而不断加粗。
再往里是边材和心材,即木质部,木质部中被叫做导管的细胞组织,它将树液输送到茎和叶部。