人教版2017初一(上册)数学《3.3解一元一次方程(二)去括号与去分母》ppt课件
- 格式:ppt
- 大小:780.00 KB
- 文档页数:10
《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。
二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。
(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。
2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。
(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。
三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。
2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。
3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。
4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。
5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。
四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。
2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。
3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。
4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。
五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。
2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。
3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。
人教版七年级数学上册第三章《3.3利用去括号解一元一次方程》教案设计3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.掌握用一元一次方程解决实际问题的方法,会用分配律去括号解含括号的一元一次方程;(重点)2.经历应用方程解决实际问题的过程,发展分析问题、解决问题的能力,进一步体会方程模型的作用.(难点)一、情境导入复习提问:1.解一元一次方程时,最终结果一般是化为哪种形式?2.我们学了哪几种一元一次方程的解法?3.移项,合并同类项,系数化为1,要注意什么?4.一艘船从甲码头到乙码头顺水行驶用了2小时,从乙码头返回甲码头逆水行驶用了2.5小时,水流速度是3千米/时,求船在静水中的速度.(1)题目中的等量关系是______________.(2)根据题意可列方程为______________.你能解这个方程吗?二、合作探究探究点一:利用去括号解一元一次方程【类型一】用去括号的方法解方程解下列方程:(1)4x-3(5-x)=6;(2)5(x+8)-5=6(2x-7).解析:先去括号,再移项,合并同类项,系数化为1即可求得答案.解:(1)去括号得4x-15+3x=6,移项合并同类项得7x=21,系数化为1得x=3;(2)去括号得5x+40-5=12x-42,移项、合并得-7x=-77,系数化为1得x=11.方法总结:解一元一次方程的步骤是去括号、移项、合并同类项、系数化为1.在具体解方程时,不论进行到哪一步,只要得出方程的解,下面的步骤就不用再进行了.【类型二】根据已知方程的解求字母系数的值已知关于x的方程3a-x=x2+3的解为2,求代数式(-a)2-2a+1的值.解析:此题可将x=2代入方程,得出关于a的一元一次方程,解方程即可求出a的值,再把a的值代入所求代数式计算即可.解:∵x=2是方程3a-x=x2+3的解,∴3a-2=1+3,解得a=2,∴原式=a2-2a+1=22-2×2+1=1.方法总结:此题考查方程解的意义及代数式的求值.将未知数x的值代入方程,求出a 的值,然后将a的值代入整式即可解决此类问题.探究点二:应用方程思想求值当x为何值时,代数式2(x2-1)-x2的值比代数式x2+3x-2的值大6.解析:先列出方程,然后根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.解:依题意得2(x2-1)-x2-(x2+3x-2)=6,去括号得2x2-2-x2-x2-3x+2=6,移项、合并得-3x=6,系数化为1得x=-2.方法总结:先按要求列出方程,然后按照去括号,移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:去括号解方程的应用题今年5月,在中国东莞举办了苏迪曼杯羽毛球团体赛.在17日的决赛中,中国队战胜日本队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?解析:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,根据题意建立方程,求出方程的解就可以得出结论.解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计解一元一次方程——去括号:1.去括号的顺序:先去小括号,再去中括号,最后去大括号.简单地说,由内向外去括号,也可以由外向内去括号.2.去括号的规律:(1)将括号外的因数连同它前面的符号看成一个整体,利用分配律将它与括号内的项相乘,即a(b+c)=ab+ac;(2)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种方法,去尝试各种解题的途径,启发学生探索新的解题方法.3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程教学目标:1.会解带有括号的方程.2.提高学生分析应用题、找相等关系的能力.教学重点:如何审题、解题,且达到对一个题目举一反三的程度,学会从不同的角度分析问题的能力.教学难点:分析数量关系、列方程.教学过程:一、提出问题当方程的形式较为复杂时,解方程的步骤也相信更多些,那么如何解带有括号的方程呢?二、分析问题1.出示课本P93问题1:引导学生探究、思考:(1)题目中涉及哪几个量?这几个量之间有什么关系?(2)以列表形式反映题意:(3)用未知数表示其中一个未知量,找出相等关系列方程,可以列出几个不同的方程?(4)小结:有两种设未知数的方法,列出两种不同的方程,以月平均用电量为未知数,则以总用电量为相等关系列方程;以上半年或下半年的总用电量为未知数,则以月平均用电量为相等关系列方程.(5)解列出的方程,并解答.2.合作探究:课本P94例1.3.合作探究:课本P94例2:(1)提供信息:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度(2)设未知数,找相等关系,解答问题.4.课本P95练习,学生独立完成.三、课堂小结1.解含有括号的一元一次方程的方法.2.本节课中在用一元一次方程解决实际问题的一点收获.四、巩固练习1.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)2.杭州西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?3.学校团委组织65名团员为学校建花坛搬砖,七年级同学每人搬六块,其他年级同学每人搬8块,总共搬了400块,问七年级同学有多少人参加了搬砖?4.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?五、布置作业课本P98习题3.3第1、2、6、7、8题.第2课时利用去分母解一元一次方程1.掌握含有以常数为分母的一元一次方程的解法;(重点)2.加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤.(难点)一、情境导入1.等式的基本性质2是怎样叙述的呢?2.求下列几组数的最小公倍数:(1)2,3;(2)2,4,5.3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.二、合作探究探究点一:用去分母解一元一次方程 【类型一】 用去分母解方程(1)x -x -25=2x -53-3;(2)x -32-x +13=16. 解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x -3(x -2)=5(2x -5)-45,再去括号,移项、合并同类项、化系数为1解方程.(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x -3)-2(x +1)=6,再去括号,移项、合并同类项、化系数为1解方程.解:(1)x -x -25=2x -53-3,去分母得15x -3(x -2)=5(2x -5)-45, 去括号得15x -3x +6=10x -25-45, 移项得15x -3x -10x =-25-45-6, 合并同类项得2x =-76,把x 的系数化为1得x =-38. (2)x -32-x +13=16去分母得3(x -3)-2(x +1)=6, 去括号得3x -9-2x -2=6, 移项得3x -2x =1+9+2, 合并同类项得x =12.方法总结:解方程应注意以下两点:①去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.②去括号,移项时要注意符号的变化.【类型二】 两个方程解相同,求字母的值已知方程1-2x 6+x +13=1-2x -14与关于x 的方程x +6x -a 3=a6-3x 的解相同,求a 的值.解析:求出第一个方程的解,把求出的x 的值代入第二个方程,求出所得关于a 的方程的解即可.解:1-2x 6+x +13=1-2x -142(1-2x )+4(x +1)=12-3(2x -1)2-4x +4x +4=12-6x +3 6x =9,x =32.把x =32代入x +6x -a 3=a 6-3x ,得32+9-a 3=a 6-92, 9+18-2a =a -27, -3a =-54, a =18.方法总结:此类问题的思路是根据某数是方程的解,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程求解.探究点二:应用方程思想求值(1)当k 取何值时,代数式k +13的值比3k +12的值小1? (2)当k 取何值时,代数式k +13与3k +12的值互为相反数?解析:根据题意列出方程,然后解方程即可. 解:(1)根据题意可得3k +12-k +13=1,去分母得3(3k +1)-2(k +1)=6,去括号得9k +3-2k -2=6, 移项得9k -2k =6+2-3, 合并得7k =5, 系数化为1得k =57;(2)根据题意可得k +13+3k +12=0,去分母得2(k +1)+3(3k +1)=0, 去括号得2k +2+9k +3=0, 移项得2k +9k =-3-2, 合并得11k =-5, 系数化为1得k =-511.方法总结:先按要求列出方程,然后按照去分母,去括号,移项,合并同类项,最后把未知数的系数化为1得到原方程的解.探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程:x40-x+4050=1,解得x=360.答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.三、板书设计解含有分母的一元一次方程(1)去分母;(2)去括号;(3)移项,合并同类项;(4)系数化为1.本节课采用的教学方法是讲练结合,通过一个简单的实例让学生明白去分母是解一元一次方程的重要步骤,通过去分母可以把系数是分数的方程转化为系数是整数的方程,进而使方程的计算更加简便.在解方程中去分母时,发现学生还存以下问题:①部分学生不会找各分母的最小公倍数,这点要适当指导;②用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项;③当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易弄错符号.3.3 解一元一次方程(二)——去括号与去分母第2课时利用去分母解一元一次方程教学目标:1.能够熟练地解含有分数系数的方程.2.进一步提高列一元一次方程解决实际问题的能力.教学重点:1.分析实际问题的方法.2.去分母时符号的处理.教学难点:分析实际问题中的数量关系、列方程.教学过程:一、创设情境,提出问题出示课本P95问题2:(1)小组合作探究,列出方程.(2)x+x+x+x=33的解法有几种方法?每种解法的依据是什么?解法1:将方程左边通分得:x=33,即x=33,x=33×,x=.解法2:将方程两边都乘42去掉分母,得:28x+21x+6x+42x=1386,x=.(3)比较两种解法.二、合作探究解方程:-2=-.(1)如何去分母?依据是什么?(2)方程两边都乘10的过程中有哪些注意事项?(3)交流解题过程,指出问题,并强调注意事项.(4)解一元一次方程的一般步骤:去分母—去括号—移项—合并同类项—系数化1.课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天,”就因校长叫他听一个电话而离开教室.调皮的小刘说:“让我试一试”,上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来……请同学们尝试着尽可能多地补全此题,并与同学们一起交流各自的做法.举一反三:(1)为庆祝校运会开幕,七年级(1)班学生接受了制作校旗的任务.原计划一半同学参加制作,每天制作40面.而实际上,在完成了三分之一以后,全班同学一起参加制作,结果比原计划提前一天半完成任务.假设每人的制作效率相同,问共制作小旗多少面?(2)小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,便随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?(3)将上述两题加以比较,有否相通之处?可否一题多解?并探究设未知数的技巧性.三、课堂练习1.完成课本P97例3,解下列方程:(1)-1=2+;(2)3x+=3-.交流解题过程,强化注意事项.四、综合应用,巩固提高1.完成课本P98练习.2.解方程:(1)-=2;(2)-y+5=-.(3)=+1;(4){[x(+3)+5]+7}=1.4.一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成.现由两人合打7小时,余下部分由乙完成,还需多少小时?5.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢,请问这群大雁有多少只?6.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每时可处理垃圾55吨,所需费用550元;乙厂每时可处理垃圾45吨,所需费用495元.甲、乙两厂的工作时间均不超过10时,请你设计一个问题,并请你的好朋友解答.五、课时小结可通过以下问题引导学生小结:1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?11。
3.3《解一元一次方程(二)去括号与去分母》一、选择题1.方程3-(x +2)=1去括号正确的是( )A.3-x +2=1B.3+x +2=1C.3+x -2=1D.3-x -2=12.方程1-(2x -3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.将等式2-x-13=1变形,得到( ) A .6-x+1=3 B .6-x-1=3 C .2-x+1=3 D .2-x-1=34.把方程去分母正确的是( )A.18x +2(2x -1)=18-3(x +1)B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.方程去分母正确的是( )A.18x +2(2x-1)=18-3(x +1)B.3x +2(2x-1)=3-(x +1)C.18x +(2x-1)=18-(x +1)D.3x +2(2x-1)=3-3(x +1)6.下列方程中变形正确的是( )①3x+6=0变形为x +2=0;②2x+8=5-3x 变形为x=3;③x 2+x 3=4去分母,得3x +2x=24; ④(x+2)-2(x -1)=0去括号,得x +2-2x -2=0.A.①③B.①②③C.①④D.①③④7.已知1-(2-x)=1-x ,则代数式2x 2-7的值是( )A.-5B.5C.1D.-18.整式mx +n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程-mx -n=8的解为( )A. -1B.0C. 1D.2二、填空题9.已知与的值相等时,x=__________。
10.已知与互为相反数.则 x =_______.11.当x=_______时,代数式与的值相等.12.如果关于x的方程2x+1=3和方程的解相同,那么k的值为_______13.如果4是关于x的方程3a﹣5x=3(x+a)+2a的解,则a=________.14.若方程2x+1=-3和的解相同,则a的值是。
《解一元一次方程(二)——去括号去分母》课堂笔记一、知识点梳理1.解一元一次方程的基本步骤:去括号、去分母、移项、合并同类项、系数化为1。
2.去括号的方法:括号前面是正号,去掉括号不变号;括号前面是负号,去掉括号要变号。
3.去分母的方法:在方程两边同时乘以各分母的最小公倍数,去掉分母。
注意分母是小数时,要把小数化为整数。
4.解实际问题的能力:分析问题中的等量关系,设未知数、列方程、解方程并检验。
二、重难点解析1.去括号和去分母的技巧和方法是本节课的重点,需要学生熟练掌握。
2.解一元一次方程的基本步骤中,移项和合并同类项是难点,需要学生通过练习和思考掌握。
3.解实际问题的能力是本节课的另一个难点,需要学生通过实例掌握分析问题的方法和技巧。
三、例题解析例1. 解方程:2x+3=7分析:这是一个简单的一元一次方程,我们可以直接进行移项和合并同类项,得到答案x=2。
例2. 解方程:5x-7=3x+9分析:这是一个稍微复杂的一元一次方程,我们需要先去括号,再进行移项和合并同类项,得到答案x=7。
例3. 解方程:4(2x+3)=7(x-1)+10(2x+3)分析:这是一个含有括号的方程,我们需要先去括号,再进行移项和合并同类项,最后进行系数化为1,得到答案x=5。
四、注意事项1.在去括号时,要注意括号前面是负号时,去掉括号要变号。
2.在去分母时,要注意分母是小数时,要把小数化为整数。
同时注意各分母的最小公倍数。
3.在解一元一次方程时,要注意移项和合并同类项的技巧和方法。
4.在解实际问题时,要注意分析问题中的等量关系,设未知数、列方程、解方程并检验。
3.3 解一元一次方程(二)——去括号与去分母第2课时用去分母解一元一次方程置疑导入归纳导入悬念激趣图3-3-5毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他:“尊敬的毕达哥拉斯先生,请告诉我,有多少名学生在你的学校里听你讲课?”毕达哥拉斯回答说:“我的学生,现在有12在学习数学,14在学习音乐,17沉默无言,此外,还有三名妇女.”算一算:毕达哥拉斯的学生有多少名?[说明与建议] 说明:用数学小故事引入新知,激发学生的学习兴趣,让学生自然地展开对含有分数系数的一元一次方程的学习.利用列方程解决实际问题,让学生感受方程的优越性,提高学生主动使用方程的意识.建议:由学生独立完成列出方程,教师引导学生观察这个方程同上节课学习的方程有什么不同,是否能用移项、合并同类项的方法解这个方程?教师适时引导是否有办法避免烦琐的通分合并?问题1:去括号时应该注意什么?问题2:等式的性质2是怎样叙述的?问题3:(1)6,3,4的最小公倍数是多少?(2)2,4,5的最小公倍数是多少?(3)3,4,12的最小公倍数是多少?[说明与建议] 说明:通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.建议:这几个问题由学生自主完成,注意易错点.前面我们学过带括号的一元一次方程的解法.比如:4-3(x+2)=1-2(x-1),大家观察下面这个方程:x +6=14()x +72,它与以前解的方程有什么区别?你能求出它的解吗?[说明与建议] 说明:设计此环节有两个目的,既复习了上节课所学带括号方程的解法,又通过两个方程的比较,引出了新课.建议:让学生解这两个方程,然后重点比较第二个方程的解法,探究便捷的方法.教材母题——教材第97页例3 解下列方程:(1)x +12-1=2+2-x 4;(2)3x +x -12=3-2x -13.【模型建立】去分母解一元一次方程的步骤主要有:去分母、去括号、移项、合并同类项、系数化为1.注意以下几点:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.【变式变形】1.方程2x -12-x +13=1去分母,得(B )A .2x -1-x +1=6B .3(2x -1)-2(x +1)=6C .2(2x -1)-3(x +1)=6D .3x -3-2x -2=12.当x =__6__时,3x -28的值是2.3.若x -12+2x +16与x -13+1的值相等,则x =__2__.4.当y =__83__时,y -y +22与3互为倒数.5.解方程:17[15(x +23+4)+6]=1.[答案:x =1]6.解方程:0.1x -0.20.02-2x +10.2=5.[答案:x =-4][命题角度1] 去分母解一元一次方程去分母解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解方程的步骤不一定每次都一样,而且五个步骤也不一定全都用到,应根据具体方程的特点,灵活选用解题步骤.注意:(1)去分母时容易出现漏乘现象和符号错误;(2)去括号时,如果分子是一个式子,要将分子作为一个整体加上括号;(3)去分母时,整数项不要漏乘最小公倍数.例 [模拟中考] 解方程:x -x -16=2-x +23.[答案:x =1][命题角度2] 求解分母是小数的方程求解分母是小数的一元一次方程,通常利用分数的基本性质,分子分母都乘相同的倍数,把分母化成整数,此时将分子作为一个整体,需要补上括号.分子分母同乘的倍数要恰当,需要注意,不含分母的项不能乘这个倍数.例x +10.2-3x -10.4=1.[答案:135] [命题角度3] 利用解方程解决综合问题解决此类题目,首先读懂题意,列出方程,借助一元一次方程的解法,求出涉及的未知数.例 [孜州中考] 设a ,b ,c ,d 为有理数,现规定一种新的运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc.则满足等式⎪⎪⎪⎪⎪⎪⎪⎪x 2 x +132 1=1的x 的值为__-10__.P98练习解下列方程: (1)19100x =21100(x -2); (2)x +12-2=x4; (3)5x -14=3x +12-2-x3; (4)3x +22-1=2x -14-2x +15. [答案] (1)x =21;(2)x =6;(3)x =-17; (4)x =-928. P98习题3.3 复习巩固1.解下列方程: (1)5a +(2-4a )=0; (2)25b -(b -5)=29; (3)7x +2(3x -3)=20; (4)8y -3(3y +2)=6.[答案] (1)a =-2;(2)b =1;(3)x =2;(4)y =-12. 2.解下列方程:(1)2(x +8)=3(x -1); (2)8x =-2(x +4); (3)2x -23(x +3)=-x +3; (4)2(10-0.5y )=-(1.5y +2).[答案] (1)x =19;(2)x =-45;(3)x =157;(4)x =-44. 3.解下列方程: (1)3x +52=2x -13; (2)x -3-5=3x +415; (3)3y -14-1=5y -76; (4)5y +43+y -14=2-5y -512. [答案] (1)x =-175;(2)x =56;(3)y =-1;(4)y =47.4.用方程解答下列问题:(1)x 与4之和的1.2倍等于x 与14之差的3.6倍,求x ;(2)y 的3倍与1.5之和的二分之一等于y 与1之差的四分之一,求y . [答案] (1)x =23;(2)y =-45.综合运用5.张华和李明登一座山,张华每分登高10 m ,并且先出发30 min(分),李明每分登高15 m ,两人同时登上山顶.设张华登山用了x min ,如何用含x 的式子表示李明登山所用时间?试用方程求x 的值,由x 的值能求出山高吗?如果能,山高多少米?[答案] 10x ÷15=x -30,x =90.山高900米. 6.两辆汽车从相距84 km 的两地同时出发相向而行,甲车的速度比乙车的速度快20 km/h ,半小时后两车相遇,两车的速度各是多少?[答案] 甲车的速度是94 km/h ,乙车的速度是74 km/h.7.在风速为24 km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8 h ,它逆风飞行同样的航线要用3 h .求:(1)无风时这架飞机在这一航线的平均航速; (2)两机场之间的航程.解:(1)无风时这架飞机在这一航线的平均航速为696 km/h. (2)两机场之间的航程为2016 km.8.买两种布料共138 m ,花了540元.其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少米?[答案] 买蓝布料75米,买黑布料63米. 拓广探索9.有一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50 m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40 m 2墙面.每名一级技工比二级技工一天多粉刷10 m 2墙面,求每个房间需要粉刷的墙面面积.[答案] 52 m 2.10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km.求A ,B 两地间的路程.[答案] 108 km.11.一列火车匀速行驶,经过一条长300 m 的隧道需要20 s 的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10 s.(1)设火车的长度为x m ,用含x 的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x m ,用含x 的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上述问题中火车的平均速度发生了变化吗? (4)求这列火车的长度.解:(1)从车头经过灯下到车尾经过灯下火车所走的路程为x m .这段时间内火车的平均速度为x 10m/s ;(2)从车头进入隧道到车尾离开隧道火车所走的路程为(x +300)m ,这段时间内火车的平均速度为x +30020m/s ; (3)火车的平均速度没有发生变化; (4)根据题意得x 10=x +30020.x =300.答:火车的长度是300 m.[当堂检测] 1. 下列解方程:312+x - 632-x = 1时,去分母正确的 是( )A .2(2x+1)–2x –3= 1 B. 2(2x+1)–2x –3= 6C. 2(2x+1)–(2x –3)= 6 D .以上都不对2. x=____时,代数式3x 比22-x 的值大1. ( ) A .0 B.5 C. -12 D. 12 3. 小玲做作业时解方程21+x - 332x-=1的步骤如下: ①去分母,得3(x+1)-2(2-3x)=1; ②去括号,得3x+3-4-6x=1; ③移项,得3x-6x=1-3+4;④合并同类项得 -3x=2; ⑤系数化为1,得x=-32.聪明的你知道小玲的解答过程正确吗? 答 _______(填“是”或“否”),如果不正确,第________步(填序号)出现了问题; 4. 一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的51,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米.设竹竿的长度为x 米,则可列出方程___________ . 5. 解方程: (1)3423+=-x x ; (2)1102552=--+x x .参考答案: 1. C 2. A3. 否 ①.②4. 51x+52x+1+1=x 5. (1)x =51(2)x=-34[能力培优]专题一 利用去括号、去分母解方程 1.下列解方程去分母正确的是( )A .由1132x x--=,得2x -1=3-3x . B .由232124x x ---=-,得2(x -2)-3x -2=-4.C .由131236y y y y +-=--,得3y +3=2y -3y +1-6y .D .由44153x y +-=,得12x -15=5y +4. 2. (1)2(4y+3)= 8(1-y); (2)61-x -3)1(2+x = 221x- - 1; (3)341187434x ⎡⎤⎛⎫-+= ⎪⎢⎥⎝⎭⎣⎦; (4) 1461x 51413121=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-.3. (2011·滨州)依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括 号内填写变形步骤,在后面的括号内填写变形依据. 解:原方程可变形为352123x x +-=, (___________________) 去分母,得3(3x+5)=2(2x -1), (___________________)去括号,得9x+15=4x -2, (___________________) (_____________),得9x -4x=-15-2, (___________________) 合并同类项,得5x=-17, (合并同类项) (______________),得x=175-. (_______ ________)专题二 利用方程解“总、总”问题4.(2011•柳州)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( ) A.17人 B.21人 C.25人 D.37人5.学校组织一次有关世博的知识竞赛共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对 题.6.某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.求每条船上划桨的人有多少个?专题三 利用方程解行程问题7.小李骑车从A 地到B 地,小明骑车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A 、B 两地间的路程.8.从甲地到乙地,先下山后走平路,某人骑自行车从甲地以每小时12千米的速度下山,而以每小时9千米的速度通过平路,到乙地55分钟.他回来时以每小时8•千米的速度通过平路,而以每小时4千米速度上山,回到甲地用了112小时,求甲、•乙两地间的距离.9.著名数学家苏步青教授在国外考察时,•一位法国朋友问了这样一个问题:甲、乙两人从相距5千米的A、B两地相向而行,速度分别为2千米/时和3千米/时,甲带了一只小狗,以5•千米/时的速度跑向乙,碰见乙又立即向甲跑去,这样反复跑,当甲、乙两人相遇时,•小狗跑了多少路程?苏教授很快就知道了答案,你呢?10.一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B 地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程.....解决的问题,并写出解答过程.专题四用方程进行说理11.魔术师为大家表演魔术. 他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是1 ,那么他告诉魔术师的结果应该是;(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.12.下列图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:(1)第1个图中所贴剪纸“○”的个数为个,第2个图中所贴剪纸“○”的个数为个,第3个图中所贴剪纸“○”的个数为个.(2)第n个图中所贴剪纸“○”的个数为多少个?(3)当n=100时,所贴剪纸“○”的个数多少个?(4)如果所贴剪纸“○”的个数为2018个时,那么它是第几个图?知识要点:1.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.解一元一次方程的过程是逐步向着x=a的形式转化.3.解一元一次方程的主要依据是等式的基本性质和运算律.4.总总问题中,通常根据一个等量关系设未知数,根据另一个等量关系列方程.5.行程问题中有三个基本量:路程、速度、时间.可寻找的相等关系有:路程关系、时间关系、速度关系.相遇问题中多以路程做等量关系:对于有时间差的问题常常利用时间做等量关系;航行问题中很多时候用速度做等量关系.温馨提示:1.去括号注意事项:(1)如果括号前的系数是负数,去括号后各项的符号应与原括号内相应各项的符号相反;(2)去括号时,括号外的因数要乘以括号内的每一项,不可漏乘.2.去分母注意事项:(1)去分母时不要漏乘分母是1的项.(2)转化小数分母为整数和去分母是完全不同的两回事,前者利用的是分数的基本性质,相对于其它部分是独立的,将分子、分母同时乘以一个数;后者利用的是等式的基本性质,针对所有整式而言,将方程两边同时乘以同一个数.3.列方程解应用题,若直接设元,较难与题中已知量,未知量建立联系时,可考虑间接设元.方法技巧:1.解一元一次方程时,一要按照步骤,不要跳步;二要每一步都与相应法则对应,法则怎么讲的,易错在哪里,要做到心中有数.2.除了一元一次方程的常规解法外,具体到某些特殊结构的一元一次方程,还可以灵活采用其独有的简便方法.3.行程问题中,常有相遇问题和追击问题.相遇问题中:快者路程+慢者路程=总路程;追击问题中:快者路程—慢者路程=原来相隔的路程.答案:1. C 解析:由1132x x--=,应该得2x-6=3-3x,故A选项错;由232124x x---=-,应该得2(x-2)-(3x-2)=-4,故B选项错;由131236y y yy+-=--,应该得3y+3=2y-3y+1-6y,故C选项正确;由44153x y+-=,应该得12x-15=5(y+4),故D选项错误.2. 解析:(1)去括号,得8y+6=8-8y, 移项,得8y+8y=8-6,合并同类项,得16y=2,系数化为1,得y=18;(2)去分母,得(x-1)-4(x+1)=3(1-2x)-6,去括号,得 x-1-4x-4=3-6x-6, 移项,得x-4x+6x=3-6+1+4,合并同类项,得 3x=2,系数化为1,得23x=;(3)去中括号得1167.4x⎛⎫-+=⎪⎝⎭去小括号得1167.4x-+=移项,得171 6.4x=+-合并同类项,得12.4x=系数化为1,得x=8;(4)两边同乘以2,得1111642 345x⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦,移项,合并同类项得111162 345x⎡⎤⎛⎫--=-⎪⎢⎥⎝⎭⎣⎦,两边同乘以3,得11166 45x⎛⎫--=-⎪⎝⎭,移项、合并同类项,得1110 45x⎛⎫-=⎪⎝⎭,两边同乘以4,得110 5x-=,移项得11 5x=,系数化为1,得5x=.3. 解析:原方程可变形为352123x x+-=, (分式的基本性质)去分母,得3(3x+5)=2(2x-1), (等式性质2)去括号,得9x+15=4x-2, (去括号法则或乘法分配律)(移项),得9x-4x=-15-2, (等式性质1)合并同类项,得5x=-17, (合并同类项)(系数化为1),得x=175-.(等式性质2)4. C 解析:设这两种实验都做对的有x人,由题意得(40﹣x )+(31﹣x )+x+4=50.解得x=25,故都做对的有25人.5. 16 解析:设小明答对了x 道题,则他答错或不答的题目有(20﹣x )道.依题意得5x ﹣1(20﹣x )=76,解得:x =16.答:小明答对了16道题.6. 解析:设每条船上划桨的有x 人,则每条船上有x+2人,根据题意,得: 15(x+2)=330.解得x=20.答:每条船上划桨的有20人.7. 解析:设A 、B 两地间的路程为x 千米,根据题意,得 1012363681036-+=--x .解得:x=108.答:A 、B 两地间的路程为108千米.8. 解析:设山路长为x 千米,由题意,得9(1112-12x )=8(32-4x ),解得x=3. 则平路长为9(1112-312)=6(千米), •∴两地距离为3+6=9(千米).答:甲、乙两地距离为9千米.9. 解析:设两人经过x 小时相遇,依题意,得:2x+3x=5.解得:x=1.所以小狗所走路程为5×1=5(千米).答:小狗跑了5千米.10. 本题答案不唯一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km ,高度公路长为2xkm . 根据题意,得260100x x +=2.2.解得:x=60,2x=120. 答:普通公路长为60km ,高速公路长为120km .解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h ,高速公路上行驶了(2.2-x )h .根据题意,得602100(2.2)x x ⨯=-.解得x=1,2.2-x=1.2.答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .11. 解析:(1)4;(2)88;(3)设观众想的数为a .36753a a -+=+. 因此,魔术师只要将最终结果减去5,就能得到观众想的数了.12. 解析:(1)第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花.(2)第n个图案所贴窗花数为(3n+2)个.(3)当n=100时,3n+2=302个.(4)由题意得 3n+2=2018,解得n=672.答:如果所贴剪纸“○”的个数为2018个时,它是第672个图.口诀法解一元一次方程解一元一次方程的一般步骤:去分母,去括号,移项,合并,系数化为1.解方程,很重要,字母求值常用到;如何解,有说道,方法步骤有四条;看特征,选方法,方法选准很重要;第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳,等号两边各一项;未知系数化为1,用乘用除讲技巧.口诀告诉我们:解一元一次方程十分重要,它是字母求值的重要方法和工具.接下来对一元一次方程的解法进行细致的剖析.“第一分母先去掉,化为整数实在好,各项乘以公分母,漏乘教训要记牢,约去分母加括号,小心错误变空劳;”的意思:如果方程中含有分数,应先去分母,把各项中的分数化为整数,实现这种转化的做法是方程两边同乘以各分母的最小公倍数,同时提醒大家不要漏乘方程中的任何一项,而且在约去分母时,养成加括号的习惯,因为分数线除了表示除法的意义外,还具有括号的功能,当把分数线去掉时自觉加上括号.如:解方程2111 36x x+--=.解:两边乘以6 (这里的6取自原方程的分母3和6的最小公倍数),得6×21166136x x+--⨯=⨯.(原方程共有3项,特别注意1这一项也要乘以6)约去分母,得2(2x+1)-(1-x)=6.(如果没有养成自觉加括号的习惯,很容易把方程错误变形为4x+2-1-x=6)“第二括号要去掉,考虑是否需变号?正括号,不变号,系数分配讲公道,负括号要变号,变号同样要公道;”的意思是:去掉分母后,接下来要做的是去括号,而去括号时要分清括号前面是正号还是负号,如果是正号,则去括号时不需要变号,只须把括号前的系数与括号内的每一项相乘就可以;如果是负号,则不仅要考虑系数的分配,同时还要考虑变号.如上述方程去分母后,接下来就是去括号,得4x+2-1+x=6.(如果得到4x+1-1-x=6,错在哪里?)“分母括号全没了,第三移项更重要,移项一定要变号,千古不变第一条,常数向着右边移,未知左边来报到,合并同类要算好,莫成古时杨白劳;”的意思是:如果方程中没有了分母和括号,那进行第三个步骤:移项.移项的一般方法是含未知数的项移到左边,常数移到右边,不论是左边移到右边,还是右边移到左边,这些项都需要变号, 移项后,等号两边分别合并,合并时一定要认真细致,否则前面付出的艰辛就白费了,就如同旧社会的杨白劳.这里还应注意一点:在没有移项之前,如果两边有可以合并的先合并,再移项,再合并,这样可以省去许多麻烦.如上述方程去分母、去括号后,接下来可以先合并,得5x+1=6.移项,得5x=6-1.再合并,得5x=5.“未知系数化为1,用乘用除讲技巧.”这是解一元一次方程最后一个步骤,如果未知数的系数是整数,则一般用除法;如果是分数,则乘以它的倒数.如5x=5,两边除以5,得x=1.而像23x=-6,要把x的系数化为1,两边乘以23的倒数32,得x=-6×32=-9.。