最新浙教版七年级数学下册第2章检测题(附答案)
- 格式:docx
- 大小:29.50 KB
- 文档页数:5
浙教版七年级数学下册第2章测试题及答案2.1 二元一次方程一.选择题(共5小题)1.在下列方程中:(1)3x+=8;(2)+2y=4;(3)3x+=1;(4)x2=5y+1;(5)y=x;(6)2(x﹣y)﹣3(x+)=x+y是二元一次方程的有()A.2个B.3个C.4个D.5个2.若x|k|+ky=2+y是关于x、y的二元一次方程,则k的值为()A.1 B.﹣1 C.1或﹣1 D.03.若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4 B.m=﹣2018,n=±4C.m=±2018,n=﹣4 D.m=﹣2018,n=44.下列方程中,二元一次方程的个数有()①x2+y2=3;②3x+=4;③2x+3y=0;④+=7A.1 B.2 C.3 D.45.在下列方程中:(1)3x+=8;(2)+2y=4;(3)3x﹣3(y+x)=1;(4)x2=5y+1;(5)y=x是二元一次方程的有()A.2个B.3个C.4个D.5个二.填空题(共5小题)6.关于x,y的方程x2m﹣n﹣2+4y m+1=6是二元一次方程,则m+n=.7.已知(m﹣2)x|m﹣1|+y=0是关于x,y的二元一次方程,则m=.8.已知方程x2m﹣n﹣2+4y m+n+1=6是关于x,y的二元一次方程,则m=,n=.9.在方程①2x+3y=4,②+2y=3,③xy+2=0,④x2+3y=0,⑤4y﹣3=2﹣y中,是二元一次方程的是.(填序号)10.已知3x n﹣2﹣y2m+1=0是关于x,y的二元一次方程,则m=,n=.三.解答题(共8小题)11.方程2x m+1+3y2n=5是二元一次方程,求m,n.12.已知关于x,y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5.(1)当m为何值时,它是一元一次方程?(2)当m为何值时.它是二元一次方程?13.已知方程(m﹣2)x|m|﹣1+(n+3)=6是关于x,y的二元一次方程.(1)求m,n的值;(2)求x=时,y的值.14.已知关于x的方程(2a﹣6)x|b|﹣1+(b+2)=0是二元一次方程,求a、b的值.15.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.参考答案一.1.B 2.B 3.D 4.B 5.B二.6.﹣3 7.0 8.1、﹣1 9.①10.0, 3三.11.解:根据二元一次方程的定义,m+1=1,2n=1,解得m=0,n=.12.解:(1)依题意,得m2﹣4=0且m+2=0,或m2﹣4=0且m+1=0,解得m=﹣2.即当m=﹣2时,它是一元一次方程.(2)依题意,得m2﹣4=0且m+2≠0、m+1≠0,解得m=2.即当m=2时,它是二元一次方程.13.解:(1)因为,已知方程(m﹣2)x|m|﹣1+(n+3)=6是关于x,y的二元一次方程,所以,解这个不等式组,得m=﹣2,n=3即m=﹣2,n=3(2)因为,当m=﹣2,n=3时,二元一次方程可化为:﹣4x+6y=6所以,当x=时,有﹣4×+6y=6y=即求x=时,y的值为14.解:∵(2a﹣6)x|b|﹣1+(b+2)=0是二元一次方程,∴,且2a﹣6≠0,b+2≠0,解得a=﹣3,b=2.15.解:(1)把和代入方程得:,①×2+②,得15n=15,解得n=1,把n=1代入①,得m=2,(2)当时,原方程变为:2x﹣3y=5,解得x=,∵x<﹣2,∴<﹣2,解得y<﹣3.故y的取值范围是y<﹣3.2.2 二元一次方程组一.选择题(共5小题)1.在方程组,,,,中,是二元一次方程组的有()A.2个B.3个C.4个D.5个2.下列不是二元一次方程组的是()A.B.C.D.3.若解得x、y的值互为相反数,则k的值为()A.4 B.﹣2 C.2 D.﹣44.如果方程组的解同时满足3x+y=﹣2,则k的值是()A.﹣4 B.﹣3 C.﹣2 D.﹣15.方程组的解为,则被遮盖的两个数分别为()A.2,1 B.2,3 C.5,1 D.2,4二.填空题(共5小题)6.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是.7.若方程组的解为,则方程组的解是.8.已知关于x,y的方程组.给出下列结论:②当k=时,x,y的值互为相反数;③若方程组的解也是方程x+y=4﹣k的解,则k=1;④若2x•8y=2z,则z=1.其中正确的是.9.方程组的解满足方程x+y+a=0,那么a的值是.10.已知是方程组的解,则代数式a+b的值为.三.解答题(共5小题)11.已知方程组,甲正确地解得,而乙粗心地把C看错了,得,试求出a,b,c 的值.12.已知关于x,y的方程组,给出下列结论:①当t=﹣1时,方程组的解也是方程x+2y=2的解;②当x=y时,t=﹣;③不论t取什么实数,x+2y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.13.已知关于x、y的方程组.(1)若x、y是互为相反数,求a的值;(2)若x﹣y=2,求方程组的解和a的值.14.在解关于x,y的方程组时,老师告诉同学们正确的解是,粗心的小勇由于看错了系数c,因而得到的解为,试求abc的值.15.已知关于x,y的方程组(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+5=0总有一个固定的解,请直接写出这个解?(4)若方程组的解中x恰为整数,m也为整数,求m的值.参考答案一.1.A 2.A 3.D 4.B 5.C二.6.x+y=1 7.8.①②④9.1 10.0三.11.解:根据题意,得,解得,把代入方程5x﹣cy=1,得到:10﹣3c=1,解得c=3.故a=3,b=﹣1 c=3.12.解:①把t=﹣1代入方程组得,解得,把代入x+2y=2得:左边=﹣6+2=﹣4≠右边,不符合题意;②由y=x,得到,解得t=﹣,符合题意;③,①+②得2y=2t+16,即y=t+8,①﹣②得2x=﹣4﹣4t,即x=﹣2t﹣2,x+2y=﹣2t﹣2+2t+16=14,符合题意;④z=﹣(t+8)(﹣2t﹣2)=(t+8)(t+1)=t2+9t+8=(t+)2+≥,不符合题意.13.解:(1)由题意,得x+y=0,方程组两方程相加,得3(x+y)=3a﹣3,即x+y=a﹣1,可得a﹣1=0,解得a=1;(2)方程组两方程相减,得x﹣y=﹣a﹣5,代入x﹣y=2得﹣a﹣5=2,解得a=﹣7,方程组为,①×2﹣②,得3y=15,解得y=5,把y=5代入②,得x=﹣8,则方程组的解为.14.解:把和代入ax+by=2中,得,解得,把代入cx﹣7y=8中,得c=﹣2,则abc=﹣40.15.解:(1)方程x+2y﹣6=0,2x+y=6,解得x=6﹣2y,当y=1时,x=4;当y=2时,x=2,方程x+2y﹣6=0的所有正整数解为,;(2)由题意得,解得,把代入x﹣2y+mx+5=0,解得m=﹣;(3)x﹣2y+mx+5=0,(1+m)x﹣2y=﹣5,∴当x=0时,y=2.5,即固定的解为,(4),①+②得2x﹣6+mx+5=0,(2+m)x=1,x=,∵x恰为整数,m也为整数,∴2+m是1的约数,2+m=1或﹣1,m=﹣1或﹣3.2.3 解二元一次方程组一.选择题(共9小题)1.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.22.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=()A.2 B.3 C.5 D.63.若x,y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.34.已知关于x,y的方程组,甲看错a得到的解为,乙看错了b得到的解为,他们分别把a、b错看成的值为()A.a=5,b=﹣1 B.a=5,b=C.a=﹣l,b=D.a=﹣1,b=﹣15.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.46.若方程组的解x和y相等,则a的值为()A.1 B.2 C.3 D.47.若5x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()A.0 B.1 C.2 D.38.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.29.如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=0二.填空题(共3小题)10.若实数x,y满足,则代数式2x+3y﹣2的值为.11.已知方程组与有相同的解,则m=,n=.12.如果方程组与方程组的解相同,则m=,n=.三.解答题(共13小题)13.已知方程组和有相同的解,求a2﹣2ab+b2的值.14.解下列方程组:(1)(2)15.解下列方程组:(1)用代入法解方程组:(2)用加减法解方程组:16.下列解方程组:(1)(2)17.解下列方程组:(1)(2)参考答案一.1.D 2.D 3.A 4.A 5.B 6.C 7.A 8.A 9.C 二.10.4 11.,12 12.3,2三.13.解:解方程组得,把代入第二个方程组得,解得,则a2﹣2ab+b2=22﹣2×2×1+12=1.14.解:(1),①×2+②,得到5x=20,∴x=4,把x=4代入①得到y=﹣1,∴.(2),①﹣②×2得到19y=﹣38,y=﹣2,把y=﹣2代入②得到:x=3,∴15.解:(1)由①得y=2x﹣5 ③,把③代入②,得3x+4(2x﹣5)=2,解得x=2,把x=2代入③,得y=2×2﹣5=﹣1,∴方程组的解为.(2)把①×3得9x+12y=48 ③,把②×2得10x﹣12y=66 ④,③+④得19x=114解得x=6,把x=6代入①得18+4y=16,解得y=﹣,∴方程组的解为.16.解:(1),①×3﹣②×2,得11x=22,解得x=2,将x=2代入①,得10﹣2y=4,解得y=3,所以方程组的解为;(2),②代入①,得4x﹣3(7﹣5x)=17,解得x=2,将x=2代入②,得y=﹣3,所以方程组的解为.17.解:(1),①×4+②,得11x=22,解得x=2,将x=2代入①,得4﹣y=5,解得y=﹣1,所以方程组的解为;(2),①﹣②,得2y=﹣8,解得y=﹣4,将y=﹣4代入②,得x﹣4=2,解得x=12,所以方程组的解为.2.4 二元一次方程组的应用一.选择题(共5小题)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.2.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y元,可列方程(组)为()A.B.C.D.=3.甲、乙两人骑自行车比赛,若甲先骑30分钟,则乙出发后50分钟可追上甲,设甲、乙每小时分别骑x 千米、y千米,则可列方程()A.30x=50y B.C.(30+50)x=50y D.4.如图为某商店的宣传单,小胜到此店同时购买了一件标价为x元的衣服和一条标价为y元的裤子,共节省500元,则根据题意所列方程正确的是()(第4题图)A.0.6x+0.4y+100=500 B.0.6x+0.4y﹣100=500C.0.4x+0.6y+100=500 D.0.4x+0.6y﹣100=5005.某市举办花展,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为()(第5题图)A.8 B.13 C.16 D.20二.填空题(共4小题)6.以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长,井深各几何若设绳长x 尺,井深y尺,则可列方程组为.7.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x,y的系数.因此,根据此图可以列出方程:x+10y=26.请你根据图2列出方程组.(第7题图)8.老王家去年收入x元,支出y元,而今年收入比去年多15%,支出比去年少10%,结果今年结余30000元,根据题意可列出的方程为.9.盒子里有若干个大小相同的白球和红球,从中任意摸出一个球,摸到红球得2分,摸到白球得3分.某人摸到x个红球,y个白球,共得12分.列出关于x、y的二元一次方程:.三.解答题(共2小题)10.下列各个图是由若干个花盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是s.(第10题图)按此规律推断,以s、n为未知数的二元一次方程是.11.某工厂用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2所示的竖式与横式两种无盖的长方体纸盒.设加工竖式纸盒x个,横式纸盒y个.(第11题图)(1)根据题意,完成以下表格:(2)工人李娟从仓库领来了长方形纸板2012张,正方形纸板1003张,请你帮她计划竖式纸盒、横式纸盒各加工多少个,恰好将领来的纸板全部用完;(3)李娟有一张领取材料的清单,上面写着:长方形纸板a张(碰巧a处的数字看不清了,她只记得不超过142张),正方形纸板90张.并且领来的材料恰好全部用于加工上述两种纸盒,试求出她加工这两种盒子各多少个?参考答案与试题解析一.1.C 2.A 3.D 4.A 5.C二.6.7.8.(1+15%)x﹣(1﹣10%)y=300009.2x+3y=12三.10.解:由图可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2﹣3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3﹣3;第二图:有花盆9个,每条边有花盆4个,那么s=3×4﹣3;…由此可知以s,n为未知数的二元一次方程为s=3n﹣3.11.解:(1)完成表格如下所示:(2)由题意,得,解得,答:竖式纸盒加工203个,横式纸盒加工400个.(3)由题意,得,解得y=72﹣a,x=90﹣2y,∵a≤142,∴y≥43.6.∵x>0,∴90﹣2y>0,∴y<45,∴43.6≤y<45.∵y为正整数,∴y=44,x=2.答:他做竖式纸盒2个,横式纸盒44个.2.5 三元一次方程组及其解法(选学)一.选择题(共5小题)1.解下面的方程组时,要使解法较为简便,应()A.先消去x B.先消去y C.先消去z D.先消去常数2.三元一次方程组,消去未知数z后,得到的二元一次方程组是()A.B.C.D.3.下列四组数值中,()是方程组的解.A.B.C.D.4.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需130元钱,购甲1件、乙2件、丙3件共需210元钱,那么购甲、乙、丙三种商品各一件共需()A.105元B.95元C.85 元D.88元5.如图,在正方形ABCD的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB上的数是3,BC上的数是7,CD上的数是12,则AD上的数是()(第5题图)A.2 B.7 C.8 D.15二.填空题(共2小题)6.方程组的解是.7.已知:,则x+y+z=.三.解答题(共4小题)8.解三元一次方程组:.9.解方程组:.10.甲地到乙地全程是142千米,一段上坡、一段平路、一段下坡,如果保持上坡每小时行驶28千米,平路每小时行驶30千米,下坡每小时行驶35千米,从甲地行驶到乙地需4小时30分钟,从乙地行驶到甲地需4小时42分钟,问:从甲地到乙地时,上坡、平路、下坡的路程各是多少?11.吃仙果的趣味问题:三种仙果红紫白,八戒共吃十一对;白果占紫三分一,紫果正是红二倍;三种仙果各多少?看谁算得快又对.(1)小明分析:如果设红果x个,紫果y个,则白果有(22﹣x﹣y)个,根据题意,可列二元一次方程组为;(2)小敏分析,如果设红果x个,紫果y个,白果z个,根据题意,可列三元一次方程组为;(3)请你先填出上述小题中相应的方程组,然后选一种分析思路求解本题.参考答案一.1.C 2.A 3.B 4.C 5.C二.6.7.6三.8.解:①+②,得2y=﹣5﹣1,解得y=﹣3.②+③,得2x=﹣1+15,解得x=7,把x=7,y=﹣3代入①,得﹣3+z﹣7=﹣5,解得z=5,方程组的解为.9.解:①+②,得4x+3z=18④,①+③,得2x﹣2z=2⑤⑤×2﹣④,得﹣7z=﹣14,解得z=2,把z=2代入①,得x=3,把x=3,z=2代入①,得y=1,则方程组的解为.10.解:设从甲地到乙地时,上坡、平路、下坡的路程各是x、y、z千米,4小时30分钟=4.5小时,4小时42分钟=4.7小时,根据已知可得,解得.答:从甲地到乙地时,上坡、平路、下坡的路程各是42、30和70千米.11.解:(1)设红果x个,紫果y个,则白果(22﹣x﹣y)个.根据题意,得,(2)设红果x个,紫果y个,白果z个.依题意得.(3)二元一次方程组:设红果x个,紫果y个,则白果(22﹣x﹣y)个.根据题意,得,解得.则红果6个,紫果12个,白果4个;三元一次方程组:设红果x个,紫果y个,白果z个.依题意,得.解得.则红果6个,紫果12个,白果4个.。
2024年浙教版数学七年级下册第2章二元一次方程组拔高练习一、选择题1.如果方程组 {ax −by =134x −5y =41 与 {ax +by =32x +3y =−7 有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−52.已知(x-y+1)2+|2x+y-7|=0,则x 2-3xy+2y 2的值为( )A.0B.4C.6D.123.已知x-y=4,|x|+|y|=7,那么x+y 的值是A.±32B.±112C.±7D.±114.已知方程组{2a −3b =133a +5b =30.9的解为{a =8.3b = 1.2,则方程组{2(x +2)−3(y −1)=133(x +2)+5(y −1)=30.9的解为( )A.{x =8.3y = 1.2 B.{x =10.3y = 2.2 C.{x = 6.3y = 2.2 D.{x =10.3y =0.25.已知x ,y ,z 满足2x =3y −z =5x +z,则5x −yy +2z=( )A.1B.13C.- 13D.126.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( )A.甲比乙大5岁 B.甲比乙大10岁 C.乙比甲大10岁 D.乙比甲大5岁7.已知m 2+2mn=13,3mn+2n 2=21,那么2m 2+13mn+6n 2-44的值为( )A.45 B.55 C.66 D.778.关于实数a ,b ,定义一种关于“※”的运算:a ※b =2a +b 3,例如:2※1=2×2+13=413.依据运算定义,若a ※3b =a +1,且12(a +1)※(b −1)=0,则2a +b 的值为( )A .−1B .1C .−12D .129.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x (x ≠0)时输出的运算结果为P ,输入的数是3x 时输出的运算结果为Q ,则( )A .P :Q =3B .Q :P =3C .(Q ﹣1):(P ﹣1)=3D .(Q +1):(P +1)=310.在一家水果店,小明买了1斤苹果、4斤西瓜、2斤橙子、1斤葡萄,共付27.6元;小天买了2斤苹果、6斤西瓜、2斤橙子、2斤葡萄,共付32.2元。
浙教版初中数学七年级下册第二章综合测评卷一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是( ).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是( ).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是( ).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( ).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费( ). A.64元 B.65元 C.66元 D.67元6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是( ).A.①②B.③④C.①③D.②④7.若关于x ,y 的二元一次方程组⎩⎨⎧==+k x-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为( ).A. 43B.- 43C. 34D.- 348.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为( ).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为( ). A.19件 B.20件 C.21件 D.22件 10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( ).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y = ;若用含y 的代数式表示x ,结果是 x = .12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= . 三、解答题(共66分) 17.(8分)解方程组:(1) ⎩⎨⎧=+=++.y x x y 83,02125 (2)⎩⎨⎧=+=+.y x ,y x 76543218.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.20.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值.(2)已知方程组⎩⎨⎧=+=+-b y x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.参考答案一、选择题(每题3分,共30分)1.下列各方程组中,属于二元一次方程组的是(D).2.二元一次方程组⎩⎨⎧==+0,2x-y y x 的解是(C).3.已知⎩⎨⎧==21y ,-x 是二元一次方程组⎩⎨⎧==+123nx-y m,y x 的解,则m-n 的值是(D).A.1B.2C.3D.44.一种饮料有大盒与小盒两种包装.5大盒、4小盒共装148瓶饮料,2大盒、5小盒共装100瓶饮料,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组(A).5.小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表所示:若小丽需要购买3个商品A 和2个商品B ,则她要花费(C). A.64元 B.65元 C.66元 D.67元 6.用加减法解方程组⎩⎨⎧=+=+,823,132y x y x 下列四种变形中,正确的是(B).A.①②B.③④C.①③D.②④ 7.若关于x ,y 的二元一次方程组⎩⎨⎧==+kx-y k,y x 95的解也是二元一次方程2x+3y=6的解,则k 的值为(A).A.43 B.- 43 C. 34 D.- 34 8.已知三角形中两个角之比是4∶5,而第三个角比这两个角的和的31还小12°,则此三角形的三个内角的度数分别为(B).A.90°,70°,20°B.64°,80°,36°C.70°,48°,62°D.78°,64°,38°9.宜宾市某化工厂,现有A 种原料52kg ,B 种原料64kg ,现用这些原料生产甲、乙两种产品.已知生产1件甲种产品需要A 种原料3kg ,B 种原料2kg ;生产1件乙种产品需要A 种原料2kg ,B 种原料4kg.则A ,B 两种原料恰好用完时可生产甲、乙两种产品的总数为(C). A.19件 B.20件 C.21件 D.22件10.如图所示,三个天平的托盘中形状相同的物体质量相等,图1、图2所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置(C).图1 图2 图3(第10题)A.3个○B.4个○C.5个○D.6个○ 二、填空题(每题4分,共24分)11.在等式3x-2y =1中,若用含x 的代数式表示y ,结果是 y =213-x ;若用含y 的代数式表示x ,结果是 x =312+y . 12.若方程组⎩⎨⎧==+,-y x-,y x 3537则3(x+y)-(3x-5y)的值是 24 .13.若x ∶y ∶z =2∶3∶4,且x +y +z =18,则xyz = 192 .14.已知方程组⎩⎨⎧+=+=1322m x y m,x y-的解x ,y 满足x +3y =3,则m 的值是 1 .15.有甲、乙、丙三件商品,购买甲商品3件、乙商品2件、丙商品1件共需315元;购买甲商品1件、乙商品2件、丙商品3件共需285元.那么购买甲、乙、丙商品各1件时共需 150 元. 16.对于任意非零实数x ,y,定义新运算“○×”:x ○×y=ax-by.若2○×3=2,3○×5=2,则3○×4= 4 . 三、解答题(共66分) 17.(8分)解方程组: (1) ⎩⎨⎧=+=++.y x x y 83,02125 (2) ⎩⎨⎧=+=+.y x ,y x 765432【答案】(1) ⎩⎨⎧==.y -x 37,103 【答案】⎩⎨⎧==.y ,-x 2118.(6分)若关于x,y 的方程组⎩⎨⎧=+=+3)32234y (m-mx ,y x 的解满足x =2y ,求m 的值.【答案】∵x =2y ,∴8y +3y =22.∴y =2.∴x =4. ∴4m +(m-3)×2=3.∴m =23.19.(8分)已知方程组由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧==.-y -x 1,3乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧==.y x 2,5试求出a ,b 的值.【答案】由题意得⎩⎨⎧=⨯+=⨯⨯,a ,-)(-)-b (-152552134解得⎩⎨⎧==.b ,a 10120.(10分)计算:(1)已知a-3b=2a+b-15=1,求代数式a 2-4ab+b 2+3的值. (2)已知方程组⎩⎨⎧=+=+-by x ,ay x 26432有无数多组解,求a,b 的值.21.(10分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房. (1)问该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数增多.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按八折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【答案】(1)设该店有客房x 间,房客y 人.∴该店有客房8间,房客63人.(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱; 若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;∴诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.22.(12分)某校举办八年级数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原.每个项目得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算后计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分.问:甲能否获得这次比赛的一等奖?【答案】(1)66×10%+89×40%+86×20%+68×30%=79.8(分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.∴甲的总分:20+89×0.3+86×0.4=81.1>80.∴甲能获一等奖.23.(12分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.【答案】(1)设买“指定日普通票”x张,“夜票”y张.∴“指定日普通票”买6张,“夜票”买4张.(2)能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.由题意得200x+160y+100(10-x-y)=1600.整理得5x+3y=30,∵x,y均为正整数,且每种至少一张,∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.。
浙教版七下第二章 一元二次方程测试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x -=+是二元一次方程,a 必须满足( ) A .0a ≠B .3a ≠-C .3a ≠D .2a ≠2.(3分)关于二元一次方程48x y +=的解,下列说法正确的是( ) A .任意一对有理数都是它的解 B .有无数个解 C .只有一个解D .只有两个解3.(3分)下列方程组中属于二元一次方程组的有( )(1)211x y y z -=⎧⎨=+⎩(2)03x y =⎧⎨=⎩(3)0235x y x y -=⎧⎨+=⎩(4)212 1.x y x y ⎧+=⎨+=-⎩.A .1个B .2个C .3个D .4个4.(3分)解方程组①216511y x x y =+⎧⎨+=-⎩;②2310236x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-6.(3分)由方程组43x m y m +=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .108.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x ,y ,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是.12.(3分)试写出一个关于x、y的的二元一次方程,使它的一个解为12xy=⎧⎨=⎩,这个方程为.13.(3分)已知x、y满足方程组52723x yx y+=⎧⎨-=⎩,则x y+的值为.14.(3分)若22(24)()|4|0x x y z y-+++-=,则x y z++等于.15.(3分)若21xy=⎧⎨=⎩是方程组75ax bybx cy+=⎧⎨+=⎩的解,则a与c的关系是.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A、B、C三种套餐的促销活动.已知A种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A种套餐需35元,那么小明同学要买2个A种套餐、1个B种套餐和2个C种套餐共需费用元.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价(元)超过1千克的部分(元/千克)上海7b北京104b+目的地质量(千克)费用(元)上海26a-北京37a+23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?浙教版七下第二章一元二次方程测试卷(含解析)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x-=+是二元一次方程,a必须满足() A.0a≠B.3a≠-C.3a≠D.2a≠【解答】解:方程236ax y x-=+变形为(3)260a x y---=,根据二元一次方程的定义,得30a-≠,解得3a≠.故选:C.2.(3分)关于二元一次方程48x y+=的解,下列说法正确的是() A.任意一对有理数都是它的解B.有无数个解C.只有一个解D.只有两个解【解答】解:对于二元一次方程48x y+=,有无数个解,故选:B.3.(3分)下列方程组中属于二元一次方程组的有()(1)211x yy z-=⎧⎨=+⎩(2)3xy=⎧⎨=⎩(3)235x yx y-=⎧⎨+=⎩(4)212 1.x yx y⎧+=⎨+=-⎩.A.1个B.2个C.3个D.4个【解答】解:(1)本方程组中含有3个未知数;故本选项错误;(2)有两个未知数,方程的次数是1次,所以是二元一次方程组;(3)有两个未知数,方程的次数是1次,所以是二元一次方程组;(4)第一个方程未知项2x的次数为2,故不是二元一次方程组.共2个属于二元一次方程组.故选:B.4.(3分)解方程组①216511y xx y=+⎧⎨+=-⎩;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法是()A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【解答】解:解方程组①216511y xx y=+⎧⎨+=-⎩比较简便的方法为代入法;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法加减法,故选:C.5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-【解答】解:2x y m =-⎧⎨=⎩是方程64nx y +=的一个解, ∴代入得:264n m -+=,32m n ∴-=, 31213m n ∴-+=+=,故选:A .6.(3分)由方程组43x m y m+=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【解答】解:原方程可化为43x m y m +=⎧⎨-=⎩①②,①+②得,7x y +=. 故选:C .7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .10【解答】解:根据题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,将3x =,2y =-代入得:3148c +=, 解得:2c =-,则4527a b c ++=+-=. 故选:A .8.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-【解答】解:36x m y m +=⎧⎨-=⎩①②,把②代入①得,63x y +-=,整理得,9x y+=,故选:C.9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【解答】解:设甲需持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天【解答】解:设每支牙刷x元,每盒牙膏y元.第1天:137132x y+=;第2天:2614264x y+=;第3天:3921393x y+=;第4天:5228528x y+=.假设第1天的记录正确,则第2天、第4天的记录也正确;假设第1天的记录错误,则第2天、第4天的记录也错误.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是3.5y =⎩移项得:5318a -=-, 合并得:515a -=-, 解得:3a =. 故答案为:3.12.(3分)试写出一个关于x 、y 的的二元一次方程,使它的一个解为12x y =⎧⎨=⎩,这个方程为3x y +=(答案不唯一) .【解答】解:根据题意:3x y +=(答案不唯一), 故答案为:3x y +=(答案不唯一)13.(3分)已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为 1 .【解答】解:527(1)23(2)x y x y +=⎧⎨-=⎩,(1)-(2)得:444x y +=, 1x y ∴+=,故答案为:1.14.(3分)若22(24)()|4|0x x y z y -+++-=,则x y z ++等于 12- .【解答】解:22(24)()|4|0x x y z y -+++-=, ∴240040x x y z y -=⎧⎪+=⎨⎪-=⎩, 解得:2212x y z ⎧⎪=⎪=-⎨⎪⎪=-⎩,则112222x y z ++=--=-. 故答案为:12-.15.(3分)若21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a 与c 的关系是 49a c -= .1y =⎩5bx cy +=⎩得2725a b b c +=⎧⎨+=⎩①②,①2⨯-②,得49a c -=. 故答案为:49a c -=.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为 355(1)x y x y =+⎧⎨=-⎩.【解答】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为: 355(1)x y x y =+⎧⎨=-⎩. 故答案为:355(1)x y x y =+⎧⎨=-⎩.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两. 【解答】解:设有x 人,银子y 两, 由题意得:7498y x y x =+⎧⎨=-⎩,解得646x y =⎧⎨=⎩,故答案为46.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A 、B 、C 三种套餐的促销活动.已知A 种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B 种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C 种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A 种套餐需35元,那么小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用 210 元.【解答】解:设1盒原味的价格为x 元,1盒果粒味的价格为y 元,1盒大红枣味的结果为z 元, 由题意得:34535x y z ++=,则小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用为: 2352882(546)x y z x y z ⨯++++++ 70121620x y z =+++ 704(345)x y z =+++ 70435=+⨯210=(元),故答案为:210.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.【解答】解:经验算41xy=⎧⎨=⎩是方程1352x y+=的解,再写一个方程,如3x y-=.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩【解答】解:(1)在1(1)24(2)x yx y+=⎧⎨-=-⎩中,(1)+(2)得:33x=-,解得:1x=-,把1x=-代入(1)得:2y=.∴方程组的解为12xy=-⎧⎨=⎩.(2)在1(1)234()5()38(2)x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩中,由(1)得:56x y+=(3),由(2)得:938x y-+=-,938x y∴=+,将938x y=+代入(3)得:46184y=-, 4y∴=-.把4y=-代入938x y=+,得2x=.∴方程组的解为24xy=⎧⎨=-⎩.21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.【解答】解:方程组27431x y x y +=⎧⎨-=-⎩①②, ①3⨯+②得:1020x =,即2x =,把2x =代入①得:3y =,把2x =,3y =代入方程得:63a =+,即3a =,则原式21791715a =-+=-+=.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表: 收费标准: 目的地起步价(元) 超过1千克的部分(元/千克) 上海7 b 北京10 4b + 目的地质量(千克) 费用(元) 上海2 6a - 北京3 7a +【解答】解:依题意得:7(21)610(31)(4)7b a b a +-=-⎧⎨+-+=+⎩, 解得:152a b =⎧⎨=⎩. 答:a 的值为15,b 的值为2.23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【解答】解:(1)设甲种口罩购进了x 盒,乙种口罩购进了y 盒,依题意得:900202519000x y x y +=⎧⎨+=⎩, 解得:700200x y =⎧⎨=⎩,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)207002520014000500019000⨯+⨯=+=(个),29001018000⨯⨯=(个), 1900018000>,∴购买的口罩数量能满足市教育局的要求.24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【解答】解:(1)设该市一级水费的单价为x元,二级水费的单价为y元,依题意得:103212(1412)51.4xx y=⎧⎨+-=⎩,解得:3.26.5xy=⎧⎨=⎩.答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2) 3.21238.4⨯=(元),38.464.4<,∴用水量超过312m.设用水量为a3m,依题意得:38.4 6.5(12)64.4a+-=,解得:16a=.答:当缴纳水费为64.4元时,用水量为316m.。
A .3x -6=xB .3x =2yC .x -=0D .2x -3y =xyy 2.二元一次方程x -2y =1有无数个解,下列四组值中不是该方程的解的是( )A.B. C. D.{x =0,y =-12){x =1,y =1){x =1,y =0){x =-1,y =-1)3.下列说法中正确的是( )A .二元一次方程只有一个解B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D .三元一次方程组一定由三个三元一次方程组成{x =1,)A .40,200B .80,160C .160,80D .200,4010.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面13的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为17则可列方程组为( )A.B.{x +y =3.2,(1+17)x =(1+13)y ){x +y =3.2,(1-17)x =(1-13)y )C.D.{x +y =3.2,13x =17y ){x +y =3.2,(1-13)x =(1-17)y )请将选择题答案填入下表:图2-Z -116.当a =_____________________时,方程组有正整数解.{2x +ay =16,x -2y =0)三、解答题(本题有8小题,共66分)17.(6分)解下列二元一次方程组:(1) (2){x =3y -5,3y =8-2x ;){x -2=2(y -1),2(x -1)+(y -1)=5.)18.(6分)已知2a m +1b -2n 与-3a 2-n b 4是同类项,求m ,n 的值.19.(6分)已知方程组的解也满足方程x +y =1,求m 的值.{2x +y =3,3x -2y =m )20.(8分)某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,则甲、乙两个旅游团各有多少人?图2-Z-2(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?23.(10分)为了拉动内需,全国各地汽车购置税补贴活动正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月销售的手动型和自动型汽车分别为多少台?每套服装的价格60元50元40元已知两所学校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两所学校分别有多少名学生准备参加演出?(3)如果甲校有10名学生抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.14. 15.675 cm 316.-3或-2或0或4或1217.解:(1){x =3y -5,①3y =8-2x ,②)把①代入②,得3y =8-2(3y -5),解得y =2.把y =2代入①,可得x =3×2-5,即x =1.∴原方程组的解为{x =1,y =2.)(2)方程组化简得:{x -2y =0,①2x +y =8,②)②-①×2,得5y =8,解得y =.85∴ 解得∴m =8.{2x +y =3,3x -2y =m ,x +y =1,){x =2,y =-1,m =8,)20.解:设甲旅游团有x 人,乙旅游团有y 人.根据题意,得解得{x +y =55,x =2y -5,){x =35,y =20.)答:甲、乙两个旅游团分别有35人、20人.21.解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得解得{x +y =40,x +1.2y =42,){x =30,y =10.)答:采摘的黄瓜和茄子分别有30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.22.解:(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x 元,y 元,根据题意可得:第一天:39x +21y =321①;第二天:26x +14y =204②;第三天:39x +25y =345③.由①÷3,得13x +7y =107,由②÷2,得13x +7y =102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴{39x +21y =321,①39x +25y =345,③)③-①,得y =6.把y =6代入①,得x =5,所以方程组的解为{x =5,y =6.)答:甲、乙两种商品的单价分别为5元,6元.23.解:(1)方法1:设政策出台前一个月销售的手动型汽车为x 辆,则自动型汽车为(960-x)辆.由题意,得(1+30%)x +(1+25%)(960-x)=1228.解得x =560,所以960-x =960-560=400.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.方法2:设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆.由题意,得{x +y =960,(1+30%)x +(1+25%)y =1228,)解得{x =560,y =400.)答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆.(2)手动型汽车的补贴额为560×(1+30%)×8×5%=291.2(万元),自动型汽车的补贴额为400×(1+25%)×9×5%=225(万元).291.2+225=516.2(万元).答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元.24.解:(1)由题意,得5000-92×40=5000-3680=1320(元).答:两校联合起来购买服装比各自购买服装可节省1320元.(2)设甲、乙两所学校分别有x 名、y 名学生准备参加演出.由题意,得解得{x +y =92,50x +60y =5000,){x =52,y =40.)答:甲、乙两所学校分别有52名、40名学生准备参加演出.(3)因为甲校有10人不能参加演出,所以甲校有52-10=42(人)参加演出.若两校联合购买服装,则需要50×(42+40)=4100(元),此时比各自购买服装节约(42+40)×60-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买每套50元的服装节约4100-3640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购买9套).。
2浙教版七年级数学下册《第2章二元一次方程组》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.方程2x﹣3y=7,用含y的代数式表示x为()A.y=(7﹣2x)B.y=(2x﹣7)C.x=(7﹣3y)D.x=(7+3y)2.方程2x+3y=17的正整数解的对数是()A.1对B.2对C.3对D.4对3.已知是二元一次方程组的解,则m﹣n的值是()A.﹣2B.﹣3C.1D.﹣44.关于x、y的二元一次方程组,用代入法消去y后所得到的方程,正确的是()A.3x﹣x﹣5=83B.3x+x﹣5=8C.3x+x+5=8D.3x﹣x+5=8 5.若关于x,y的方程组的解x,y满足x﹣y=1,则k的值为()A.1B.2C.3D.46.若(x﹣y)2+|5x﹣7y﹣2|=0,则x+y的值为()A.﹣2B.0C.﹣1D.17.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为()A.B.C.D.8.从茂名电白到湛江赤坎全长约为105km,一辆小汽车、一辆货车同时从茂名电白、湛江赤坎两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.B.C.D.二.填空题(共8小题,满分40分)9.已知关于x,y的方程组,则x﹣y=.10.若是二元一次方程2x+y=4的一个解,则m的值为.11.已知,则x+y+z的值.12.若方程组,则3(x+y)﹣3x+5y的值是.13.已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为.14.已知关于x、y的二元一次方程组的解是,则关于x,y的方程组的解是.15.若关于x,y的方程组和同解,则a=.16.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个.其中A盒中有2个耳机,3个优盘,1个音箱;B盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C盒中有1个耳机,3个优盘,2个音箱.经核算,A盒的价值为145元,B盒的价值为245元,则C盒的价值为元.三.解答题(共6小题,满分40分)17.(1)解方程组:;(2)解方程组:.18.甲、乙两位同学一起解方程组由于甲看错了方程①中的a,得到的解为,乙看错了方程②中的b,得到的解为,试根据上述条件,求解下列问题:(1)求a、b的值;(2)计算.19.对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.20.阅读下列解方程组的方法,然后回答问题.解方程组:.解:①﹣②,得2x+2y=2,即x+y=1.③③×16,得16x+16y=16.④②﹣④,得x=﹣1,从而可得y=2.∴原方程组的解是.(1)请你仿照上面的解法解方程组:;(2)请大胆猜测关于x,y的方程组(a≠b)的解是什么?并利用方程组的解加以验证.21.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?22.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球多60元,5套队服与8个足球的费用相等,经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?(2)若这四所学校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用.(3)在(2)的条件下,若a=70,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:∵2x﹣3y=7,∴2x=7+3y.∴x=.∴用含y的代数式表示x为x=.故选:D.2.解:方程2x+3y=17,解得:y=,当x=1时,y=5;x=4时,y=3;x=7时,y=1,则正整数解的个数是3个,故选:C.3.解:把方程组的解代入方程组得,解得,∴m﹣n=﹣4+1=﹣3,故选:B.4.解:,把①代入②,得3x﹣(x﹣5)=8,3x﹣x+5=8,故选:D.5.解:,②×2得:8x﹣2y=10k③,①+③得:9x=12k,解得:x=k,把x=k代入①得:k+2y=2k,解得:y=k,∴原方程组的解为:,把代入x﹣y=1中可得:k﹣k=1,解得:k=1,故选:A.6.解:由题意得方程组,,解得,,∴x+y=﹣1﹣1=﹣2,故选:A.7.解:依题意,得.故选:A.8.解:由题意可得,,即,故选:D.二.填空题(共8小题,满分40分)9.解:,①×5+②得,16x=28,x=,把x=,代入①得y=﹣,∴x﹣y=﹣(﹣)=2,故答案为:2.10.解:把代入二元一次方程2x+y=4,得2+m=4,解得m=2.故答案为:2.11.解:,①+②+③得:3x+3y+3z=6063,则x+y+z=2021.故答案为:2021.12.解:由3x﹣5y=﹣3可得﹣3x+5y=3,∴3(x+y)﹣3x+5y=3×7+3=21+3=24.故答案为:24.13.解:由题意得:x+y=0,∴y=﹣x,把y=﹣x代入原方程组可得:,①+②可得:3a+9=0,解得a=﹣3,故答案为:﹣3.14.解:方程组可变形为:,∵关于x、y的二元一次方程组的解是,∴,解得:,故答案为:.15.解:原方程组可化为:,①+②得7x=14,x=2,把x=2代入②2×2﹣y=3,解得y=1,把x=2,y=1代入ax﹣3y=9,2a﹣3×1=9,解得a=6,故答案为:6.16.解:设1个耳机的价值为x元,1个优盘的价值为y元,1个音箱的价值为z元,B盒中耳机的数量为3n(n为正整数)个,则音箱的数量为2n个,优盘的数量为5n个,依题意得:.若n=2,则B盒的价值至少是A盒价值的3倍,∴n=2不合适,∴n只能为1,∴方程②为3x+5y+2z=245③.3×③﹣4×②得:x+3y+2z=155,即C盒的价值为155元.故答案为:155.三.解答题(共6小题,满分40分)17.解:(1),由②,得x=﹣1+2y③,把③代入①,得2(﹣1+2y)+y=3,解得:y=1,把y=1代入③,得x=﹣1+2×1=1,所以原方程组的解是;(2),②×3,得6x+45y=9③,①×2,得6x﹣4y=﹣40④,③﹣④,得﹣49y=﹣49,解得:y=1,把y=1代入①,得3x﹣2+20=0,解得:x=﹣6,所以原方程组的解是.18.解:(1)将代入方程②得﹣12=﹣b﹣2,解得b=10,将代入方程①得5a+20=15,解得a=﹣1;(2)当a=﹣1,b=10时,原式===3﹣2﹣0.4=0.6.19.解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.20.解:(1)①﹣②,得2x+2y=2,即x+y=1③,①﹣③×2 020,得x=﹣1.把x=﹣1代入③,得﹣1+y=1,解得y=2.所以原方程组的解为;(2)猜想:方程组(a≠b)的解为:;检验:把x=﹣1,y=2代入(a+2)x+(a+1)y=a,得左边=a,左边=右边;把x=﹣1,y=2代入(b+2)x+(b+1)y=b,得左边=b,左边=右边.∴是方程组的解.21.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)20×700+25×200=14000+5000=19000(个),2×900×10=18000(个),∵19000>18000,∴购买的口罩数量能满足市教育局的要求.22.解:(1)设每个足球的价格是x元,每套队服的价格为y元,由题意得:,解得:,答:每套队服的价格各是160元,每个足球的价格是100元.(2)到甲商场购买装备所花的费用为:100×160+100(a﹣10)=(100a+15000)(元),到乙商场购买装备所花的费用为:100×160+100×0.8a=(80a+16000)(元);(3)到乙商场购买比较合算,理由如下:当a=70时,到甲商场购买装备所花的费用是:100a+15000=100×70+15000=22000(元),到乙商场购买装备所花的费用是:80a+16000=80×70+16000=21600(元),∵22000>21600,∴到乙商场购买比较合算.。
第2章 二元一次方程组检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.已知⎩⎨⎧==1,2y x 是二元一次方程组⎩⎨⎧=-=+1,7by ax by ax 的解,则a b -的值为( ) A.1B.-1C.2D.32.方程72=+y x 在自然数范围内的解( ) A.有无数对 B.只有1对C.只有3对D.以上都不对3.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )A.⎩⎨⎧==3,4y xB.⎩⎨⎧==6,3y xC.⎩⎨⎧==4,2y xD.⎩⎨⎧==2,4y x4.已知32x y =-⎧⎨=-⎩,是方程组12ax cy cx by +=⎧⎨-=⎩,的解,则间的关系是( )A. B. C. D.5.如果⎩⎨⎧=+-=-+,0532,082z y x z y x 其中xyz ≠0,那么x ∶y ∶z =( )A.1∶2∶3B.2∶3∶4C.2∶3∶1D.3∶2∶16.三元一次方程组1,5,6x y y z z x +=⎧⎪+=⎨⎪+=⎩的解是( )A.⎪⎩⎪⎨⎧===501z y x ,,B.⎪⎩⎪⎨⎧===421z y x ,,C.⎪⎩⎪⎨⎧===401z y x ,,D.⎪⎩⎪⎨⎧===014z y x ,,7.(2018·河北中考)利用加减消元法解方程组2510,536x y x y +=-⎧⎨-=⎩①,②下列做法正确的是( )A.要消去y ,可以将①×5+②×2B.要消去x ,可以将①×3+②×(-5)C.要消去y ,可以将①×5+②×3D.要消去x ,可以将①×(-5)+②×28.如果方程组⎩⎨⎧=-+=+5)1(,1073y a ax y x 的解中x 与y 的值相等,那么a 的值是( )A.1B.2C.3D.49.(2018•山东泰安中考)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A.46282x y x y +=⎧⎨=+⎩,B.4628 2y x x y +=⎧⎨=+⎩,C.46282x y x y +=⎧⎨=-⎩,D.46282y x x y +=⎧⎨=-⎩,10.如果⎩⎨⎧==2,1y x 是二元一次方程组⎩⎨⎧=+=+2,1ay bx by ax 的解,那么关于m 的方程a 2m +2 012=2 013的解为( ) A.-1 B.1C.0D.-2二、填空题(每小题3分,共24分)11.关于x ,y 的方程组425?mx y mx y +=⎧⎨-=⎩,中,若的值为32,则m =________,y =________.12.已知二元一次方程组⎩⎨⎧=-=+,73,1885y x y x 则=+y x 92________.13.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1,求到两地的人数各是多少?设到井冈山的人数为,到瑞金的人数为,请列出满足题意的方程组:_________________.14.已知甲、乙两数的和为13,乙数比甲数少5,则甲数是________,乙数是________.15.如果12342 0042 0052 006m n m n x y +-+-+=是二元一次方程,那么的值是 .16.(2018•四川南充中考)已知关于x ,y 的二元一次方程组23,21x y k x y +=+=-⎧⎨⎩的解互为相反数,则k 的值是____. 17.若方程组⎩⎨⎧=-=+52,243y x y x 与⎩⎨⎧=+=-102,123by ax by ax 有相同的解,则a =______,b =_______.18.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面 的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,第18题图此时木桶中水的深度是 cm .三、解答题(共46分)19.(6分)用指定的方法解下列方程组: (1)⎩⎨⎧=+=-.52,4y x y x (代入法) (2)⎩⎨⎧-=--=-.2354,42y x y x (加减法)20.(6分)已知关于,的方程组⎩⎨⎧=+=-k y x k y x ,52的解也是方程的解,求的值.21.(6分)小明和小文同解一个二元一次方程组⎩⎨⎧=+-=-,2,23by ax y cx 小明正确解得⎩⎨⎧-==,1,1y x 小文因抄错了,解得⎩⎨⎧-==.6,2y x 已知小文除抄错外没有发生其他错误,求的值.22.(7分)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数.小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好比原来的两位数大9.”那么,你能回答以下问题吗?他们取出的两张卡片上的数字分别是多少? 第一次,他们拼成的两位数是多少?第二次,他们拼成的两位数又是多少呢?请你好好动动脑筋哟!23.(7分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人? 24.(7分)定义新运算“※”:※abyb a x ++=,已知,,求3※4的值.25.(7分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:现租用该公司330元计算,问货主应付运费多少元?第2章 二元一次方程组检测题参考答案1.B 解析:将⎩⎨⎧==1,2y x 代入方程组⎩⎨⎧=-=+1,7by ax by ax 得⎩⎨⎧=-=+,12,72b a b a 解得⎩⎨⎧==,3,2b a 所以.2.D 解析:方程72=+y x 在自然数范围内的解有⎩⎨⎧==,3,1y x ⎩⎨⎧==,2,3y x ⎩⎨⎧==,1,5y x ⎩⎨⎧==,0,7y x 共4对,故选D.3.C 解析:用代入法解方程组即可.4.D 解析:将32x y =-⎧⎨=-⎩,代入方程组12ax cy cx by +=⎧⎨-=⎩,,可得321,322,a c c b --=⎧⎨-+=⎩①②将①式两边同乘3可得,③将②式两边同乘-2可得,④将③④两边分别相加,可得,整理可得5.C 解析:已知⎩⎨⎧=+-=-+②,0532①,082z y x z y x ①×2-②得,∴ y =3z ,将其代入①得,∴,故选C .6.A7.D 解析:要消去y ,应将①+⨯3②5⨯,故选项A ,C 都错误,而要消去x ,可以将①-⨯5 ②2⨯或①+-⨯)5(②2⨯,故选项B 错误,选项D 正确.8.C 解析:根据题意得⎪⎩⎪⎨⎧==-+=+③,②,5)1(①,1073y x y a ax y x 把③代入①得,解得,所以,将其代入②得,解得,故选C .9.A 解析:题目中有两个相等关系:买甲种水果花的钱+买乙种水果花的钱=28元,买的甲种水果的质量=买的乙种水果的质量+2千克.由相等关系可列两个方程:4x +6y =28,x =y +2,故选项A 正确.10.B 解析:将⎩⎨⎧==2,1y x 代入⎩⎨⎧=+=+2,1ay bx by ax 得⎩⎨⎧=+=+,22,12a b b a 解得⎩⎨⎧==,0,1b a把10,a b =⎧⎨=⎩代入方程,得,解这个方程得故选B.11.2 1 解析:将32x =代入方程组425mx y mx y +=⎧⎨-=⎩,,得34235m y m y ⎧+=⎪⎨⎪-=⎩,,解这个二元一次方程组得21.?m y =⎧⎨=⎩,12.11 解析:两个方程相减得1192=+y x .13.3421x y x y +=⎧⎨=+⎩, 解析:题目中的等量关系为:①到井冈山与到瑞金的人数共有34;②到井冈山的人数是到瑞金的人数的2倍多1.根据上述等量关系列式即可. 14.9 4 解析:设甲数是,乙数是,依题意可列方程组135x y x y +=⎧⎨-=⎩,,解方程组可得94.x y =⎧⎨=⎩,所以甲数是9,乙数是4.15.2 解析:因为是二元一次方程,则,,解得,所以的值是2.16.-1 解析:由题意得,二元一次方程组23,21x y k x y +=+=-⎧⎨⎩的解互为相反数,所以x +y =0,所以y =-x ,所以原方程组变形为23,21,x x k x x -=-=-⎧⎨⎩所以,1,x k x -=-=-⎧⎨⎩所以k =-1.17.3 2 解析:⎩⎨⎧=-=+②,52①,243y x y x ②变形为.将其代入①,得.将代入②,得,解得.把,代入⎩⎨⎧=+=-,102,123by ax by ax 得2312,410.a b a b +=⎧⎨-=⎩③④把代入③,得,解得.将其代入,得. ∴,. 18.20 解析:设两根铁棒的长度分别为 cm,cm ,由题意可得⎪⎩⎪⎨⎧==+,5432,55y x y x 解得⎩⎨⎧==,25,30y x 故木桶中水的深度为2032=x (cm). 19.解:(1) ⎩⎨⎧=+=-②.52①,4y x y x由①得.③ 将③代入②得,解得.将代入③得.所以原方程组的解是31.x y =⎧⎨=-⎩,(2)⎩⎨⎧-=--=-②.2354①,42y x y x①得解得.将代入①得21. 所以原方程组的解是⎪⎩⎪⎨⎧==.5,21y x20.解:解关于,的方程组⎩⎨⎧=+=-k y x k y x ,52得⎩⎨⎧-==.,2k y k x把⎩⎨⎧-==ky k x ,2代入,得,解得.21.解:因为小明解法正确,所以将⎩⎨⎧-==1,1y x 代入⎩⎨⎧=+-=-,2,23by ax y cx得⎩⎨⎧=--=+.2,23b a c 故.因为小文除抄错外没有发生其他错误,所以⎩⎨⎧-==6,2y x 应满足第二个方程,代入得.由⎩⎨⎧=-=-,262,2b a b a 解得⎪⎪⎩⎪⎪⎨⎧==,21,25b a所以.22.解:设小明和小华取出的两个数字分别为,则第一次拼成的两位数为10,第二次拼成的两位数为10.根据题意,得910910x y y x x y +=⎧⎨+-=+⎩,,解得45.x y =⎧⎨=⎩,所以他们取出的两张卡片上的数字分别是4、5,第一次他们拼成的两位数为45,第二次他们拼成的两位数是54.23.分析:根据“两个旅游团共有55人”和“甲旅游团的人数比乙旅游团的人数的2倍少5人”两个等量关系列方程组解答. 解:设甲旅游团有人,乙旅游团有人,根据题意,得55,2,x y x y +=⎧⎨=-⎩5 解这个方程组得⎩⎨⎧==.20,35y x答:甲、乙两个旅游团分别有35人、20人. 24.分析:根据定义新运算“※”:※abyb a x ++=,将1※2=8,2※3=4代入,列出二元一次方程组,求出、的值,然后再将3※4代入公式求解即可.解:由题意,得⎪⎩⎪⎨⎧=+=+,465,823y x y x 解得⎩⎨⎧==.6,15y x故3※41437126715127=+=+=y x .25.分析:应先求出这批货共有多少吨,即3辆甲种货车和5辆乙种货车共装多少吨货.解:设甲、乙两种货车载重量分别为吨,吨.根据题意得2315.55635x y x y +=⎧⎨+=⎩,,解得42.5.x y =⎧⎨=⎩,∴ 货主应付运费为答:货主应付运费735元.。
最新浙教版数学七年级下册第二章《二元一次方程组》单元测试题及答案考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.对于二元一次方程2x+3y=11,下列说法正确的是( )A. 只有一个解B. 有无数个解C. 共有两个解D. 任何一对有理数都是它的解2.下列方程组是二元一次方程组的是()A. B. C. D.3.若,则y用只含x的代数式表示为()A.y=2x+7B.y=7﹣2xC.y=﹣2x﹣5D.y=2x﹣54.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24B. 0C. ﹣4D. ﹣85.已知两数x、y之和是10,x比y的2倍大1,则下面所列方程组正确的是()A. B. C. D.6.若关于的方程组无解,则的值为()A.-6B.6C.9D.307.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A. B. C. D.8.如果方程组的解中与的值相等,那么的值是( )A.1B.2C.3D.49.使方程组有自然数解的整数m()A. 只有5个B. 只能是偶数C. 是小于16的自然数D. 是小于32的自然数10.如果,其中xyz≠0,那么x:y:z=()A. 1:2:3B. 2:3:4C. 2:3:1D. 3:2:1二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若3x3m+5n+9+9y4m﹣2n+3=5是二元一次方程,则=________.12.二元一次方程的非负整数解为________13.解方程组,小明正确解得,小丽只看错了c解得,则当x=﹣1时,代数式ax2﹣bx+c的值为________.14.对于x、y定义一种新运算“◎”:x◎y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算.已知3◎2=7,4◎(﹣1)=13,那么2◎3=________.15.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为________16.若关于的二元一次方程组的解都为正整数,则________三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(12分)解下列方程组:(1)(2),(3)(4).18.(8分)若与的值互为相反数,试求x与y的值.19(8分).如图所示,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1、∠2的度数分别为x、y,请列出可以求出这两个角度数的方程组.20.(8分)先阅读下列材料,再解决问题:解方程组时,如果我们直接消元,那么会很麻烦,但若用下面的解法,则要简便得多.解方程组解:①-②得,即③③×16得④②-④得,将代入③得,所以原方程组的解是.根据上述材料,解答问题:若的值满足方程组,试求代数式的值.21(8分).某公园的门票价格如下表所示:某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?22.(10分)为了更好治理城市污水,保护环境,县治污公司决定购买10台污水处理设备.现有A,A B价格(万元/台) a b处理污水量(吨/天) 240 200经调查:购买一台设备比购买一台B设备多2万元,购买2台A设备比购买3台B设备少6万元.(1)求a,b;(2)现治污公司购买的设备每天能处理污水2160吨,求治污公司购买设备的资金.23.(12分)为了解决农民工子女入学难的问题.我市建立了一套进城农民工子女就学保障机制,其中一项就是免交“借读费”.据统计,2017年秋季有5000名农民工子女进入主城区中小学学习,预测2018年秋季进入主城区中小学学习的农民工子女将比2017年有所增加,其中小学增加20%,中学增加30%,这样,2018年秋季将新增1200名农民工子女在主城区中小学学习.(1)2017年秋季农民工子女进入主城区中小学学习的小学生、中学生各有多少名?(2)如果按小学每生每年收“借读费“600元,中学每生每年收“借读费”800元计算,求2018年新增的1200名中小学生共免收多少“借读费”?(3)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2018年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?参考答案一、单选题1、B2、D3、B4、A5、C6、A7、C8、C9、A 10、C二、填空题11、112、,,,,13、6.514、315、2016、0或1或−3三、简答题17、(1)∴原方程组的解是:(2)原方程组的解为:(3)∴原方程组的解为(4)∴原方程组的解是.18、解:而根据已知,它们互为相反数,所以一定都是0,即解得x=-1,y=519、解:由图可知∠1+∠2=180°,即x+y=180,由题意知∠1比∠2的3倍少10°,即x=3y﹣10,所以20、解:①-②得,即③,③×2007得④,②-④得,将代入③得,故原方程组的解是;所以21、解:设甲班x人,乙班y人,由题意建立二元一次方程组:,解得:,∴甲班55人,乙班48人22、(1)解:由题意得,解得:,即a的值为12,b的值为10.(2)解:设购买A设备x台,B设备y台,由题意得,解得:,购买设备的资金=4×12+6×10=108万元.答:现治污公司购买的设备每天能处理污水2160吨,治污公司购买设备的资金为108万元.23、(1)解:设2017年秋季农民工子女进入主城区中小学学习的小学生有x名,中学生有多少有y 名.由题意,得,解得,答:2017年秋季农民工子女进入主城区中小学学习的小学生2000名,中学生有3000名(2)解:20%x=20%×3000=600,30%y=30%×2000=600,∴600×600+800×600=840000(元)=84(万元),答:2018年新增的1200名中小学生共免收84万元“借读费”(3)解:2018年秋季入学后,在小学就读的学生有3000×(1+20%)=3600(名),在中学就读的学生有2000×(1+30%)=2600(名)∴(3600÷40)×2+(2600÷40)×3=90×2+65×3=375(名)答:一共需要配备375名中小学教师.浙教版七年级下册数学第二章二元一次方程培优试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.已知x 、y 满足方程组⎩⎨⎧=+=+7282y x y x 则x +y 的值是( )A. 3B. 5C. 7D. 9 2.若方程组()⎩⎨⎧=+=-+143461y x y a ax 的解y x ,的值相等,则a 的值为( )A .﹣4B .4C .2D .1 3.下列方程组中,与方程组⎩⎨⎧=+-=73243y x y x 的解相同的是( )A.⎩⎨⎧=+=73211y x xB.⎩⎨⎧=+=7325y x yC.⎩⎨⎧=+--=734643y x y xD.⎩⎨⎧=-=y x y x 434﹒如图,是正方体的一种表面展开图,若这个正方体相对的两个面上的代数式的值相等,则a y x ++的值为( )A ﹒5B ﹒6C ﹒7D ﹒85.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.现有3艘大船与6艘小船,一次可以载游客的人数为( ) A .129B .120C .108D .966.已知关于y x ,的方程组⎩⎨⎧-=-=-52253a y x ay x ,若y x ,的值互为相反数,则a 的值为( )A. 5-B. 5C. 20-D.207.关于y x ,的方程组⎩⎨⎧=-=+15x y ay x 有正整数解,则正整数a 为( )A . 1、2B .2、5C .1、5D .1、2、58.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购 买甲种奖品x 件,乙种奖品y 件,则方程组正确的是A.⎩⎨⎧=+=+400161230y x y x B.⎩⎨⎧=+=+400121630y x y x C.⎩⎨⎧=+=+400301612y x y x D. ⎩⎨⎧=+=+400301216y x y x10.已知a 为常数,且方程组⎩⎨⎧=+=+-1153)35(y ax y x a 只有唯一解,则a 的值为( )A. 65=a B. 65≠a C. 35<a D.a 为任意实数二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.二元一次方程x +3y=7的非负整数解是_________ 12.已知⎩⎨⎧==13y x 和⎩⎨⎧=-=112y x 都是方程7=+by ax 的解,则___________,==b a 13.若关于y x ,的二元一次方程组⎩⎨⎧=-=+k y x ky x 95的解也是二元一次方程2x +3y =6的解,则k 的值为___________ 14.已知⎩⎨⎧-=-=+122k y x ky x 如果x 是y 的3倍少1,那么______=k15.若关于x 、y 的二元一次方程组⎩⎨⎧=+=-232y mx ny x 有无数个解,则____________,==n m16.某公司去年的利润(总收入-总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,若今年的利润为780万元,则去年总收入是_________万元三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)解下列方程组:(1)⎩⎨⎧=-=+82523y x y x (2)()()()⎪⎩⎪⎨⎧=--+-=+--3223121432y x y x yx y x18(本题8分)已知关于y x ,的方程组⎩⎨⎧=+=+142y x by ax 与()⎩⎨⎧=-+=-313y a bx y x 的解相同,求b a ,的值.19(本题8分)已知二元一次方程组的解为且m +n=2,求k 的值.20(本题10分)(1)满足方程组⎩⎨⎧=++=+532153y x k y x 的x 、y 值之和为2,求k 的值。
浙教版七年级下册数学第2章检测题含答案第2章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知下列方程:①x +xy =7;②2x -3y =4;③1x +1y =1;④x +y =z -1;⑤x +12=2x -13,其中二元一次方程的个数是( A )A .1B .2C .3D .42.已知二元一次方程3x -4y =1,则用含x 的代数式表示y 是( B )A .y =1-3x 4B .y =3x -14C .y =3x +14D .y =-3x +143.已知二元一次方程2x +3y =4,其中x 与y 互为相反数,则x ,y 的值为( A )A.⎩⎪⎨⎪⎧x =-4,y =4B.⎩⎪⎨⎪⎧x =4,y =-4C.⎩⎪⎨⎪⎧x =3,y =-3D.⎩⎪⎨⎪⎧x =-3,y =3 4.如下图所示的程序,已知当输入的x 的值为1时,输出值为1;当输入的x 的值为2时,输出值为-5,则当输入的x 的值为3时,输出值为( B )输入x →×k →+b →输出A .-13B .-11C .-9D .-75.已知方程组⎩⎪⎨⎪⎧x +y =3,ax +by =7和⎩⎪⎨⎪⎧ax -by =-9,3x -y =-7的解相同,则a ,b 的值分别为( C )A .a =-1,b =2B .a =1,b =-2C .a =1,b =2D .a =-1,b =-26.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,要使每个房间都住满,她们有几种租住方案( C )A .5种B .4种C .3种D .2种7.在一定范围内,弹簧的长度x(cm )与它所挂物体的重量y(g )之间满足关系式y =kx +b.已知挂重为50 g 时,弹簧长12.5 cm ;挂重为200 g 时,弹簧长20 cm ;那么当弹簧长15 cm 时,挂重为( B )A .80 gB .100 gC .120 gD .150 g8.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人.则3艘大船与6艘小船一次可以载乘客的人数为( D )A .129B .120C .108D .969.开学后某书店向学校推销两种图书,如果原价买这两种书共需要850元.书店推销时第一种书打八折,第二种书打七五折,结果买两种书共少用200元.则原来买第一、二种书分别需要( A )A .250元,600元B .600元,250元C .250元,450元D .450元,200元10.两位同学在解方程组时,甲同学由⎩⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎪⎨⎪⎧x =3,y =-2,乙同学因把c 看错了,解得⎩⎪⎨⎪⎧x =-2,y =2,那么a ,b ,c 的正确的值应为( D )A .a =4,b =5,c =-1B .a =-4,b =-5,c =0C .a =-4,b =-5,c =2D .a =4,b =5,c =-2 二、填空题(每小题3分,共24分)11.请写出一个二元一次方程组__⎩⎪⎨⎪⎧x +y =1,x -y =3(答案不唯一)__,使它的解是⎩⎪⎨⎪⎧x =2,y =-1. 12.二元一次方程组⎩⎪⎨⎪⎧7x -4y =13,5x -6y =3的解为__⎩⎪⎨⎪⎧x =3,y =2__.13.方程组⎩⎪⎨⎪⎧x +y -z =11,y +z -x =5,z +x -y =1的解是__⎩⎪⎨⎪⎧x =6,y =8,z =3__.14.已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =5,2x +y =4,则x -y 的值是__-1__.15.已知x =2t -3,y =10-4t ,则用含y 的式子表示x 为__x =4-y2__.16.金块放在水里称重时,要减轻本身重量的119,银块放在水里称重时,要减轻110,一块金与银的合金重530克放在水里称重时,减轻了35克,则这块合金含金__380__克,银__150__克.17.某车间共有86名工人,已知每人平均每天可以加工甲种部件15个,乙种部件12个或丙种部件9个,要使加工后的部件按3个甲种部件,2个乙种部件和1个丙种部件配套,则应安排__36__人加工甲种部件,__30__人加工乙种部件,__20__人加工丙种部件.18.关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =1-m ,x -3y =5+3m中,m 与方程组的解中的x 或y 相等,则m 的值为__2或-12__.三、解答题(共66分) 19.(8分)解方程组:(1)⎩⎪⎨⎪⎧x -2y =1,2x +3y =16; (2)⎩⎪⎨⎪⎧x +y 2+x -y3=6,4(x +y )-5(x -y )=2.解:(1)⎩⎪⎨⎪⎧x =5,y =2 (2)⎩⎪⎨⎪⎧x =7,y =120.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是二元一次方程2x +y =-6的解,求m 的值.解:m =2321.(7分)已知y =ax 2+bx +c ,当x =1时,y =5;当x =-2时,y =14;当x =-3时,y =25.求a ,b ,c 的值.解:依题意得⎩⎪⎨⎪⎧a +b +c =5,4a -2b +c =14,9a -3b +c =25,解得⎩⎪⎨⎪⎧a =2,b =-1,c =422.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =6m +3,2x -y =2m +1的解互为相反数,求m 的值.解:m =-1223.(8分)随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式,黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车去福州,那么他此行与乘飞机相比减少二氧化碳排放量多少千克?解:设黄先生乘飞机和乘汽车每小时二氧化碳的排放量分别为x 千克和y 千克,依题意得⎩⎪⎨⎪⎧x +y =70,x -y =44,解得⎩⎪⎨⎪⎧x =57,y =13,∴3x -9y =54.则他此行将减少二氧化碳排放量54千克24.(8分)A ,B 两地相距20千米,甲从A 地向B 地方向前进,同时乙从B 地向A 地方向前进,2小时后二人在途中相遇,相遇后甲就返回A 地,乙仍向A 地前进,甲回到A 地时,乙离A 地还有2千米,求甲、乙二人的速度.解:设甲的速度为x 千米/时,乙的速度为y 千米/时,根据题意得⎩⎪⎨⎪⎧2x +2y =20,2x -2y =2,解得⎩⎪⎨⎪⎧x =5.5,y =4.5.则甲的速度为5.5千米/时,乙的速度为4.5千米/时25.(10分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,则饮料加工厂生产了A ,B 两种饮料各多少瓶?解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得⎩⎪⎨⎪⎧x +y =100,2x +3y =270.解得⎩⎪⎨⎪⎧x =30,y =70.则A 种饮料生产了30瓶,B 种饮料生产了70瓶26.(12分)小丽购买学习用品的收据如表:因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽购买自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种学习用品,共花费15元,则有哪几种不同的购买方案?解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意可得⎩⎪⎨⎪⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎪⎨⎪⎧x =1,y =2.则小丽购买自动铅笔1支,记号笔2支 (2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得92m +1.5n =15,∵m ,n 为正整数,∴⎩⎪⎨⎪⎧m =1,n =7或⎩⎪⎨⎪⎧m =2,n =4或⎩⎪⎨⎪⎧m =3,n =1.则共有3种方案:①购买1本软皮笔记本与7支记号笔;②购买2本软皮笔记本与4支记号笔;③购买3本软皮笔记本与1支记号笔。
最新浙教版七年级数学下册单元测试题全套及答案第1章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格,第4题图),第5题图),第6题图) 4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件(B) A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A)A.26°B.32°C.25°D.36°,第7题图),第8题图),第9题图),第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B)A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.,第11题图),第12题图),第13题图),第14题图)12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.,第15题图),第17题图),第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE =70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号) 18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF(2)∵∠BEG =∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE 与DF 的位置关系,并说明理由;(2)如图②,延长CB ,DF 相交于点G ,过点B 作BH ⊥FG ,垂足为H ,试判断∠FBH 与∠GBH 的大小关系,并说明理由.解:(1)BE ∥DF.理由:∵BE ,DF 分别平分∠ABC 和∠ADC ,∴∠1=12∠ADC ,∠ABE =12∠ABC ,∵∠ABC +∠ADC =180°,∴∠1+∠ABE =12∠ADC +12∠ABC =12(∠ADC +∠ABC )=12×180°=90°,即∠1+∠ABE =90°,又∵∠1+∠2=90°,∴∠ABE =∠2,∴BE ∥DF (2)∠FBH =∠GBH.理由:∵BH ⊥FG ,∴∠BHG =90°,由(1)知,BE ∥DF ,∴∠EBH =∠BHG =90°,∴∠FBH +∠ABE =90°,∠GBH +∠CBE =180°-90°=90°,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠FBH =∠GBH第2章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知下列方程:①x +xy =7;②2x -3y =4;③1x +1y =1;④x +y =z -1;⑤x +12=2x -13,其中二元一次方程的个数是( A )A .1B .2C .3D .42.已知二元一次方程3x -4y =1,则用含x 的代数式表示y 是( B )A .y =1-3x 4B .y =3x -14C .y =3x +14D .y =-3x +143.已知二元一次方程2x +3y =4,其中x 与y 互为相反数,则x ,y 的值为( A )A.⎩⎪⎨⎪⎧x =-4,y =4B.⎩⎪⎨⎪⎧x =4,y =-4C.⎩⎪⎨⎪⎧x =3,y =-3D.⎩⎪⎨⎪⎧x =-3,y =3 4.如下图所示的程序,已知当输入的x 的值为1时,输出值为1;当输入的x 的值为2时,输出值为-5,则当输入的x 的值为3时,输出值为( B )输入x →×k →+b →输出A .-13B .-11C .-9D .-75.已知方程组⎩⎪⎨⎪⎧x +y =3,ax +by =7和⎩⎪⎨⎪⎧ax -by =-9,3x -y =-7的解相同,则a ,b 的值分别为( C )A .a =-1,b =2B .a =1,b =-2C .a =1,b =2D .a =-1,b =-26.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,要使每个房间都住满,她们有几种租住方案( C )A .5种B .4种C .3种D .2种7.在一定范围内,弹簧的长度x(cm )与它所挂物体的重量y(g )之间满足关系式y =kx +b.已知挂重为50 g 时,弹簧长12.5 cm ;挂重为200 g 时,弹簧长20 cm ;那么当弹簧长15 cm 时,挂重为( B )A .80 gB .100 gC .120 gD .150 g8.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人.则3艘大船与6艘小船一次可以载乘客的人数为( D )A .129B .120C .108D .969.开学后某书店向学校推销两种图书,如果原价买这两种书共需要850元.书店推销时第一种书打八折,第二种书打七五折,结果买两种书共少用200元.则原来买第一、二种书分别需要( A )A .250元,600元B .600元,250元C .250元,450元D .450元,200元10.两位同学在解方程组时,甲同学由⎩⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎨⎧x =3,y =-2,乙同学因把c 看错了,解得⎩⎨⎧x =-2,y =2,那么a ,b ,c 的正确的值应为( D ) A .a =4,b =5,c =-1 B .a =-4,b =-5,c =0 C .a =-4,b =-5,c =2 D .a =4,b =5,c =-2 二、填空题(每小题3分,共24分)11.请写出一个二元一次方程组__⎩⎨⎧x +y =1,x -y =3(答案不唯一)__,使它的解是⎩⎪⎨⎪⎧x =2,y =-1.12.二元一次方程组⎩⎪⎨⎪⎧7x -4y =13,5x -6y =3的解为__⎩⎨⎧x =3,y =2__.13.方程组⎩⎪⎨⎪⎧x +y -z =11,y +z -x =5,z +x -y =1的解是__⎩⎨⎧x =6,y =8,z =3__.14.已知x ,y 满足方程组⎩⎨⎧x +2y =5,2x +y =4,则x -y 的值是__-1__.15.已知x =2t -3,y =10-4t ,则用含y 的式子表示x 为__x =4-y2__.16.金块放在水里称重时,要减轻本身重量的119,银块放在水里称重时,要减轻110,一块金与银的合金重530克放在水里称重时,减轻了35克,则这块合金含金__380__克,银__150__克.17.某车间共有86名工人,已知每人平均每天可以加工甲种部件15个,乙种部件12个或丙种部件9个,要使加工后的部件按3个甲种部件,2个乙种部件和1个丙种部件配套,则应安排__36__人加工甲种部件,__30__人加工乙种部件,__20__人加工丙种部件.18.关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =1-m ,x -3y =5+3m 中,m 与方程组的解中的x 或y 相等,则m 的值为__2或-12__.三、解答题(共66分) 19.(8分)解方程组:(1)⎩⎪⎨⎪⎧x -2y =1,2x +3y =16; (2)⎩⎪⎨⎪⎧x +y 2+x -y3=6,4(x +y )-5(x -y )=2.解:(1)⎩⎨⎧x =5,y =2 (2)⎩⎨⎧x =7,y =120.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是二元一次方程2x +y =-6的解,求m 的值.解:m =2321.(7分)已知y =ax 2+bx +c ,当x =1时,y =5;当x =-2时,y =14;当x =-3时,y =25.求a ,b ,c 的值.解:依题意得⎩⎨⎧a +b +c =5,4a -2b +c =14,9a -3b +c =25,解得⎩⎨⎧a =2,b =-1,c =422.(7分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =6m +3,2x -y =2m +1的解互为相反数,求m 的值.解:m =-1223.(8分)随着人们环保意识的增强,“低碳生活”成为人们提倡的生活方式,黄先生要从某地到福州,若乘飞机需要3小时,乘汽车需要9小时.这两种交通工具每小时排放的二氧化碳总量为70千克,已知飞机每小时二氧化碳的排放量比汽车多44千克,黄先生若乘汽车去福州,那么他此行与乘飞机相比减少二氧化碳排放量多少千克?解:设黄先生乘飞机和乘汽车每小时二氧化碳的排放量分别为x 千克和y 千克,依题意得⎩⎨⎧x +y =70,x -y =44,解得⎩⎨⎧x =57,y =13,∴3x -9y =54.则他此行将减少二氧化碳排放量54千克24.(8分)A ,B 两地相距20千米,甲从A 地向B 地方向前进,同时乙从B 地向A 地方向前进,2小时后二人在途中相遇,相遇后甲就返回A 地,乙仍向A 地前进,甲回到A 地时,乙离A 地还有2千米,求甲、乙二人的速度.解:设甲的速度为x 千米/时,乙的速度为y 千米/时,根据题意得⎩⎨⎧2x +2y =20,2x -2y =2,解得⎩⎨⎧x =5.5,y =4.5.则甲的速度为5.5千米/时,乙的速度为4.5千米/时25.(10分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,则饮料加工厂生产了A ,B 两种饮料各多少瓶?解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得⎩⎨⎧x +y =100,2x +3y =270.解得⎩⎨⎧x =30,y =70.则A种饮料生产了30瓶,B 种饮料生产了70瓶26.(12分)小丽购买学习用品的收据如表:因污损导致部分数据无法识别,根据下表,解决下列问题: (1)小丽购买自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种学习用品,共花费15元,则有哪几种不同的购买方案?解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意可得⎩⎨⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎨⎧x =1,y =2.则小丽购买自动铅笔1支,记号笔2支 (2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得92m +1.5n =15,∵m ,n 为正整数,∴⎩⎨⎧m =1,n =7或⎩⎨⎧m =2,n =4或⎩⎨⎧m =3,n =1.则共有3种方案:①购买1本软皮笔记本与7支记号笔;②购买2本软皮笔记本与4支记号笔;③购买3本软皮笔记本与1支记号笔第3章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列计算正确的是( D )A .a 3+a 3=a 6B .3a -a =3C .(a 3)2=a 5D .a ·a 2=a 32.下列计算:①a 9÷(a 7÷a)=a 3;②3x 2yz ÷(-xy)=-3xz ;③(10x 3-16x 2+2x)÷2x =5x 2-8x ;④(a -b)6÷(a -b)3=a 3-b 3,其中运算结果错误的是( B )A .①②B .③④C .①④D .②③ 3.20a 7b 6c ÷(-4a 3·b 2)÷ab 的值( D )A .-5a 5b 2B .-5a 5b 5C .5a 5b 2D .-5a 3b 3c 4.下列计算错误的有( D )①(-12)-3=8;②(3-π)0=1;③39÷3-3=3-3;④9a -3·4a 5=36a 2;⑤5x 2÷(3x )×13x =5x 2.A .①③④B .②③④C .①②③D .①③⑤ 5.下列计算正确的是( B )A .(2x +y )(3x -y )=x 2y 2B .(-x +2y )2=x 2-4xy +4y 2C .(2x -12y )2=4x 2-xy +14y 2 D .(-4x 2+2x )·(-7x )=28x 3-14x 2+7x6.若a =2b -2,则(a -2b +1)999+(2b -a)0的值为( B )A .-1B .0C .1D .无法确定7.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( A ) A .-1 B .1 C .-3 D .38.要使多项式(x 2-px +2)(x -q)不含x 的二次项,则p 与q 的关系是( B ) A .相等 B .互为相反数 C .互为倒数 D .乘积为-1 9.若a +b =3,a -b =7,则ab 的值是( A ) A .-10 B .-40 C .10 D .4010.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( B )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1 二、填空题(每小题3分,共24分)11.如果(-3x m +n y n )3=-27x 15y 9,那么(-2m)n 的值是__-64__.12.已知A =813,B =274,比较A 与B 的大小,则A__=__B .(填“>”“=”“<”)13.已知x 2+2x -1=0,则3x 2+6x -2=__1__.14.630 700 000用科学记数法表示为__6.307×108__;0.000 000 203 8用科学记数法表示为__2.038×10-7__;-5.19×10-5用小数表示为__-0.000_051_9__.15.计算:(-5)0×(43)-1+0.5-100×(-2)-102=__1__.16.已知x m =9-4,x n =3-2,则计算式子x m-3n的值为__19__.17.如图是四张形状、大小完全相同的长方形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式__(a +b )2-4ab =(a -b )2__.18.小亮在计算(5m +2n)(5m -2n)+(3m +2n)2-3m(11m +4n)的值时,把n 的值看错了,其结果等于25,细心的小敏把正确的n 的值代入计算,其结果也是25.为了探究明白,她又把n =2020代入,结果还是25.则m 的值为__±5__.三、解答题(共66分) 19.(12分)计算:(1)(-3x 2y 2z)·x(x 2y)2÷(3x 2y 2)2; (2)a 2b(ab -3)-3ab(a 2b -a); 解:(1)原式=-13x 3z (2)原式=-2a 3b 2(3)(y +2x )(2x -y )+(x +y )2-2x (2x -y ); (4)-2-2-(-2)-2+(23)-1+(3-π)0. 解:(3)原式=x 2+4xy (4)原式=220.(8分)用简便方法计算:(1)99×101; (2)752+252-50×75.解:(1)原式=(100-1)(100+1)=9999 (2)原式=(75-25)2=250021.(6分)先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12. 解:原式=4-2ab.当ab =-12时,原式=4+1=522.(6分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值.解:原式=8a 2+16a -6=8(a 2+2a )-6,∵a 2+2a =8,∴原式=5823.(6分)已知x 2-x -1=0,求式子x 3-2x +1的值.解:∵x 2-x -1=0,∴x 2=x +1,∴x 3-2x +1=x·x 2-2x +1=x (x +1)-2x +1=x 2-x +1=1+1=224.(8分)观察下列等式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;④__4×6-52=-1__……(1)请你按以上规律写出第4个等式;(2)把这个规律用含字母n的等式表示出来;(n为正整数)(3)你认为(2)中所写出的等式一定成立吗?并说明理由.解:(2)n·(n+2)-(n+1)2=-1(3)因为左边=n2+2n-(n2+2n+1)=-1,所以(2)中所写的等式一定成立25.(10分)甲、乙二人共同计算2(x+a)(x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为2x2+4x-30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.解:(1)依题意得2(x-a)(x+b)=2x2+2(-a+b)x-2ab=2x2+4x-30,∴2(-a+b)=4,即-a+b=2①,(x+a)(x+b)=x2+(a+b)x+ab=x2+8x+15,∴a+b=8②,由①,②得a=3,b=5(2)正确结果是2(x+3)(x+5)=2x2+16x+3026.(10分)已知21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……(1)请你据此推测出264的个位数字是几?(2)利用上面的结论,求(2+1)(22+1)(24+1)(28+1)…(232+1)的个位数字.解:(1)∵64÷4=16,∴264的个位数字与24的个位数字相同,是6(2)原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)=(22-1)(22+1)(24+1)(28+1)…(232+1)=(24-1)(24+1)(28+1)…(232+1)=…=264-1,∴此式结果的个位数字是5第4章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列从左到右的变形属于因式分解的是(D)A.(x+1)(x-1)=x2-1 B.m2-2m-3=m(m-2)-3C .2x 2+1=x (2x +1x) D .x 2-5x +6=(x -2)(x -3) 2.多项式mx 2-m 与多项式x 2-2x +1的公因式是( A )A .x -1B .x +1C .x 2-1D .(x -1)23.下列各式中,不能分解因式的是( D )A .4x 2+2xy +14y 2B .4x 2-2xy +14y 2C .4x 2-14y 2D .-4x 2-14y 2 4.将下列多项式因式分解,结果中不含有因式a +1的是( C )A .a 2-1B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+15.下列各式分解因式错误的是( D )A .(x -y )2-x +y +14=(x -y -12)2 B .4(m -n )2-12m (m -n )+9m 2=(m +2n )2C .(a +b )2-4(a +b )(a -c )+4(a -c )2=(b +2c -a )2D .16x 4-8x 2(y -z )+(y -z )2=(4x 2-y -z )26.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a -b ,x -y ,x +y ,a +b ,x 2-y 2,a 2-b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2-y 2)a 2-(x 2-y 2)b 2因式分解,结果呈现的密码信息可能是( C )A .我爱美B .中华游C .爱我中华D .美我中华7.把多项式x 2+ax +b 分解因式,得(x +2)(x -3),则a ,b 的值分别是( B )A .a =1,b =6B .a =-1,b =-6C .a =-1,b =6D .a =1,b =-68.若x 2+12mx +k 是完全平方式,则k 的值是( C ) A .m 2 B.14m 2 C.116m 2 D.13m 2 9.已知a 2+b 2+2a -4b +5=0,则( B )A .a =1,b =2B .a =-1,b =2C .a =1,b =-2D .a =-1,b =-210.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( A )A .M >NB .M =NC .M <ND .不能确定二、填空题(每小题3分,共24分)11.已知m +n =4,mn =5,则多项式m 3n 2+m 2n 3的值是__100__.12.已知a +b =5-3,a -b =5+3,则a 2-b 2=__2__.13.多项式a(a -b -c)+b(c -a +b)+c(b +c -a)提出公因式a -b -c 后,另外一个因式为__a -b -c __.14.若a -b =1,则代数式a 2-b 2-2b 的值为__1__.15.分解因式:x 2+2x(x -3)-9=__3(x +1)(x -3)__;-3x 2+2x -13=__-13(3x -1)2__. 16.若x 2-4y 2=-32,x +2y =4,则y x =__19__. 17.观察下列等式:32-12=8×1;52-32=8×2;72-52=8×3;…,请用含正整数n 的等式表示你所发现的规律:__(2n +1)2-(2n -1)2=8n __.18.已知a =12+32+52+…+252,b =22+42+62+…+242,则a -b 的值为__325__.三、解答题(共66分)19.(18分)分解因式:(1)m3+6m2+9m; (2)a2b-10ab+25b;解:(1)原式=m(m+3)2(2)原式=b(a-5)2(3)4x2-(y-2)2; (4)9x2-8y(3x-2y);解:(3)原式=(2x+y-2)(2x-y+2)(4)原式=(3x-4y)2(5)m2-n2+(2m-2n); (6)(x2-5)2+8(5-x2)+16.解:(5)原式=(m-n)(m+n+2)(6)原式=(x+3)2(x-3)220.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.解:a3b+2a2b2+ab3=ab(a+b)2,将a+b=3,ab=2代入得ab(a+b)2=2×32=1821.(8分)已知y(2x+1)-x(2y+1)=-3,求6x2+6y2-12xy的值.解:由已知得2xy+y-2xy-x=-3,∴x-y=3,∴6x2+6y2-12xy=6(x2+y2-2xy)=6(x-y)2=5422.(8分)已知x 2+y 2+6x +4y =-13,求y x 的值.解:由已知得(x 2+6x +9)+(y 2+4y +4)=0,(x +3)2+(y +2)2=0,∴x =-3,y =-2,∴y x =(-2)-3=-1823.(8分)已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.解:(a2-2ab+b2)+(b2-2bc+c2)=0,(a-b)2+(b-c)2=0,∴a-b=0且b-c=0,∴a=b且b=c,∴a=b=c24.(8分)两位同学将x2+ax+b分解因式,一位同学因看错了一次项系数而分解成(x-1)(x-9),另一位同学因看错了常数项而分解成(x-2)(x-4),请将原多项式分解因式.解:依题意得b=9,a=-6,∴x2+ax+b=x2-6x+9=(x-3)225.(10分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为__(m+2n)(2m+n)__;(2)若每块小长方形的面积为10 cm2,四个正方形的面积和为58 cm2,试求图中所有裁剪线(虚线部分)长之和.解:(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,裁剪线长为2(2m+n)+2(m+2n)=6m+6n=42,∴图中所有裁剪线(虚线部分)长之和为42 cm第5章检测题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各式1x ,1π,x x -1,1x +y ,x +y 3,x +1y中,是分式的有( D ) A .1个 B .2个 C .3个 D .4个2.与分式-a +b -a -b相等的是( B ) A.a +b a -b B.a -b a +b C .-a +b a -b D .-a -b a +b3.已知分式(x -1)(x +2)x 2-1的值为0,那么x 的值是( B ) A .-1 B .-2 C .1 D .1或-24.如果分式x +y 2xy中的x 和y 都扩大3倍,那么分式的值( C ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍5.化简x 2-11-x的结果是( D ) A .x -1 B .x +1 C .1-x D .-x -16.解分式方程12x -3x +1x=3,去分母后所得的方程是( C ) A .1-2(3x +1)=3 B .1-2(3x +1)=2x C .1-2(3x +1)=6x D .1-6x +2=6x7.下列算式中,你认为正确的是( D )A.b a -b -a b -a=1 B .1÷b a ×a b =1 C .3a -1=13a D.1(a +b )2·a 2-b 2a -b =1a +b 8.已知a<b<0,x =a +b 2,y =2ab a +b,则下列结论正确的是( A ) A .x <y B .x >y C .x =y D .无法确定9.某生态示范园计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩产量x 万千克,则改量后平均每亩产量为1.5x 万千克,根据题意列方程为( A )A.36x -36+91.5x =20B.36x -361.5x =20C.36+91.5x -36x =20D.36x +36+91.5x=20 10.关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( A ) A .-5 B .-8 C .-2 D .5二、填空题(每小题3分,共24分)11.在分式|x|-1x -1中,当x =__1__时,分式无意义,当x =__-1__时,分式的值为零. 12.化简1x +3-69-x 2的结果是__1x -3__. 13.若x ∶y =1∶3,2y =3z ,则2x +y z -y的值为__-5__.14.方程x x -2=x +4x -22x -x 2的解是__x =3__. 15.在公式1f =1f 1+1f 2(f 1≠f 2)中,已知f ,f 2,则求得f 1=__ff 2f 2-f__. 16.一项工程需在规定日期内完成,如果甲队单独做,就要超规定日期1天,如果乙队单独做,就要超过规定日期4天,现在由甲、乙两队共做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为__8__天.17.如果x +1x =3,则x 2x 4+x 2+1的值为__18__. 18.若a 1=1-1m ,a 2=1-1a 1,a 3=1-1a 2,…,则a 2020=__m -1m__.(用含m 的式子表示) 三、解答题(共66分)19.(10分)化简:(1)x 2-a 2x 2+a 2·x 4-a 4x 2-2ax +a 2÷(x 2+2ax +a 2); (2)⎝⎛⎭⎫2+1x -1-1x +1÷⎝⎛⎭⎫x -x 1-x 2. 解:(1)原式=1 (2)原式=2x20.(10分)解方程:(1)x 2x 2-4+22-x =1+1x +2; (2)12x 2-9-2x -3=1x +3. 解:(1)x =23(2)无解21.(6分)小明解方程1x -x -2x=1的过程如图,请指出他解答过程中的错误,并写出正确的解答过程. 解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x ,得1-(x -2)=x ,去括号,得1-x +2=x ,合并同类项,得3-x =x ,移项,得2x =3,解得x =32,经检验x =32是 分式方程的根,则方程的解为x =32解:方程两边同乘x ,得 1-(x -2)=1 ……①去括号,得 1-x -2=1 ……②合并同类项,得 -x -1=1 ……③移项,得 -x =2 ……④解得 x =-2……⑤∴原方程的解为 x =-2……⑥22.(6分)先化简(x -x x +1)÷(1+1x 2-1),再以-4<x<4中取一个合适的整数x 代入求值. 解:原式=x 2+x -x x +1÷x 2-1+1x 2-1=x 2x +1÷x 2x 2-1=x 2x +1·(x +1)(x -1)x 2=x -1,取x =2,则原式=1.注意:只能取x =±2,±323.(7分)已知4y ÷[(x 2+y 2)-(x -y)2+2y(x -y)]=1,求4x 4x 2-y 2-12x +y的值. 解:由已知得4y 4xy -2y 2=1,即22x -y =1,∴2x -y =2,4x 4x 2-y 2-12x +y =12x -y =1224.(7分)已知关于x 的方程x +m x -3=2x -33-x有增根,求m 的值. 解:去分母,得x +m =-2x +3,∴x =3-m 3,此方程的增根是x =3,∴3-m 3=3,∴m =-625.(8分)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米,高速列车的平均速度是普通列车的平均速度的3倍,高速列车的乘车时间比普通列车的乘车时间缩短了2小时,高速列车的平均速度是每小时多少千米?解:设普通列车平均速度为每小时x 千米,则高速列车平均速度为每小时3x 千米,根据题意得240x-1803x=2,解得x =90,经检验,x =90是所列方程的根,则3x =3×90=270.所以高速列车平均速度为每小时270千米26.(12分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.解:(1)设原计划每天生产的零件x 个,依题意有24000x =24000+300x +30,解得x =2400,经检验,x =2400是原方程的根,且符合题意,∴规定的天数为24000÷2400=10(天) (2)设原计划安排的工人人数为y 人,依题意有[5×20×(1+20%)×2400y+2400]×(10-2)=24000,解得y =480,经检验,y =480是原方程的根,且符合题意.所以原计划安排的工人人数为480人第6章检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.下面调查中,最适合用全面调查方式的是( B )A .调查一批电视机的使用寿命情况B .调查某中学九年级(1)班学生的视力情况C .调查某市初中学生每天锻炼所用的时间情况D .调查某市初中学生利用网络媒体自主学习的情况2.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是( D )A .抽取的10台电视机B .这一批电视机的使用寿命C .10D .抽取的10台电视机的使用寿命3.为了了解我市6000名学生参加的初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这6000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200.其中正确的有(C)A.4个B.3个C.2个D.1个4.下列统计图能够显示数据变化趋势的是(C)A.条形图B.扇形图C.折线图D.直方图5.对某中学70名女生身高进行测量,得到一组数据的最大值是169 cm,最小值是143 cm,对这组数据整理时取组距为5 cm,则应分(B)A.5组B.6组C.7组D.8组6.某个样本的频数直方图中,一组数据的频数为50,频率为0.5,则抽查样本的样本容量是(A) A.100 B.75 C.25 D.无法确定7.某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图,根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是(A)A.800 B.600 C.400 D.200,第7题图),第9题图) 8.某学校将为七年级学生开设A,B,C,D,E,F共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整).根据图表提供的信息,下列结论错误的是(D)A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E,F的人数分别为80,70D.喜欢选修课C的人数最少9.将一次知识竞赛成绩(整数)进行整理后,分成五组,绘成频数直方图,如图中从左到右的前四组的百分比分别是4%,12%,40%,28%,最后一组的频数是8,则①第五组的百分比为16%;②该班有50名同学参赛;③成绩在70.5~80.5的人数最多;④80分以上(不含80分)的学生共有22名.其中正确的有(A)A.4个B.3个C.2个D.1个10.以下是某手机店1~4月份的销售额统计图,四个同学通过分析统计图,对3,4月份三星手机的销售情况得出以下结论,其中正确的为(B)A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题(每小题3分,共24分)11.我市今年中考数学学科开考时间是6月22日15时,数串“201706221500”中“0”出现的频数是__4__.12.如图,是某班同学一次献爱心捐款的条形图,写出一条你从图中所获得的信息:__有15人每人捐100元(答案不唯一)__.13.某市为了了解七年级学生数学考试成绩,从全体学生的成绩中抽取了一部分,其中有10人得100分,20人得95分,80人得90分,100人得80分,150人得70分,在这个问题中,总体是__某市七年级学生数学成绩的全体__,个体是__每名七年级学生数学成绩__,样本是__抽取的360人的数学成绩__.14.一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%,由此在广告中宣传,他们的产品在国内同类产品销量中占40%.请你根据所学的统计知识,判断该宣传中的数据是否可靠:__不可靠__,理由是__样本不具代表性__.15.学校为七年级学生订做校服,校服有小号、中号、大号、特大号四种,随机抽取了100名学生调查他们的身高,得到如下表格,已知该校七年级学生有800名,那么中号校服大约应订制__360__套.,第15题图),第16题图),第17题图)16.某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形统计图表示上述分布情况,已知来自甲地区的为180人,则下列说法:①扇形甲的圆心角是72°;②学生的总人数是900人;③甲地区的人数比丙地区的人数少180人;④丙地区的人数比乙地区的人数多180人.其中正确的是__①②④__.17.八年级(1)班共48名学生,他们身高(精确到0.1 cm)的频数直方图如图,各小长方形的高的比为1∶1∶3∶2∶1,则身高范围在__165~170__ cm的学生最多,是__18__人,此组的组中值是__167.5_cm__.18.某校要在园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图的统计图,则一共调查了__200__人,条形统计图中的m=__70__,n=__30__.三、解答题(共66分)19.(10分)你对:“你觉得该不该在公共场所禁烟”作民意调查,下面是三名同学设计的调查方案:同学A:我把要调查的问题放到访问量最大的网站上,这样大部分上网的人就可以看到调查的问题,并很快就可以反馈给我.同学B:我给我们小区的居民每一位住户发一份问卷,一两天也可以得到结果了.同学C:我只要在班级上调查一下同学就可以了,马上就能得到结果.请问:上面三个同学哪个能获得比较准确的民意吗?为什么?解:同学B能获得比较全面的民意.理由:同学A放在网上,调查的人不够全面,同学C调查的人群不具有代表性,只有同学B的调查能比较准确地反映出民意.因为小区里包括了各年龄层次的人20.(14分)为了深化课程改革,某校积极开展新课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1-(35%+20%+10%+5%)=30%(2)“文学鉴赏”的人数:30%×200=60(人),“手工编织”的人数:10%×200=20(人)(3)全校选择“科学实验”社团的学生人数:1200×35%=420(人)21.(14分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40(人) (2)喜欢足球的有40×30%=12(人),喜欢跑步的有40-10-15-12=3(人),补图略 (3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×15-1240=90(人)22.(14分)为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图两个统计图,请结合统计图信息解决问题.(1)“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.解:(1)(400+600)÷2-260=1 000÷2-260=500-260=240(人),故“跳绳”项目的女生人数是240人 (2)“掷实心球”项目平均分:(400×8.7+600×9.2)÷(400+600)=(3 480+5 520)÷1 000=9 000÷1 000=9(分),投篮项目平均分大于9分,其余项目平均分小于9分.故该县上届毕业生的考试项目中达到“优秀”的有投篮、掷实心球两个项目 (3)如:游泳项目考试的人数最多,可以选考游泳23.(14分)中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生 海选成绩分组表。
浙教版七年级下册数学第二章测试题姓名:__________班级:__________考号:__________一、单选题(共12题;共36分)1.下列方程组中,不是二元一次方程组的为()(1)(2)(3)(4)(5)A.(1)(2)B.(2)(5)C.(3)(5)D.(2)(4)2.下面三对数值:(1)(2)(3)是方程的解的是()A.(1)B.(2)C.(3)D.(1)和(3)3.某班将举行“庆祝建党90周年知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据对话的信息,计算单价为5元的笔记本买了()A. 25本B. 20本C. 15本D. 12本4.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量。
A. 2B. 3C. 4D. 55.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()A.鸡10,兔14B.鸡11,兔13C.鸡12,兔12D.鸡13,兔116.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.7.设方程组B.的解是C. D.,那么a,b的值分别为()A.﹣2,3B. 3,﹣2C. 2,﹣3D.﹣3,28.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A. B. C. D.9.方程x+4y=1,x2+y=1,y+z=0,x·y=1,=2y中,二元一次方程共有()A. 1个B. 2个C. 3个D. 4个10.方程■()A.不可能是-1B.不可能是-2C.不可能是1D.不可能是211.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的类似地,图2所示的算筹图我们可以表述为()A. B. C.,其中D.,给出下列结论:①时,方程组的解也是方程是方程12.已知关于,的方程组的解;②当的解;④若时,,的值互为相反数;③当,则.其中正确的是().A.①②B.②③C.②③④D.①③④二、填空题(共8题;共16分)13.方程x﹣3y=1,xy=2,x﹣=1,x﹣2y+3z=0,x2+y=3中是二元一次方程的有________个.14.已知方程组15.如果把方程的解是,则a+b的值为________.写成用含x的代数式表示y的形式,那么y=________的解满足2x+y≤2,则t的取值范围为________.,y=________.16.若关于x,y的二元一次方程组17.已知方程组18.方程组的解是________19.我市某重点中学校团委、学生会发出倡议,在初中各年级捐款购买书籍送给我市贫困地区的学校.初一年级利用捐款买甲、乙两种自然科学书籍若干本,用去5324元;初二年级买了A、B两种文学书籍若干本,用去4840元,其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲、乙两种书的单价之和为121元,则初一和初二两个年级共向贫困地区的学校捐献了________本书.20.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算.已知:2※1=7,(﹣3)※3=3,则※b=________.三、解答题(共3题;共15分)21.列方程或方程组解应用题:小明到学校的小卖部为班级运动会购买奖品,若购买4根荧光笔和8个笔记本需要100元,若购买8根荧光笔和4个笔记本需要80元,请问荧光笔和笔记本的单价各是多少元?22.小萌知道和3都是二元一次方程ax+by+4=0的解,请你帮她求出a b的立方根.23.已知关于x、y的方程解.求a、b、c的值.和都是方程的四、综合题(共3题;共33分)24.列方程(或方程组)解应用题:(1)某服装店到厂家选购甲、乙两种服装,若购进甲种服装9件、乙种服装10件,需1810元;购进甲种服装11件乙种服装8件,需1790元,求甲乙两种服装每件价格相差多少元?(2)某工厂现库存某种原料1200吨,用来生产A、B两种产品,每生产1吨A产品需这种原料2吨、生产费用1000元;每生产1吨B产品需这种原料2.5吨、生产费用900元,如果用来生产这两种产品的资金为53万元,那么A、B两种产品各生产多少吨才能使库存原料和资金恰好用完?25.解方程组(1)26.在解方程组程组中的b,而得解为(2)..乙看错了方时,由于粗心,甲看错了方程组中的a,而得解为.(1)甲把a看成了什么,乙把b看成了什么;(2)求出原方程组的正确解.答案一、单选题1.D2. B3.A4. D5.B6. A7. A8. D9. C10.C11.C12.C二、填空题13. 114. 315.19.16816.t≤017. 1018.20.解:2※1=7,(﹣3)※3=3,∴解得:∴※b=×+×+×=故答案为:三、解答题.21.解:设荧光笔和笔记本的单价分别是x元,y元,根据题意,得解得:,,答:荧光笔和笔记本的单价分别是5元,10元.22.解:把得:23.解:依题可得:和代入二元一次方程ax+by+4=0得:,解得:333,则a b=(﹣3)×1=﹣27,因此,a b的立方根是﹣3.,(1)-(2)得:2b=2,,∴b=1,将b=1代入(1)和(2)得:,(5)-(4)得:8a=8,∴a=1,将a=1,b=1代入(1)得:c=-4,∴原方程组的解为:四、综合题.24.(1)解:设甲服装的价格为x元,乙服装的价格为y元,,根据题意得2x﹣2y=﹣10,所以x﹣y=10.答:甲乙两种服装每件价格相差10元(2)解:解:设A种产品生产x吨、乙种产品生产y吨,才能使库存原料和资金恰好用完,根据题意得,解得.答:A种产品生产350吨、乙种产品生产200吨才能使库存原料和资金恰好用完25.(1)解:,①×3+②得:5x=25,即x=5,把x=5代入②得:y=﹣2,则方程组的解为(2)解:,①×4+②×3得:17m=70,即m=,把m=代入①得:n=,则方程组的解为26.(1)解:将代入原方程组得解得.将代入原方程组得,解得,∴甲把a看成﹣,乙把b看成了(2)解:由(1)可知原方程组中a=﹣1,b=10.故原方程组为,解得。
浙教版数学七年级下册第2章单元检测一、选择题1.下列方程中,属于二元一次方程的是( B ) A .x +xy =8 B .y =x -1 C .x +1x =2D .x 2-2x +1=02.方程组⎩⎨⎧3x +2y =19,2x -y =1的解为( A )A.⎩⎨⎧x =3,y =5B.⎩⎨⎧x =5,y =2C.⎩⎨⎧x =3,y =-5D.⎩⎨⎧x =5,y =93.已知⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,则a 的值为( B )A .-3B .-2C .2D .3【解析】 ∵⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,∴2×2-a =6,解得a =-2.4.已知式子12x a -1y 3与-3x -b y 2a +b 是同类项,则a ,b 的值为( A ) A.⎩⎨⎧a =2,b =-1 B.⎩⎨⎧a =2,b =1 C.⎩⎨⎧a =-2,b =-1 D.⎩⎨⎧a =-2,b =1 【解析】 由题意,得⎩⎨⎧a -1=-b ,3=2a +b ,解得⎩⎨⎧a =2,b =-1.5.某文具店一本练习本和一支水笔的价格合计为 3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么下列方程组中,正确的是( B )A.⎩⎨⎧x -y =3,20x +10y =36B.⎩⎨⎧x +y =3,20x +10y =36 C.⎩⎨⎧y -x =3,20x +10y =36 D.⎩⎨⎧x +y =3,10x +20y =36 6.二元一次方程2x +y =11的非负的整数解有( C ) A .2个B .5个C .6个D .无数个【解析】 最小的非负的整数为0,当x =0时,0+y =11,解得y =11; 当x =1时,2+y =11,解得y =9; 当x =2时,4+y =11,解得y =7; 当x =3时,6+y =11,解得y =5; 当x =4时,8+y =11,解得y =3; 当x =5时,10+y =11,解得y =1;当x =6时,12+y =11,解得y =-1(不合题意,舍去),故当x ≥6时,不合题意, 故二元一次方程2x +y =11的非负的整数解有6个.7.如图,在3×3的方格中做填数游戏,要求每行、每列及对角线上三个方格中的数之和都相等,则表格中x ,y 的值为( A )A.⎩⎨⎧x =-1,y =1B.⎩⎨⎧x =1,y =-1C.⎩⎨⎧x =2,y =-1D.⎩⎨⎧x =-2,y =18.若方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,则方程组⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2的解为( C )A.⎩⎨⎧x =4,y =6B.⎩⎨⎧x =5,y =6C.⎩⎨⎧x =5,y =10D.⎩⎨⎧x =10,y =15 【解析】 ∵⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,∴⎩⎨⎧4a 1+6b 1=c 1,4a 2+6b 2=c 2,即⎩⎨⎧20a 1+30b 1=5c 1,20a 2+30b 2=5c 2.又∵⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2,∴⎩⎨⎧4x =20,3y =30,解得⎩⎨⎧x =5,y =10.9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根高出水面的长度是它的13,另一根高出水面的长度是它的15.两根铁棒长度之和为110 cm ,此时木桶中水的深度是( C )第9题图A .60 cmB .50 cmC .40 cmD .30 cm【解析】 设较长的铁棒长度为x (cm),较短的铁棒长度为y (cm).由题意,得⎩⎪⎨⎪⎧x +y =110,⎝⎛⎭⎪⎫1-13x =⎝ ⎛⎭⎪⎫1-15y ,解得⎩⎨⎧x =60,y =50, ∴⎝ ⎛⎭⎪⎫1-13x =40,即木桶中水的深度是40 cm. 10.下列关于x ,y 的方程组⎩⎨⎧x +3y =4-a ,x -5y =3a 的说法中,正确的是( C )①⎩⎨⎧x =5,y =-1是方程组的解;②不论a 取什么实数,x +y 的值始终不变; ③当a =-2时,x 与y 相等. A .①②B .①③C .②③D .①②③【解析】 把⎩⎨⎧x =5,y =-1代入x +3y =4-a ,得5-3=4-a ,解得a =2.把⎩⎨⎧x =5,y =1,代入x -5y =3a ,得5+5=3a ,解得a =103,故①不正确;解方程⎩⎨⎧x +3y =4-a ,x -5y =3a ,得⎩⎪⎨⎪⎧x =a +52,y =1-a 2,∴x +y =3,故无论a 取何值,x +y 的值始终不变,故②正确; 把a =-2代入方程组,得⎩⎨⎧x +3y =6,x -5y =-6,两式相加,得2x -2y =0, ∴x =y ,故③正确.综上所述,正确的是②③.故选C. 二、填空题11.写出一个以⎩⎨⎧x =2,y =-3为解的二元一次方程组:__⎩⎨⎧x +y =-1,x -y =5(答案不唯一)__.12.已知方程组⎩⎨⎧2x +3y =12,3x +2y =18,则x +y =__6__.【解析】 ⎩⎨⎧2x +3y =12,①3x +2y =18.②①+②,得5x +5y =30, ∴5(x +y )=30, ∴x +y =6.13.如果方程组⎩⎨⎧x =3,ax +by =5的解与方程组⎩⎨⎧y =4,bx +ay =2的解相同,那么a =__-1__,b =__2__.14.对于有理数x ,y ,定义新运算“※”:x ※y =ax +by +1(a ,b 为常数).若3※4=9,4※7=5,则7※11=__13__.【解析】 ∵3※4=9,4※7=5,∴根据题中的新定义化简,可得⎩⎨⎧3a +4b =8,①4a +7b =4,②①+②,得7a +11b =12, 则7※11=7a +11b +1=12+1=13.15.《孙子算经》中记载:“今有三人共车,二车空.二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,若每3人乘一辆车,则最终剩余2辆空车;若每2人同乘一辆车,则最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x 辆车,y 个人,则由题意可列方程组为__⎩⎨⎧3(x -2)=y ,2x +9=y__.16.已知关于x ,y 的方程组⎩⎨⎧3x +y =24,4x +ay =18有正整数解,则整数a 的值为__-1__.【解析】 ⎩⎨⎧3x +y =24,①4x +ay =18,②①×4-②×3,得(4-3a )y =42,∴y =424-3a .∵方程组的解为正整数,且a 为整数, ∴a =1或-1.当a =1时,y =42,代入①可得x =-6,不合题意,舍去; 当a =-1时,y =6,代入①可得x =6,符合题意. 故整数a 的值为-1. 三、解答题 17.解下列方程组: (1)⎩⎨⎧3x -4y =24,2x +3y =-1.解:⎩⎨⎧3x -4y =24,①2x +3y =-1,②①×3+②×4,得17x =68,解得x =4. 把x =4代入①,得12-4y =24,解得y =-3. ∴原方程组的解为⎩⎨⎧x =4,y =-3. (2)⎩⎪⎨⎪⎧2(x -1)=3-y ,y -12-x -13=-1.解:方程组整理,得⎩⎨⎧2x +y =5,①2x -3y =5,②①-②,得4y =0,解得y =0. 把y =0代入①,得2x =5, 解得x =52.∴原方程组的解为⎩⎪⎨⎪⎧x =52,y =0.18.若等式(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0中的x ,y 是方程组⎩⎨⎧mx +4y =8,5x +16y =n的解,求m ,n 的值.解:∵(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0,∴2x -4=0且y -12=0, ∴x =2,y =12.把x =2,y =12代入⎩⎨⎧mx +4y =8,5x +16y =n ,得⎩⎨⎧2m +2=8,10+8=n ,解得⎩⎨⎧m =3,n =18.19.解方程组⎩⎨⎧ax +by =2,cx +5y =8时,一马虎的学生把c 写错而得⎩⎨⎧x =-3,y =1,而正确的解为⎩⎨⎧x =3,y =-2.求a +b -c 的值.解:把⎩⎨⎧x =-3,y =1和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-3a +b =2,①3a -2b =2.②①+②,得-b =4,解得b =-4.把b =-4代入①,得-3a -4=2,解得a =-2. 把⎩⎨⎧x =3,y =-2代入cx +5y =8,得3c -10=8,解得c =6, ∴a +b -c =-2-4-6=-12.20.如图,在大长方形ABCD 中,放入六个相同的小长方形,已知BC =11,DE =7. (1)设每个小长方形的长为x ,宽为y ,求x ,y 的值. (2)求图中阴影部分的面积.第20题图解:(1)由题意,得⎩⎨⎧x +y -2y =7,x +3y =11,解得⎩⎨⎧x =8,y =1.(2)S 阴影=11×(8+1)-6×1×8=51. 答:图中阴影部分的面积为51. 21.阅读理解:善于思考的小聪在解方程组⎩⎨⎧2x -3y =3,①2x -5y =5②时,发现①和②之间存在一定关系,他的解法如下:解:把②变形为2x -3y -2y =5.③ 把①代入③,得3-2y =5, 解得y =-1.把y =-1代入①,得x =0,∴原方程组的解为⎩⎨⎧x =0,y =-1.小聪的这种解法叫“整体换元法”.请用“整体换元法”解下列方程组: (1)⎩⎨⎧2x +5y =3,3x +5y =2.解:解方程组⎩⎨⎧2x +5y =3,①3x +5y =2.②把②变形为x +2x +5y =2.③把①代入③,得x +3=2,解得x =-1. 把x =-1代入①,得y =1, ∴原方程组的解为⎩⎨⎧x =-1,y =1.(2)⎩⎨⎧3x -2y =5,9x -4y =19.解:解方程组⎩⎨⎧3x -2y =5,①9x -4y =19.②把②变形为3(3x -2y )+2y =19.③ 把①代入③,得3×5+2y =19, 解得y =2.把y =2代入①,得x =3, ∴原方程组的解为⎩⎨⎧x =3,y =2.22.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少 2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?解:(1)由题意,得⎩⎨⎧x +y =50,x =y -2,解得⎩⎨⎧x =24,y =26.答:这个班有男生有24人,女生有26人.(2)男生每小时剪筒底的数量为24×120=2 880(个), 女生每小时剪筒身的数量为26×40=1 040(个). ∵一个筒身配两个筒底,2 880∶1 040≠2∶1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套. 设男生应向女生支援a 人,由题意,得120(24-a )=(26+a )×40×2, 解得a =4.答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套.男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.23.小明为练习书法,去商店购买书法用品,购买发票上有部分信息不慎被墨汁污染导致无法看清,如下表所示.请解答下列问题:(1)小明购买墨水和毛笔各多少?(2)若小明再次购买墨水和字帖两种用品共花费150元,则有哪几种不同的购买方案? 解:(1)设小明购买墨水x 瓶,毛笔y 支. 由题意,得⎩⎨⎧x +y +2=5,15x +40y +90=185,解得⎩⎨⎧x =1,y =2. 答:小明购买墨水1瓶,毛笔2支. (2)字帖的单价为90÷2=45(元). 设再次购买墨水m 瓶,字帖n 本, 由题意,得15m +45n =150,∴m =10-3n . 又∵m ,n 均为正整数, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =4,n =2或⎩⎨⎧m =7,n =1, ∴共有3种购买方案:方案一:购买1瓶墨水,3本字帖;方案二:购买4瓶墨水,2本字帖;方案三:购买7瓶墨水,1本字帖.。
第2章质量评估试卷一、选择题(每题3分,共30分)1.下列方程组中,不是二元一次方程组的为( ) A.⎩⎪⎨⎪⎧x +y =-1,3x -2y =2 B.⎩⎪⎨⎪⎧xy =1,x -y =4C.⎩⎪⎨⎪⎧x =0,y =0D.⎩⎪⎨⎪⎧x 2=y 3,2x +y =-22.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解是 ( ) A.⎩⎪⎨⎪⎧x =1,y =2 B.⎩⎪⎨⎪⎧x =1,y =-2 C.⎩⎪⎨⎪⎧x =2,y =1 D.⎩⎪⎨⎪⎧x =0,y =-1 3.解方程组⎩⎪⎨⎪⎧2x +3y =1,①3x -6y =7,②用加减法消去y ,下列变形中,正确的是( ) A .①×2-②B .①×3-②×2C .①×2+②D .①×3+②×24.下列方程组中,与方程组⎩⎪⎨⎪⎧x =3y -4,2x +3y =7的解相同的是 ( ) A.⎩⎪⎨⎪⎧x =11,2x +3y =7 B .⎩⎪⎨⎪⎧y =5,2x +3y =7 C.⎩⎪⎨⎪⎧x =3y -4,6x -4+3y =7 D.⎩⎪⎨⎪⎧x =3y -4,x =y5.已知|x +2y +3|与(2x +y )2的和为0,则x -y 的值为( )A .7B .5C .3D .1 6.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为 ( )A .129B .120C .108D .96 7.如果关于x ,y 的二元一次方程ax +2y =3a -2的一个解是⎩⎪⎨⎪⎧x =1,y =1,那么方程x +ay =3的一个解是( ) A.⎩⎪⎨⎪⎧x =2,y =1 B.⎩⎪⎨⎪⎧x =1,y =2 C.⎩⎪⎨⎪⎧x =-2,y =1 D.⎩⎪⎨⎪⎧x =-1,y =28.已知式子12x a -1y 3与-3x -b y 2a +b 是同类项,则a ,b 的值为 ( ) A.⎩⎪⎨⎪⎧a =2,b =-1 B.⎩⎪⎨⎪⎧a =2,b =1 C.⎩⎪⎨⎪⎧a =-2,b =-1 D.⎩⎪⎨⎪⎧a =-2,b =1 9.某玩具车间每天能生产甲种零件200个或乙种零件100个.甲种零件1个与乙种零件2个能组成一个完整的玩具,问怎样安排生产才能在30天内组装出最多的玩具?若设生产甲种零件x 天,乙种零件y 天,则根据题意得( )A.⎩⎪⎨⎪⎧x +y =30,200x =100y B.⎩⎪⎨⎪⎧x +y =30,100x =200yC.⎩⎪⎨⎪⎧x +y =30,2×200x =100yD.⎩⎪⎨⎪⎧x +y =30,2×100x =200y 10.某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分11本,那么还差20本;如果每位同学分10本,那么又多出30本,则该班共有学生 ( )A .48名B .49名C .50名D .51名二、填空题(每题3分,共24分)11.方程2x -3y =6中,用含x 的式子表示y ,则y =__ __;当x =3时,y =__ _.12.若-2x m +1+7y n +3=8是二元一次方程,则m =__ __,n =__ __.13.如图1所示的两架天平保持平衡,且每块巧克力的质量相等,每个蛋黄派的质量也相等,则一个蛋黄派的质量为__ __克.图114.已知-2x m +4y 2-m 与5x n -1y n +1的和是单项式,则m =__ __,n =__ _.15.方程x +2y =7有__3__组正整数解,它们分别是__ _ _ _.16.已知⎩⎪⎨⎪⎧x =3,y =1和⎩⎪⎨⎪⎧x =-2,y =11都是方程ax +by =7的解,则a =__ __,b =__ __. 17.已知⎩⎪⎨⎪⎧x +2y =k ,x -y =2k -1,如果x 与y 互为相反数,那么k =__ __.18.某校举办知识竞赛,共有20道题,每一题答对得5分,答错或不答倒扣1分,小明最终得76分,那么他答对了__ __道题.三、解答题(共46分)19.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧2x -y =6, ①x +2y =-2; ② (2)⎩⎪⎨⎪⎧x +y +z =12, ①x +2y -z =6, ②3x -y +z =10. ③20.(8分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +2by =4,x +y =1与⎩⎪⎨⎪⎧x -y =3,bx +(a -1)y =3的解相同,求a ,b 的值.21.(10分)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?22.(10分)在课间活动中,小英、小丽和小敏在操场上画出A ,B 两个区域,一起玩投沙包游戏,沙包落在A 区域所得分值与落在B 区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图2所示,请求出小敏的四次总分.图223.(10分)《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?参考答案:第二章质量评估1-5 BACCC 6-10 DDACC 11、2x -63,0, 12、0,-2, 13、30, 14、-2,3, 15、⎩⎪⎨⎪⎧x =5,y =1,⎩⎪⎨⎪⎧x =3,y =2,⎩⎪⎨⎪⎧x =1,y =3. 16、2,1, 17、14 18、16 19、(1)⎩⎪⎨⎪⎧x =2,y =-2. (2)⎩⎪⎨⎪⎧x =3,y =4,z =5.20、a=6,b=4, 21、甲种蔬菜种植了6亩,乙种蔬菜种植了4亩. 22、小敏的四次总分为30分.23、树上有7只鸽子,树下有5只鸽子.。
浙教版七下数学第二单元测试卷(含答案)一、单选题1.在下列方程中,其中二元一次方程的个数是()①4x+5=1;②3x—2y=1;③;④xy+y=14A.1B.2C.3D.42.如果是方程2x+y=0的一个解(m≠0),那么()A.m≠0,n=0B.m,n 异号C.m,n 同号D.m,n可能同号,也可能异号3.已知是方程kx-y=3的一个解,那么k的值是( ).A.2B.-2C.1D.-14.若方程组的解是则m、n表示的数分别是()A.5,1B.1,4C.2,3D.2,45.解以下两个方程组,较为简便方法的是( )①A.①②均用代入法B.①②均用加减法C.用代入法②用加减法D.①用加减法②用代入法6.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人。
某船家有3艘大船与6艘小船,一次可以载游客的人数为( )A.129B.120C.108D.967.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y吨货,则可列方程组()A. B.C. D.8.某单位在一快餐店订了22盒盒饭,共花费183元,盒饭共有甲、乙、丙三种,它们的单价分别为10元、8元、5元.那么可能的不同订餐方案有()A.1个B.2个C.3个D.4个9.已知关于,的方程组,其中,给出下列结论:① 是方程的解;②当时,,的值互为相反数;③当时,方程组的解也是方程的解;④若,则.其中正确的是().A.①②B.②③C.②③④D.①③④10.已知方程组的解满足x+y<0,则m的取值范围是()A.m>﹣1B.m>1C.m<﹣1D.m<1二、填空题11.若是二元一次方程3x+ay=5的一组解,则a=________12.已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=________13.对于x、y定义新运算x*y=ax+by﹣3(其中a、b是常数),已知1*2=9,﹣3*3=6,则3*(﹣4)=________.14.有一道题,已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M,N分别是线段AB,BC的中点,求线段MN的长.对这道题,小善同学的答案是7,小昌同学的答案是3.老师说他们的结果都没错,如图,则依次可得到a的值是________.15.已知|x+y﹣5|+(x﹣y+3)2=0,则x________,y=________.16.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小正方形的面积是________.三、解答题17.如果关于x、y的方程2x﹣y+2m﹣1=0有一个解是,请你再写出该方程的一个整数解,使得这个解中的x、y异号.18.已知是方程4x+my=10和mx﹣ny=11的公共解,求m2+2n的值.19.已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.20.甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算a2012+(b)2013的值.21.为了抓住市文化艺术节的商机,某商店决定购进A,B两种艺术节纪念品.若购进A种纪念品8件,B 种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.求购进A,B两种纪念品每件各需多少元?22.某商场第一次用10000元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价70元;乙种商品每件进价50元,售价65元.(1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1800元,乙种商品最多可以降价多少元?答案部分第 1 题:【答案】A第 2 题:【答案】B第 3 题:【答案】A第 4 题:【答案】A第 5 题:【答案】C第 6 题:【答案】 D第7 题:【答案】C第8 题:【答案】 D第9 题:【答案】C第10 题:【答案】C第11 题:【答案】2第12 题:【答案】-1【答案】﹣14第14 题:【答案】10第15 题:【答案】1;4第16 题:【答案】60第17 题:【答案】解:由题意将x=2,y=﹣1代入2x﹣y+2m﹣1=0得:4+1+2m﹣1=0,即m=﹣2,将m=﹣2代入得:原方程为2x﹣y=5,由y=2x﹣5,不难看出,若x<0,则y<0,不合要求;令x>0,y=2x﹣5<0,解得:0<x<2.5,其中整数x=1或2,则符合要求的另一个整数解是.第18 题:【答案】解:∵是方程4x+my=10和mx﹣ny=11的公共解,∴,解①得,m=2,把m=2代入②得,6+n=11,解得n=5,所以,m2+2n=22+2×5=4+10=14,即m2+2n的值为14.第19 题:【答案】解:将和代入方程mx+ny=10,得,解得:,则m﹣n=10﹣10=0.【答案】解:∵甲看错了方程①中的a,得到方程组的解为,∴﹣12+b=﹣2,解得:b=10,∵乙看错了方程②中的b,得到方程组的解为,∴5a+20=15,解得:a=﹣1,则a2012+(b)2013==1+(﹣1)=0.第21 题:【答案】解:设A种纪念品每件x元,B种纪念品每件y元,由题意得:,解得:,答:购进A种纪念品每件100元,B种纪念品每件50元第22 题:【答案】解:(1)设商场购进甲x件,乙购进y件.则,解得.答:该商场购进甲、乙两种商品分别是100件、80件;(3)设乙种商品降价z元,则10×100+(15﹣z)×80≥1800,解得z≤5.答:乙种商品最多可以降价5元.。
最新浙教版七年级数学下册第2章检测题(附答案)
(时间:90分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.已知下列方程:①x +xy =7;②2x -3y =4;③1x +1y =1;④x +y =z -1;⑤x +12=2x -13
,其中二元一次方程的个数是( A )
A .1
B .2
C .3
D .4
2.已知二元一次方程3x -4y =1,则用含x 的代数式表示y 是( B )
A .y =1-3x 4
B .y =3x -14
C .y =3x +14
D .y =-3x +14
3.已知二元一次方程2x +3y =4,其中x 与y 互为相反数,则x ,y 的值为( A ) A.⎩⎪⎨⎪⎧x =-4,y =4 B.⎩⎪⎨⎪⎧x =4,y =-4 C.⎩⎪⎨⎪⎧x =3,y =-3 D.⎩
⎪⎨⎪⎧x =-3,y =3 4.如下图所示的程序,已知当输入的x 的值为1时,输出值为1;当输入的x 的值为2时,输出值为-5,则当输入的x 的值为3时,输出值为( B ) 输入x →×k →+b →输出
A .-13
B .-11
C .-9
D .-7
5.已知方程组⎩
⎪⎨⎪⎧x +y =3,ax +by =7和⎩⎪⎨⎪⎧ax -by =-9,3x -y =-7的解相同,则a ,b 的值分别为( C ) A .a =-1,b =2 B .a =1,b =-2 C .a =1,b =2 D .a =-1,b =-2
6.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,要使每个房间都住满,她们有几种租住方案( C )
A .5种
B .4种
C .3种
D .2种
7.在一定范围内,弹簧的长度x(cm )与它所挂物体的重量y(g )之间满足关系式y =kx +b.已知挂重为50 g 时,弹簧长12.5 cm ;挂重为200 g 时,弹簧长20 cm ;那么当弹簧长15 cm 时,挂重为( B )
A .80 g
B .100 g
C .120 g
D .150 g
8.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人.则3艘大船与6艘小船一次可以载乘客的人数为( D )
A .129
B .120
C .108
D .96
9.开学后某书店向学校推销两种图书,如果原价买这两种书共需要850元.书店推销时第一种书打八折,第二种书打七五折,结果买两种书共少用200元.则原来买第一、二种书分别需要( A )
A .250元,600元
B .600元,250元
C .250元,450元
D .450元,200元
10.两位同学在解方程组时,甲同学由⎩
⎪⎨⎪⎧ax +by =2,cx -7y =8正确地解出⎩⎨⎧x =3,y =-2,乙同学因把c 看错了,解得⎩⎨⎧x =-2,y =2,
那么a ,b ,c 的正确的值应为( D )
A .a =4,b =5,c =-1
B .a =-4,b =-5,c =0
C .a =-4,b =-5,c =2
D .a =4,b =5,c =-2
二、填空题(每小题3分,共24分)
11.请写出一个二元一次方程组__⎩⎨⎧x +y =1,x -y =3(答案不唯一)__,使它的解是⎩
⎪⎨⎪⎧x =2,y =-1. 12.二元一次方程组⎩
⎪⎨⎪⎧7x -4y =13,5x -6y =3的解为__⎩⎨⎧x =3,
y =2__. 13.方程组⎩⎪⎨⎪⎧x +y -z =11,y +z -x =5,z +x -y =1
的解是__⎩⎨⎧x =6,y =8,z =3__. 14.已知x ,y 满足方程组⎩⎨⎧x +2y =5,2x +y =4,
则x -y 的值是__-1__. 15.已知x =2t -3,y =10-4t ,则用含y 的式子表示x 为__x =4-y 2
__. 16.金块放在水里称重时,要减轻本身重量的119,银块放在水里称重时,要减轻110
,一块金与银的合金重530克放在水里称重时,减轻了35克,则这块合金含金__380__克,银__150__克.
17.某车间共有86名工人,已知每人平均每天可以加工甲种部件15个,乙种部件12个或丙种部件9个,要使加工后的部件按3个甲种部件,2个乙种部件和1个丙种部件配套,则应安排__36__人加工甲种部件,__30__人加工乙种部件,__20__人加工丙种部件.
18.关于x ,y 的二元一次方程组⎩
⎪⎨⎪⎧x +y =1-m ,x -3y =5+3m 中,m 与方程组的解中的x 或y 相等,则m 的值为__2或-12
__. 三、解答题(共66分)
19.(8分)解方程组:
(1)⎩⎪⎨⎪⎧x -2y =1,2x +3y =16; (2)⎩⎪⎨⎪⎧x +y 2
+x -y 3=6,4(x +y )-5(x -y )=2.
解:(1)⎩⎨⎧x =5,y =2(2)⎩⎨⎧x =7,
y =1
20.(6分)已知关于x ,y 的方程组⎩
⎪⎨⎪⎧7x +9y =m ,3x -y +29=0的解也是二元一次方程2x +y =-6的。