2010-2011年高三毕业班数学课本知识点整理归纳之十六
- 格式:doc
- 大小:1.04 MB
- 文档页数:4
高三必考数学重要知识点归纳总结知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。
下面是小编为大家整理的关于高三必考数学重要知识点归纳,希望对您有所帮助!高三数学位置知识点1、上、下(1)在具体场景中理解上、下的含义及其相对性。
(2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。
(3)培养学生初步的空间观念。
2、前、后(1)在具体场景中理解前、后、最×的含义,以及前后的相对性。
(2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的'相对位置。
(3)培养学生初步的空间观念。
3、左、右(1)在具体场景中理解左、右的含义及其相对性。
(2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。
(3)培养学生初步的空间观念。
4、位置(1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。
(2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。
(3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。
高三数学函数知识点(1)配方法:若函数为一元二次函数,则可以用这种方法求值域,关键在于正确化成完全平方式。
(2)换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
(3)判别式法:若函数为分式结构,且分母中含有未知数x,则常用此法。
通常去掉分母转化为一元二次方程,再由判别式△0,确定y的范围,即原函数的值域(4)不等式法:借助于重要不等式a+bab(a0)求函数的值域。
用不等式法求值域时,要注意均值不等式的使用条件一正,二定,三相等。
(5)反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a0)型函数的值域,可采用反函数法,也可用分离常数法。
<∆∆0=>∆0关于直线对称。
x y =⑦证明函数图像的对称性,即证明图像上任意点关于对称注意:①根据要求先画出抛物线,然后写出图象成立的充要条件。
<-20n a b使得取最大值使得取最小值。
,=,=)ααcos -)2(α-ctg αtg =-)3(απtg tg -、三角函数的图象:的最大值是B x ++)sin(ϕω),(其中00>>ωA A +,频率是,相位是,初相是;其图象的对称轴ωπ2πω2=f ϕω+x ϕ,凡是该图象与直线的交点都是该图象的对称中心)(2Z k ∈+πB y =)。
k π=三角函数的单调区间:的递增区间是,递减区间是⎤⎡+-22ππππk k ,)(Z k ∈⎡2πk1.平面向量知识结构表2.向量的概念①向量的加法与减法:定义与法则(如图5-1):a+b =(x 1+x 2,y 1+y 2),a-b =(x 1-x 2,y 1-y 2)。
其中a =(x 1,y 1),b =(x 2,y 2)。
运算律:a+b=b+a,(a+b)+c=a+(b+c),a+0=0+a=a 。
②向量的数乘(实数与向量的积)定义与法则(如图5-2):λa=λ(x,y)=(λx, λy)(1)︱︱=︱︱·︱︱;λa λa λa+λb。
=,OA a )=λ(·),(b a b 2121y y x x +分有向线段AB 所成的比为+=+=222121y y x x ,但不一定有斜率。
(斜率=tgα,α=90 时,无斜率),这时必有两条切线,注意不要漏掉平行于例如:一条直线经过点,且被圆截得的弦长为求此弦所在直线的方程。
该题就要注意,不要漏掉准线方程:,1ex 1122)(ex a x ca e PF -=-=通径,过焦点与长轴垂直的直线与椭圆相交所得弦,其长为22b a中经常利用余弦定理、三角形面积公式将有关线段、1PF轨迹是双曲线。
12222=-b y )0,0(>>b a 122=)0,0(>>b a ; y∈R; 实轴长,虚轴长=2b}a x a x x ≤≥、2c 准线方程:ca x 2±=)图中线段的几何特征:=1AF BF 22.图形:性质:方程:(焦点到准线的距离);、、、-->=p p px y ),0(,22(p)的焦点F 的弦为AB +p以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用。
人教版高三数学复习知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!人教版高三数学复习知识点仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。
高三數學重要知識點總結(一)1.數列的定義按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那麼它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是引數的值,相當於f(n)中的n.(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.2.數列的分類(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.(2)按照項與項之間的大小關係或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.3.數列的通項公式數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關係不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.再強調對於數列通項公式的理解注意以下幾點:(1)數列的通項公式實際上是一個以正整數集N*或它的有限子集{1,2,…,n}為定義域的函數的運算式.(2)如果知道了數列的通項公式,那麼依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.(3)如所有的函數關係不一定都有解析式一樣,並不是所有的數列都有通項公式.如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那麼僅由前面幾項歸納出的數列通項公式並不.4.數列的圖象對於數列4,5,6,7,8,9,10每一項的序號與這一項有下麵的對應關係:這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N*(或它的有限子集{1,2,3,…,n})的函數,當引數從小到大依次取值時,對應的一列函數值.這裏的函數是一種特殊的函數,它的引數只能取正整數.由於數列的項是函數值,序號是引數,數列的通項公式也就是相應函數和解析式.數列是一種特殊的函數,數列是可以用圖象直觀地表示的.數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不精確.把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續正整數組成的集合,其圖像是無限個或有限個孤立的點.高三數學重要知識點總結(二)考點一:集合與簡易邏輯集合部分一般以選擇題出現,屬容易題。
2010届高考数学知识点汇编(全套)函数1。
函数的定义 (1)映射的定义:(2) 一一映射的定义:上面中是映射的是_____________,是一一映射的是____________.(3)函数的定义:(课本第一册上.P51) 2.函数的性质(1)定义域:(南师大P32复习目标) (2)值域:(3)奇偶性(在整个定义域内考虑) ①定义:②判断方法:Ⅰ。
定义法 步骤:a 。
求出定义域;b 。
判断定义域是否关于原点对称; c.求)(x f -;d 。
比较)()(x f x f 与-或)()(x f x f --与的关系。
Ⅱ图象法 ③已知:)()()(x g x f x H =若非零函数)(),(x g x f 的奇偶性相同,则在公共定义域内)(x H 为偶函数若非零函数)(),(x g x f 的奇偶性相反,则在公共定义域内)(x H 为奇函数④常用的结论:若)(x f 是奇函数,且定义域∈0,则)1()1(0)0(f f f -=-=或;若)(x f 是偶函数,则)1()1(f f =-;反之不然。
(4)单调性(在定义域的某一个子集内考虑) ①定义:②证明函数单调性的方法: Ⅰ。
定义法 步骤:a 。
设2121,x x A x x <∈且;b 。
作差)()(21x f x f -;(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出) c.判断正负号。
Ⅱ用导数证明: 若)(x f 在某个区间A 内有导数,则⇔∈≥)0)(A x x f ,(’)(x f 在A 内为增函数; ⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数.③求单调区间的方法: a 。
定义法: b.导数法: c 。
图象法:d.复合函数[])(x g f y =在公共定义域上的单调性:若f 与g 的单调性相同,则[])(x g f 为增函数; 若f 与g 的单调性相反,则[])(x g f 为减函数。
第二节推理与证明【高考目标定位】一、合情推理与演绎推理1、考纲点击(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;(3)了解合情推理和演绎推理之间的联系和差异。
2、热点提示(1)以选择题、填空题的形式考查合情推理;(2)以选择题或解答题的形式考查演绎推理(3)题目难度不大,多以中低档题为主。
二、直接证明与间接证明1、考纲点击(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点;(2)了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点;2、热点提示(1)本考点在高考中每年都要涉及,主要以考查直接证明中的综合法为主;(2)反证法仅作为客观题的判断方法不会单独命题。
三、数学归纳法1、考纲点击(1)了解数学归纳法的原理;(2)能用数学归纳法证明一些简单的数学命题。
2、热点提示(1)归纳——猜想——证明仍是高考重点;(2)与函数、数列、不等式等知识结合,在知识的交汇处命题是热点。
【考纲知识梳理】一、合情推理与演绎推理注:归纳推理和类比推理的特点与区别:类比推理和归纳推理的结论都是有待于证明的。
归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理。
二、直接证明与间接证明1、直接证明注:分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上寻求它的充分条件;综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找它的必要条件。
分析法与综合法各有其特点,有些具体的待证命题,用分析法或综合法均能证明出来,往往选择较简单的一种。
2、间接证明反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫反证法。
三、数学归纳法 数学归纳证题的步骤:(1)证明当n 取第一值00()n n N *∈时命题成立:(2)假设n=k(k ≥0n ,k ∈N *)时命题成立,证明当n=k+1时命题也成立。
2010-2011年高三毕业班数学课本知识点整理归纳之十四第十四章 极限与导数一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。
类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。
2.极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b ,那么0lim x x →[f(x)±g(x)]=a ±b,lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且0lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆0lim存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy ,即000)()(lim)('0x x x f x f x f x x --=→。
由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。
高三数学重要知识点总结高三数学重要知识点总结(一)1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。
16高考数学知识点总结16高考数学知识点总结一同角三角函数的基本关系式倒数关系:tancot=1sincsc=1cossec=1商的关系:sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=11+tan^2()=sec^2()1+cot^2()=csc^2()同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。
由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
16高考数学知识点总结二两角和差公式两角和与差的三角函数公式sin(+)=sincos+cossinsin(-)=sincos-cossincos(+)=coscos-sinsincos(-)=coscos+sinsintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2=2sincoscos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()tan2=2tan/[1-tan^2()]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(/2)=(1-cos)/2cos^2(/2)=(1+cos)/2tan^2(/2)=(1-cos)/(1+cos)另也有tan(/2)=(1-cos)/sin=sin/(1+cos)万能公式sin=2tan(/2)/[1+tan^2(/2)]cos=[1-tan^2(/2)]/[1+tan^2(/2)]tan=2tan(/2)/[1-tan^2(/2)]万能公式推导附推导:sin2=2sincos=2sincos/(cos^2()+sin^2())......*,(因为cos^2()+sin^2()=1)再把*分式上下同除cos^2(),可得sin2=2tan/(1+tan^2())然后用/2代替即可。
【高中高考必备】高三毕业班数学总复习资料高中数学知识点总结【高中高考必备】高三毕业班数学知识点总复习资料(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A=B.如果.[注]:①Z={整数}(√)Z={全体整数}(×)②已知集合S 中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=,则CsA={0})③空集的补集是全集.④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R 二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.[注]:①对方程组解的集合应是点集.例:解的集合{(2,1)}.②点集与数集的交集是.(例:A={(x,y)|y=x+1}B={y|y=x2+1}则A∩B=)4.①n个元素的子集有2n个.②n个元素的真子集有2n -1个.③n个元素的非空真子集有2n-2个.5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②.解:逆否:x+y=3x=1或y=2.,故是的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若.4.集合运算:交、并、补.5.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.0-1律:等幂律:求补律:A∩CUA=φA∪CUA=UðCUU=φðCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)6.有限集的元素个数定义:有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式:(3)card(ðUA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(x-x1)(x-x2)…(x-xm)>0(0”,则找“线”在x轴上方的区间;若不等式是“b解的讨论;②一元二次不等式ax2+box>0(a>0)解的讨论.二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R2.分式不等式的解法(1)标准化:移项通分化为>0(或101;x100,d0时,同向;b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则(3)无理不等式:转化为有理不等式求解(4).指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式应用分类讨论思想去绝对值;应用数形思想;应用化归思想等价转化注:常用不等式的解法举例(x为正数):①②类似于,③直线和圆的方程知识要点一、直线方程.1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3.⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线.②在和的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在.②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要条件)4.直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5.过两直线的交点的直线系方程为参数,不包括在内)6.点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1.两点P1(x1,y1)、P2(x2,y2)的距离公式:.特例:点P(x,y)到原点O的距离:2.定比分点坐标分式。
人教版高三数学知识点总结高三数学是高中阶段数学学科的最后一个年级,是考生备战高考的关键阶段。
在高三数学中,包含了许多重要的知识点。
下面是针对人教版高三数学的知识点进行的总结。
一、函数与方程1. 一次函数:函数定义、图像特征、性质及应用。
2. 二次函数:函数定义、图像特征、性质及应用。
3. 幂函数与指数函数:函数定义、图像特征、性质及应用。
4. 对数函数:函数定义、图像特征、性质及应用。
5. 三角函数:正弦函数、余弦函数、正切函数等的定义、图像特征、性质及应用。
6. 函数的运算:函数的加法、减法、乘法、除法及复合等。
二、解析几何1. 空间平面直角坐标系:三维坐标系、坐标表示、坐标变换等。
2. 空间多面体:点、直线、平面、空间角、立体图形等。
3. 空间向量:向量的概念、向量的基本运算及表示、向量的线性运算等。
4. 空间平面与直线的位置关系:点与直线、两直线位置关系、两平面位置关系等。
5. 空间曲线与曲面:曲线与平面位置关系、曲线与直线位置关系、曲线与曲面位置关系等。
三、概率统计与数理统计1. 随机事件及概率:随机试验、样本空间、事件、概率的定义、基本性质等。
2. 条件概率与独立事件:条件概率的定义、乘法定理、事件独立性的定义及判定等。
3. 随机变量及其分布:随机变量的概念、离散型随机变量、连续型随机变量等。
4. 数理统计:样本及样本统计量、抽样分布、区间估计、假设检验等。
四、数列与数学归纳法1. 数列的概念与表示:数列的定义、数列的通项、数列的前n项和等。
2. 等差数列与等比数列:等差数列的性质、等差数列的通项、等比数列的性质、等比数列的通项等。
3. 数学归纳法:数学归纳法的基本思想、归纳假设、归纳基础等。
五、数论1. 整数与整除关系:整除的定义、整除的性质、整除的判定条件等。
2. 同余与模运算:同余的定义、同余的性质、模运算的基本运算等。
3. 约数与倍数:约数的概念、约数的性质、约数的判定条件等。
2010-2011年高三毕业班数学课本知识点整理归纳之八第八章 平面向量一、基础知识定义1 既有大小又有方向的量,称为向量。
画图时用有向线段来表示,线段的长度表示向量的模。
向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。
书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。
零向量和零不同,模为1的向量称为单位向量。
定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。
定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。
加法和减法都满足交换律和结合律。
定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。
定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。
定义 4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos<a, b>,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。
定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2),1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2),2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c ,3.a ·b=x 1x 2+y 1y 2, cos(a, b)=222221212121y x y x y y x x +⋅++(a, b ≠0),4. a//b ⇔x 1y 2=x 2y 1, a ⊥b ⇔x1x2+y 1y 2=0.定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分21P P 所成的比,若O 为平面内任意一点,则λλ++=121OP OP OP 。
2010-2011届高三毕业班数学一轮基础知识复习及其讲义第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。
4.φ是任何集合的子集,是任何非空集合的真子集。
第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨导数法3.复合函数的有关问题 (1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数⇔f(-x)=-f(x);)(x f 是偶函数⇔f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >; ⑵单调性的判定① 定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法;④图像法。
2010-2011年高三毕业班数学课本知识点整理归纳之十三第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA n n =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)kn k n C C kn=--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。
人教版高三数学重要知识点关键核心考点高考最惧怕的莫过于闲散怠惰,没事可干,碌碌无为,这样永久也不会有成绩的提高。
以下是作者整理的有关高考考生必看的人教版高三数学重要知识点,期望对您有所帮助,望各位考生能够爱好。
人教版高三数学重要知识点11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判定函数奇偶性可用定义的等价情势:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判定其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a 0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a 0,a≠1,b 0,n∈R+);(2)logaN=(a 0,a≠1,b 0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a 0,a≠1,N8.判定对应是否为映照时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判定函数的奇偶性。
2010-2011年高三毕业班数学课本知识点整理归纳之九第九章 不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n >b n ; (8)a>b>0, n ∈N +⇒n n b a >; (9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab;(12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n n b a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b 矛盾,所以假设不成立,所以n n b a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc =(a+b)3+c 3-3a 2b-3ab 2-3abc =(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。
2010-2011年高三毕业班数学课本知识点整理归纳之十六第十六章 平面几何一、常用定理(仅给出定理,证明请读者完成)梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB CA BA梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB CA BA 则',','CB A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB CA BA塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB CA BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC ACA BAA广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。
斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2•BCPC +AC 2•BCBP -BP •PC.西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。
西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。
九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。
蒙日定理 三条根轴交于一点或互相平行。
(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.21GH OG =二、方法与例题1.同一法。
即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。
例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。
[证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以CQAC QP AP =1,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有222sin sin ABP AP BAP AB ∠=∠,②QBP BQ QP 202sin 20sin ∠=,③.70sin 30sin 0AC AB =④由②,③,④得2211QP AP QP AP =。
又因为P 1,P 2同在线段AQ 上,所以P 1,P 2重合,又BP 与CP 仅有一个交点,所以P 1,P 2即为P ,所以A ,P ,Q 共线。
2.面积法。
例2 见图16-1,◇ABCD 中,E ,F 分别是CD ,BC 上的点,且BE=DF ,BE 交DF 于P ,求证:AP 为∠BPD 的平分线。
[证明] 设A 点到BE ,DF 距离分别为h 1,h 2,则,21,2121h DF S h BE S ADF ABE ⨯=⨯=∆∆又因为21=∆ABE S S ◇ABCD =S ΔADF ,又BE=DF 。
所以h 1=h 2,所以PA 为∠BPD 的平分线。
3.几何变换。
例3 (蝴蝶定理)见图16-2,AB 是⊙O 的一条弦,M 为AB 中点,CD ,EF 为过M 的任意弦,CF ,DE 分别交AB 于P ,Q 。
求证:PM=MQ 。
[证明] 由题设OM ⊥AB 。
不妨设BD AF ≤。
作D 关于直线OM 的对称点'D 。
连结F D DD M D PD ',',',',则.'.'DMQ P MD DM M D ∠=∠=要证PM=MQ ,只需证MDQ M PD ∠=∠',又∠MDQ=∠PFM ,所以只需证F ,P ,M ,'D 共圆。
因为∠'PFD =1800-'MDD =1800-∠D MD '=1800-∠'PMD 。
(因为'DD ⊥OM 。
AB//'DD ) 所以F ,P ,M ,'D 四点共圆。
所以ΔM PD '≌ΔMDQ 。
所以MP=MQ 。
例4 平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。
[证明] 在平面上作两个同心圆,半径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A ,B ,C ,D ,E ,过这两点作半径并将半径延长分别交大圆于A 1,B 1,C 1,D 1,E 1,由抽屉原理知这五点中必有三点同色,不妨设为A 1,B 1,C 1,则ΔABC 与ΔA 1B 1C 1都是顶点同色的三角形,且相似比为1995。
4.三角法。
例5 设AD ,BE 与CF 为ΔABC 的内角平分线,D ,E ,F 在ΔABC 的边上,如果∠EDF=900,求∠BAC 的所有可能的值。
[解] 见图16-3,记∠ADE=α,∠EDC=β,由题设∠FDA=2π-α,∠BDF=2π-β,由正弦定理:CDE CEA DE AE sin sin ,2sinsin ==βα,得2sinsin sin sin AC CEAE ⋅=βα,又由角平分线定理有BCAB EC AE =,又ABC CAB sin sin =,所以AC A C sin sin 2sinsin sin sin =⋅βα,化简得2cos 2sin sin A =αβ,同理2cos2sin sin A ADFBDF =∠∠,即.2cos2cos cos A =αβ所以αβαβcos cos sin sin =,所以sin βcos α-cos βsin α=sin(β-α)=0.又-π<β-α<π,所以β=α。
所以212cos =A ,所以A=32π。
5.向量法。
例6 设P 是ΔABC 所在平面上的一点,G 是ΔABC 的重心,求证:PA+PB+PC>3PG. [证明] 因为GC GB GA PG GC PG GB PG GA PG PC PB PA +++=+++++=++3,又G 为ΔABC 重心,所以.0=++GC GB GA(事实上设AG 交BC 于E ,则GC GB GE AG +==2,所以0=++GC GB GA ) 所以PG PC PB PA 3=++,所以.||3||||||||PG PC PB PA PC PB PA =++≥++ 又因为PC PB PA ,,不全共线,上式“=”不能成立,所以PA+PB+PC>3PG 。
6.解析法。
例7 H 是ΔABC 的垂心,P 是任意一点,HL ⊥PA ,交PA 于L ,交BC 于X ,HM ⊥PB ,交PB 于M ,交CA 于Y ,HN ⊥PC 交PC 于N ,交AB 于Z ,求证:X ,Y ,Z 三点共线。
[解] 以H 为原点,取不与条件中任何直线垂直的两条直线为x 轴和y 轴,建立直角坐标系,用(x k ,y k )表示点k 对应的坐标,则直线PA 的斜率为AP A P x x y y --,直线HL 斜率为PA A P y y x x --,直线HL 的方程为x(x P -x A )+y(y P -y A )=0. 又直线HA 的斜率为AA x y ,所以直线BC 的斜率为AA y x -,直线BC 的方程为xx A +yy A =x A x B +y A y B ,②又点C 在直线BC 上,所以x C x A +y C y A =x A x B +y A y B . 同理可得x B x C +y B y C =x A x B +y A y B =x A x C +y A y C .又因为X 是BC 与HL 的交点,所以点X 坐标满足①式和②式,所以点X 坐标满足xx P +yy P =x A x B +y A y B .④同理点Y 坐标满足xx P +yy P =x B x C +y B y C .⑤点Z 坐标满足xx P +yy P =x C x A +y C y A . 由③知④,⑤,⑥表示同一直线方程,故X ,Y ,Z 三点共线。
7.四点共圆。
例8 见图16-5,直线l 与⊙O 相离,P 为l 上任意一点,PA ,PB 为圆的两条切线,A ,B 为切点,求证:直线AB 过定点。
[证明] 过O 作OC ⊥l 于C ,连结OA ,OB ,BC ,OP ,设OP 交AB 于M ,则OP ⊥AB ,又因为OA ⊥PA ,OB ⊥PB ,OC ⊥PC 。
所以A ,B ,C 都在以OP 为直径的圆上,即O ,A ,P ,C ,B 五点共圆。
AB 与OC 是此圆两条相交弦,设交点为Q , 又因为OP ⊥AB ,OC ⊥CP ,所以P ,M ,Q ,C 四点共圆,所以OM •OP=OQ •OC 。
由射影定理OA 2=OM •OP ,所以OA 2=OQ •OC ,所以OQ=OCOA 2(定值)。
所以Q 为定点,即直线AB 过定点。
三、习题精选1.⊙O 1和⊙O 2分别是ΔABC 的边AB ,AC 上的旁切圆,⊙O 1与CB ,CA 的延长线切于E ,G ,⊙O 2与BC ,BA 的延长线切于F ,H ,直线EG 与FH 交于点P ,求证:PA ⊥BC 。
2.设⊙O 的外切四边形ABCD 的对角线AC ,BD 的中点分别为E ,F ,求证:E ,O ,F 三点共线。
3.已知两小圆⊙O 1与⊙O 2相外切且都与大圆⊙O 相内切,AB 是⊙O 1与⊙O 2的一条外公切线,A ,B 在⊙O 上,CD 是⊙O 1与⊙O 2的内公切线,⊙O 1与⊙O 2相切于点P ,且P ,C 在直线AB 的同一侧,求证:P 是ΔABC 的内心。