《双曲线的标准方程》导学案
- 格式:docx
- 大小:57.06 KB
- 文档页数:3
双曲线及其标准方程一、课前导学1.什么叫做双曲线?为什么常数2a 要小于21F F ?与椭圆有何异同?双曲线的定义: 叫做双曲线, 叫做双曲线的焦点, 叫做双曲线的焦距。
2.双曲线标准方程的推导:(类比求椭圆标准方程的方法);确定,,a b c 的关系3.双曲线定义(1)把椭圆定义中的“距离的和(大于21F F )”改为“距离的差(小于21F F )”,那么点的轨迹会怎样?(2)双曲线定义中动点M 到两定点21,F F 满足几何条件 (3)在椭圆的定义中,强调了c a 22<;若22a c =动点的轨迹是什么? 若c a 22>呢?设动点M ,两定点21,F F 满足a MF MF 221=-(2a 常数),为常数)c c F F 2(221=c a MF MF 2221<=-时 轨迹是 ;c a MF MF 2212<=-时 轨迹是 ; c a MF MF 2221==-时 轨迹是 ; c a MF MF 2212==-时 轨迹是 ;c a MF MF 2221>=-时 轨迹是 要点总结注意:(1)若常数要等于12||F F ,则图形是什么? 二、课堂导学例1已知两定点1(5,0)F -,2(5,0)F ,动点P 满足126PF PF -=, 求动点P 的轨迹方程.变式1:已知两定点1(5,0)F -,2(5,0)F ,动点P 满足1210PF PF -=,求动点P 的轨迹方程.变式2:已知两定点1(5,0)F -,2(5,0)F ,动点P 满足126PF PF -=,求动点P 的轨迹方程.例2.写出适合下列条件的双曲线的标准方程1.a=4,b=3,焦点在x 轴上;2.焦点为(0,-6),(0,6),过点(2,5)3已知双曲线与椭圆1362722=+y x ,有公共的焦点,且过点)4,15( 4.焦点在y 轴上,a=4,过点)3104,1( ⒌经过两点A )26,7(--,B )3,72( 例3.如果方程11222=+-+m y m x 表示双曲线,求m 的取值范围. 变式3:如果方程11222=+-+m y m x :表示焦点在y 轴双曲线时,求m 的取值范围. 变式4:当k 取何值时,方程13522=-+-k y k x 表示圆?椭圆?双曲线? 三、课堂小结1.双曲线方程的推导2.求双曲线方程3.利用定义和标准方程解决一些简单的问题.四、课堂练习1.求适合下列条件的双曲线的标准方程。
双曲线的标准方程教案一、教学目标1. 知识与技能:(1)理解双曲线的定义及其性质;(2)掌握双曲线的标准方程及其变形;(3)能够运用双曲线的标准方程解决实际问题。
2. 过程与方法:(1)通过观察双曲线的图形,培养学生的空间想象能力;(2)利用公式法、图形法求解双曲线的标准方程,提高学生的解决问题的能力;(3)通过小组讨论,培养学生的合作交流能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其对数学美的感受;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点1. 教学重点:(1)双曲线的定义及其性质;(2)双曲线的标准方程及其变形。
2. 教学难点:(1)双曲线标准方程的求解方法;(2)运用双曲线标准方程解决实际问题。
三、教学过程1. 导入新课:(1)复习椭圆的标准方程,引导学生对比椭圆、双曲线的关系;(2)提问:双曲线的标准方程是什么?双曲线有哪些基本性质?2. 知识讲解:(1)讲解双曲线的定义及其性质;(2)引入双曲线的标准方程,讲解其含义及求解方法;(3)通过示例,演示双曲线标准方程的求解过程。
3. 课堂互动:(1)学生自主探究:利用公式法、图形法求解双曲线的标准方程;(2)小组讨论:总结双曲线标准方程的求解方法,探讨实际应用案例。
四、课堂练习(1)x^2 y^2 = 4;(2)\frac{x^2}{4} \frac{y^2}{3} = 1。
2. 运用双曲线的标准方程,解决实际问题。
五、课后作业1. 复习双曲线的标准方程及其变形;2. 练习求解各类双曲线的标准方程;3. 探索双曲线在实际问题中的应用。
六、教学拓展1. 对比双曲线与椭圆的标准方程,探讨它们之间的关系;2. 引导学生思考:双曲线的标准方程在实际应用中有什么意义?七、课堂小结1. 回顾本节课所学内容,总结双曲线的标准方程及其求解方法;2. 强调双曲线标准方程在实际问题中的应用价值。
八、教学反思1. 反思本节课的教学过程,分析学生的掌握情况;2. 对教学方法进行调整,以提高学生的学习效果。
§2.3.1 双曲线及其标准方程学习目标1.掌握双曲线的定义;2.掌握双曲线的标准方程.学习过程一、课前准备复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =二、新课导学※ 学习探究问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b -=>>=+(焦点在x 轴)其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?※ 典型例题例1已知双曲线的两焦点为1(5,0)F -,2(5,0)F ,双曲线上任意点到12,F F 的距离的差的绝对值等于6,求双曲线的标准方程.变式:已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为 .例2 已知,A B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340/m s ,求炮弹爆炸点的轨迹方程.变式:如果,A B 两处同时听到爆炸声,那么爆炸点在什么曲线上?为什么?※动手试试练1:求适合下列条件的双曲线的标准方程式:(1)焦点在x轴上,4a=,3b=;(2)焦点为(0,6),(0,6)-,且经过点(2,5)-.练2.点,A B的坐标分别是(5,0)-,(5,0),直线AM,BM相交于点M,且它们斜率之积是49,试求点M的轨迹方程式,并由点M的轨迹方程判断轨迹的形状.三、总结提升※学习小结1 .双曲线的定义;2 .双曲线的标准方程.※知识拓展GPS(全球定位系统):双曲线的一个重要应用.在例2中,再增设一个观察点C,利用B,C两处测得的点P发出的信号的时间差,就可以求出另一个双曲线的方程,解这两个方程组成的方程组,就能确定点P的准确位置.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.动点P 到点(1,0)M 及点(3,0)N 的距离之差为2,则点P 的轨迹是( ).A. 双曲线B. 双曲线的一支C. 两条射线D. 一条射线2.双曲线2255x ky +=的一个焦点是,那么实数k 的值为( ).A .25-B .25C .1-D .13.双曲线的两焦点分别为12(3,0),(3,0)F F -,若2a =,则b =( ).A. 5B. 13C.D.4.已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=则动点P 的轨迹方程为 .5.已知方程22121x y m m -=++表示双曲线,则m 的取值范围 .课后作业1. 求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上,a =,经过点(5,2)A -;(2)经过两点(7,A --,B .2.相距1400m ,A B 两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340/m s ,问炮弹爆炸点在怎样的曲线上,为什么?。
双曲线及其标准方程一、学习目标1、能口述:双曲线的定义和标准方程。
2、会利用双曲线的定义求双曲线的标准方程。
会与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力.3、本节课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识.4.重点:双曲线的定义和双曲线的标准方程.5.难点:双曲线的标准方程的推导.二、情景导入,问题引领:1.椭圆的定义是什么?(学生回答,教师板书)2.椭圆的标准方程是什么?(学生口答,教师板书)老师:如果把椭圆的定义中的和变成差呢?同学们能求一下它的轨迹方程吗?三、自主学习1、类比椭圆得出双曲线的概念2、类比椭圆得出双曲线的标准方程四、合作探究1、双曲线的定义把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢?(1)、简单实验(边演示、边说明)如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线.(2)、类比椭圆设问问题1:定点F1、F2与动点M不在平面上,能否得到双曲线?请学生回答:问题2:|MF1|与|MF2|哪个大?请学生回答:问题3:点M与定点F1、F2距离的差是否就是|MF1|-|MF2|?请学生回答:问题4:这个常数是否会大于等于|F1F2|?请学生回答:(3).定义在上述基础上,引导学生概括双曲线的定义:平面内与两定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距.教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记.2、双曲线的标准方程现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导.标准方程的推导:两种标准方程的比较(引导学生归纳):教师指出:(1)双曲线标准方程中,a>0,b>0,但a不一定大于b;(2)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上.(3)双曲线标准方程中a、b、c的关系是c2=a2+b2,不同于椭圆方程中c2=a2-b2.五、典型例题书上相关例题六、练习及其巩固,布置作业。
河北省唐山市开滦第二中学高中数学 2.2.1双曲线及其标准方程学案 新人教A 版选修1-1【学习目标】1.了解双曲线的定义、几何图形和标准方程的推导过程;2.掌握双曲线的标准方程;3.会利用双曲线的定义和标准方程解决简单的问题.【重点难点】双曲线定义及其标准方程【学习过程】一、问题情景导入:1.太空中飞过太阳系的彗星,其轨道就是双曲线,彗星从无穷处飞来,又飞到无穷远处,双曲线是不封闭的圆锥曲线,它不同于抛物线,也不是两个抛物线构成双曲线的两支,最明显的差别是双曲线有渐近线,而抛物线没有.初中学过的反比例函数图象是双曲线,它以坐标轴为渐近线.2.我们知道,与两个定点距离的和为非零常数(大于两个定点间的距离)的点的轨迹是椭圆,那么,与两个定点距离的差为非零常数的点的轨迹是什么?3.你能类比椭圆的标准方程的推导过程推导出双曲线的标准方程吗?二、自学探究:(阅读课本第45-47页,完成下面知识点的梳理)1.双曲线的定义:把平面内与两个定点21,F F 的距离的 等于常数(小于21F F )的点的轨迹叫做双曲线.这两个定点叫做双曲线 ,两焦点间的距离叫做双曲线的 . 双曲线的定义用集合语言表示为{}21212,2F F a a MF MF M P <=-=思考:双曲线定义中212F F a <,如果212F F a =轨迹是什么图形呢?能否有212F F a <的轨迹图形呢? 2.焦点在x 轴上 焦点在y 轴上 图象 标准方程焦点坐标c b a ,,的关系思考:⑴方程13222=-y x 与13222=-x y 分别表示焦点在哪个坐标轴上的双曲线?焦点坐标分别是什么?⑵方程122=+ny m x ,当参数n m ,的取值怎样时,方程分别表示焦点在x 轴上与焦点在y 轴上的双曲线?三、例题演练:例 1.若一个动点()y x P ,到两个定点()()0,1,0,1B A -的距离之差的绝对值为定值()0≥a a 时,讨论点P 的轨迹.例 2.已知双曲线两个焦点分别为()()0,5,0,521F F -,双曲线上一点P 到21,F F 距离差的绝对值等于6,求双曲线的标准方程.变式:求适合下列条件的双曲线的标准方程:⑴5,4==c a ,焦点在x 轴上;⑵4=a ,经过点⎪⎪⎭⎫ ⎝⎛3104,1A ; ⑶求与双曲线141622=-y x 有共同的焦点,且过点()2,23的双曲线的标准方程.例3.在ABC ∆中,已知4=BC ,且A B C sin 21sin sin =-,求动点A 的轨迹方程.变式:已知定圆02410:221=+++x y x C ,定圆:C 091022=+-+x y x ,动圆C 与定圆21,C C 都外切,求动圆圆心C 的轨迹方程.【课堂小结与反思】【课后作业与练习】1.判断下列方程是否表示双曲线,若是,求出三量c b a ,,的值. ①12422=-y x ②12222=-y x ③12422-=-y x ④369422=-x y2.求a =4,b =3,焦点在x 轴上的双曲线的标准方程3.求a =25,经过点(2,-5),焦点在y 轴上的双曲线的标准方程4.证明:椭圆22525922=+y x 与双曲线151522=-y x 的焦点相同5.若方程1cos sin 22=+ααy x 表示焦点在y 轴上的双曲线,则角α所在象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6.设双曲线191622=-y x 上的点P 到点)0,5(的距离为15,则P 点到)0,5(-的距离是( ) A .7 B.23 C.5或23 D.7或237.椭圆134222=+n y x 和双曲线116222=-y nx 有相同的焦点,则实数n 的值是 ( ) A 5± B 3± C 5 D 98.已知21,F F 是双曲线191622=-y x 的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为600,那么PQ QF PF -+22的值为________9.设21,F F 是双曲线1422=-y x 的焦点,点P 在双曲线上,且02190=∠PF F ,则点P 到x 轴的距离为( )A 1 B55 C 2 D 510.P 为双曲线)0,0(12222>>=-b a by a x 上一点,若F 是一个焦点,以PF 为直径的圆与圆222a y x =+的位置关系是()A 内切B 外切C 外切或内切D 无公共点或相交。
双曲线及其标准方程导学案【学习要求】1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.【学法指导】本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.【知识要点】1.双曲线的定义把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2探究点一 双曲线的定义问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)6)5()5(2222=+--++y x y x ;(2)6)4()4(2222=+--++y x y x(3)方程x =3y 2-1所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分 探究点二 双曲线的标准方程问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?问题2 两种形式的标准方程怎样进行区别?能否统一?问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.跟踪训练1 (1)过点(1,1)且ba=2的双曲线的标准方程是 ( )A .12122=-y x B .y 212-x 2=1 C .x 2-y 212=1D .x 212-y 2=1或y 212-x 2=1(2)若双曲线以椭圆x 216+y 29=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______探究点三 与双曲线定义有关的应用问题例2 已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).跟踪训练2 如图,从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A . 3B . 5C .5- 3D .5+ 3例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.【当堂检测】1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 29=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )A .7B .23C .5或25D .7或234.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.【课堂小结】1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.【拓展提高】1.已知方程12522=---k y k x 的图形是双曲线,那么k 的取值范围是( )A .k >5B .k >5,或22<<-kC .k >2,,或2-<kD .22<<-k2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122,13=-__________602121的面积等于,则PF F PF F ∆=∠5.根据下列条件,求双曲线的标准方程. (1)过点P )415,3(,Q )5,316(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上.(3))的双曲线。
双曲线及其标准方程导学案
一、要点阐述
1、双曲线的定义及焦点、焦距、
2、双曲线的标准方程及其特点;求简单的双曲线的标准方程
教学过程:一、自主学习
完成《学海导航》P29的一层练习
二、演示实验:用拉链画双曲线并与讲解,对答案。
根据所学完成下列所学定义M不图形同点标准方程焦点方程
MyF2OF1F2某F1某相a、b、c的关系同焦点位置的判断点
二、课前训练
1、写下列双曲线焦点的坐标。
某2y21(2)y2某21(3)4y29某236(1)42某2y21表示双曲线,则k的范围是2、若
k1k1
某2y23、若双曲线221的两个焦点到一条准线的距离之比为3:2那么则双曲线
ab的离心率是
某2y24、如果双曲线=1上一点P到双曲线右焦点的距离是2,那么点P到y轴
42的距离是某2y21上,并且P到这条双曲线的右准线的距离恰是5.
已知点P在双曲线
169P到双曲线两个焦点的距离的等差中项,那么P点的横坐标是
_________
三、典型例题
9例1、已知双曲线的焦点在y轴上且双曲线上的两点P1(3,-42),P2(,5)
4求双曲线的标准方程?解:
某2y21有共同的焦点,且过P(15,4)例2、已知双曲线与椭圆,
求双曲
2736线的方程。
解:
例 3.双曲线的中心为原点O,焦点在某轴上,两条渐近线分别为l1,l2,经过右
AB、OB成等焦点F垂直于l1的直线分别交l1,l2于A,B两点.已
知OA、差数列,且BF与FA同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.解:。
《3.2.1双曲线及其标准方程》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习双曲线及其标准方程学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。
如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。
所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向加深对双曲线的标准方程及简单几何性质的理解与应用。
从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。
正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。
而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。
在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。
【教学目标与核心素养】【教学重点】:用双曲线的定义和标准方程解决简单实际问题.【教学难点】:双曲线的标准方程及其求法.【教学过程】双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声音时差测定定位等都要用到双曲线的性质。
类比椭圆的研究方法研究双曲线的有关问题。
我们知道,平面内与两个定点F 1,F 2的距离的和等于常数于|F 1F 2|)的点的轨迹是椭圆,一个自然的问题是:平面内与两个定点的距离的差等于常数的点的轨迹是什么?1.双曲线的定义121如图,在直线上取两个定点,,是直线上的动点。
在平面内,取定点,,以点为圆心、线段为半径作圆,在以为圆心、线段为半径作圆。
l A B P l F F F PA F PB 12如图,在>的条件下,让两圆的交点的轨迹是什么形状?F F AB M从椭圆的情形一样,下面我们用坐标法来探讨尝试与发现中的问题,并求出双曲线的标准方程。
F(-c,0),F F(0,-c),F解:建立平面直角坐标系,使并且原点与线段的中点重合。
XXX中学数学学科“五维”课堂导学案设计上课时间:年月日星期:设计者:
课题双曲线及其标准方程
回
问题1:椭圆的定义是什么?
学【探究问题(一)】双曲线的定义
问题1:平面内与两定点F1、F2的距离的差等于常数的点的轨迹是什么呢?双曲线的定义:
问题2:思考
(1)若2a=2c,则轨迹是什么?
(2)若2a=0,则轨迹是什么?
(3)若2a>2c,则轨迹是什么?
【探究问题(二)】双曲线的标准方程的推导
问题3:求轨迹方程的一般步骤?并按其方法及提示独立逐步求双曲线的一般方程。
求曲线方程的步骤:
1. 建系.
2.设点.
1
F
2
F
()0,c-()0,c X
Y
O
()y
x
M,
3、列式
4、化简
5、若建系时,焦点在y轴上呢?
问题4:如何判断双曲线的焦点在哪个轴上?
导问题5:双曲线的标准方程与椭圆的标准方程有何区别与联系?
双曲线
椭圆。
双曲线的标准方程教案第一章:双曲线的基本概念1.1 实轴、虚轴和焦点1.2 实半轴、虚半轴和焦距1.3 双曲线的定义第二章:双曲线的标准方程2.1 双曲线的标准方程的引入2.2 双曲线的标准方程的推导2.3 双曲线的标准方程的形式第三章:双曲线的性质3.1 双曲线的开口方向和大小3.2 双曲线的渐近线3.3 双曲线的离心率第四章:双曲线的图形4.1 双曲线的图形特征4.2 双曲线的对称性4.3 双曲线的渐近线图形第五章:双曲线方程的应用5.1 双曲线在实际问题中的应用5.2 双曲线方程在几何问题中的应用5.3 双曲线方程在其他领域的应用第六章:双曲线的参数方程6.2 双曲线的参数方程的推导6.3 双曲线的参数方程的应用第七章:双曲线的渐近线方程7.1 双曲线的渐近线方程的引入7.2 双曲线的渐近线方程的推导7.3 双曲线的渐近线方程的应用第八章:双曲线的图像变换8.1 双曲线图像的平移8.2 双曲线图像的缩放8.3 双曲线图像的旋转第九章:双曲线与其他曲线的交点9.1 双曲线与椭圆的交点9.2 双曲线与抛物线的交点9.3 双曲线与其他曲线的交点问题第十章:双曲线的综合应用10.1 双曲线在物理学中的应用10.2 双曲线在工程学中的应用10.3 双曲线在其他学科中的应用第六章:双曲线的渐近线方程6.1 双曲线的渐近线方程的引入6.2 双曲线的渐近线方程的推导第七章:双曲线的图像变换7.1 双曲线图像的平移7.2 双曲线图像的缩放7.3 双曲线图像的旋转第八章:双曲线与其他曲线的交点8.1 双曲线与椭圆的交点8.2 双曲线与抛物线的交点8.3 双曲线与其他曲线的交点问题第九章:双曲线方程的应用9.1 双曲线方程在实际问题中的应用9.2 双曲线方程在几何问题中的应用9.3 双曲线方程在其他领域的应用第十章:双曲线的综合应用10.1 双曲线在物理学中的应用10.2 双曲线在工程学中的应用10.3 双曲线在其他学科中的应用教案内容简要概述:第一章:双曲线的基本概念,介绍了实轴、虚轴、焦点、实半轴、虚半轴和焦距等基本概念,并通过具体实例让学生理解双曲线的定义。
高二数学双曲线的标准方程导学案导学案文1、理解双曲线标准方程的推导过程,掌握双曲线的定义及标准方程[重点难点]重点:双曲线的定义及双曲线的标准方程难点:用坐标法推导椭圆的标准方程[学习过程]一、预习导航1、双曲线的定义:平面内与两个定点的距离的______等于常数()的点的轨迹(或集合)叫做双曲线,这两个定点叫做______叫做______2、(1)当时,动点P的轨迹是_____________________________、(2)当时,动点P的轨迹是_____________________________、(3)当时,动点P的轨迹是_____________________________、(4)的关系是_____________________________、3、双曲线的标准方程(1)焦点在x轴上的双曲线的标准方程_______________________(2)焦点在y轴上的双曲线的标准方程_______________________二、牛刀小试1、平面内到两定点(-2,0)(2,0)的距离之差的绝对值是2 的点M的轨迹方程是( )A、B、C、D、2、平面内两定点的距离为10,则到这两个定点的距离之差的绝对值为12的点的轨迹为( )A、双曲线B、线段C、射线D、以上都不对3、双曲线焦点坐标是___________三、展示自我1、(1)已知双曲线两焦点的坐标为(-5,0)(5,0),双曲线上一点P到的距离差的绝对值为6,求双曲线的方程。
(2)已知(-4,0)(4,0),曲线上一动点P到的距离差为6,求曲线的方程。
2、点P在双曲线上,为该双曲线的两个焦点,若,求3、根据下列条件求双曲线的标准方程(1) a=3,b=4,焦点在x轴上(2) a=5,c=8(3)焦点在x轴上,经过点P(4,-2)和点Q()(4)两焦点坐标分别为(0,-6),(0,6),且过点(-5,8)4、双曲线的焦距为6,求m的值四、小组讨论、合作学习已知定点A(3,0)和定圆C:,动圆P 和动圆C相外切,并且经过点A,求动圆圆心P的轨迹方程。
高二数学选修 2-1 §一、学习任务:1.理解双曲线的定义,掌握求双曲线的方程,和一些几何性质。
培养解析法的思想。
2.双曲线的定义和标准方程。
二、探究新知:(学习情景,自主学习,合作探究,(问题1,2,3)当堂检查,巩固训练,拓展延伸,对点训练,感受高考等) 自主学习:(一)、学习情景: 已知两定点F 1F 2距离为10,求动点M 到两定点距离的差为6的轨迹方程. (二)、探究点一、——双曲线的定义问题1:根据课本上双曲线的定义,制作教具,画双曲线?问题2:写出双曲线上的点满足的关系式________________________________________ 问题3:这两个定点叫做双曲线的_______。
两个定点的距离用______表示。
常数用______表示问题4:双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么? 双曲线的定义为什么要满足2a <2c 呢?(1)当2a <∣F 1F 2∣时,轨迹是_____ (2)当2a =∣F 1F 2∣时,轨迹是_____ (3)当2a >∣F 1F 2∣时轨迹是. _____对点训练: 动点P 到两定点F1(-4,0),F2(4,0)的距离差是8,则动点P 的轨迹为( ) (A )双曲线 (B )双曲线的一支(C )以F 1,F 2 为端点的两条射线(D )不能确定。
问题5:建立坐标系后,利用问题2的关系式,写出推导双曲线方程的过程 问题6:双曲线的标准方程是:___________________________ 问题7:上面的a,b,c 三个量满足的关系式为:___________ 问题8:如何判断焦点在何轴? (三)、合作、探究、展示:探究点二、——双曲线的标准方程根据下列方程,分别求出a 、b 、c 并且判断焦点在何轴?(1)双曲线标准方程为161022=-y x ,则a = ,b = , =c ;(2)双曲线标准方程为1522=-y x ,则a = ,b = , =c ; (3)双曲线标准方程为8222=-y x ,则a = ,b = , =c . 书本课后练习练 1:求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上, a = 4 , b = 3 ;(2) 已知双曲线两个焦点为(0,-6 ),(0,6) ,且经过点(2,-5 ) .变式:(1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.探究点三、——与双曲线定义有关的应用问题1、已知双曲线221169x y-=的左支上一点P 到左焦点的距离为 10,则 点 P 到右焦点的距离为_______ . 2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4、 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形?(1)6)5()5(2222=+--++y x y x ; (2)6)4()4(2222=+--++y x y x探究点四、——轨迹问题例3、点 A , B 的坐标分别是(-5 ,0) ,(5,0),直线AM , BM 相交于点M ,且它们斜率之积是94,试求点M 的轨迹方程式,并由点M 的轨迹方程判断轨迹的形状.思考:1.双曲线 52x + k 2y = 5 的一个焦点是(6,0),那么实数k 的值为( ). A . -2 5 B .25 C . -1 D .12.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).2.已知方程11222=+-+m y m x 表示双曲线,则m 的取值范围_____________ . 3.求与椭圆2214924x y +=有公共焦点,且离心率54e =的双曲线的方程.三、 本节小结和感悟F 2F 1。
高二数学选修2-1 编号:SX-理科-2012.2.1《双曲线及其标准方程》导学案编写: 审核: 使用时间:2013年2月18日班级: 组名: 姓名:【学习目标】了解双曲线的定义,掌握双曲线的标准方程,会利用定义和标准方程解决一些简单的问题. 【重点难点】重点:双曲线的定义难点:双曲线标准方程的推导【知识链接】1、什么叫椭圆?2、椭圆的标准方程有哪两种形式?其中的,,a b c 的关系式是什么?【引入新课】一、双曲线的定义与标准方程:1. 双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫 ,即a MF MF 221=-,这两个定点叫做双曲线的 ,两焦点间的距离叫做 。
(1)将定义中的“绝对值”去掉,动点轨迹是什么?例如|MF 1|-|MF 2|=2a ,表示哪支呢? 而|MF 2|-|MF 1|=2a 呢? (2)将定义中的常数令为零,动点轨迹是什么? (3)将定义中的“小于”换为“等于”,动点轨迹是什么? (4)将定义中的“小于”换为“大于”,动点轨迹是什么?2.双曲线的标准方程:1)以 为 轴,以 为 轴,建立直角坐标系XOY (如下图),则F 1、F 2、O 的坐标分别是F 1 、F 2 、O 。
2)设M(x,y)是双曲线上的任意一点,由双曲线的定义有:-1MF = ,(*)由两点距离公式有:1MF = ,2MF = ; 代入(*)式:化简得到焦点在X 轴上的双曲线的标准方程为: , 其中焦点坐标为 ;类似的得到焦点在Y 轴上的双曲线的标准方程为: , 其中焦点坐标为 。
3.双曲线的标准方程的特点:(1)焦点在x 轴上时,双曲线的标准方程为: ;焦点在y 轴上时,双曲线的标准方程为: 。
_y标准方程左边的两项用 号连接,这点与椭圆有什么不同?(2)c b a ,,的关系: ,而椭圆标准方程中c b a ,,的关系是: 。
4.焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在 轴上;2y 项的系数是正的,那么焦点在 轴上。
§8.7双曲线学习目标1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、离心率、渐近线).3.了解双曲线的简单应用.知识梳理1.双曲线的定义把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F 1F2|)的点的轨迹叫做双曲线.两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b,实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±ba x y=±ab xa,b,c的关系c2=a2+b2 (c>a>0,c>b>0)常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为2b 2a.(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=b 2tan θ2,其中θ为∠F 1PF 2.(5)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线x 2m 2-y 2n 2=1(m >0,n >0)的渐近线方程是x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) 教材改编题1.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,即b =2a , 又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e = 5. 2.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上均不对 答案 B解析 根据双曲线的定义得||PF 1|-|PF 2||=8⇒|PF 2|等于1或17.又|PF 2|≥c -a =2,故|PF 2|=17. 3.(2022·汕头模拟)写一个焦点在y 轴上且离心率为3的双曲线方程________. 答案y 2-x 22=1(答案不唯一,符合要求就可以) 解析 取c =3,则e =ca=3,可得a =1,∴b =c 2-a 2=2, 因此,符合条件的双曲线方程为y 2-x 22=1(答案不唯一,符合要求就可以).题型一 双曲线的定义及应用例1 (1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆答案 B解析 如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,由垂直平分线的性质可得|PM |=|PF 1|, 所以||PF 2|-|PF 1||=||PF 2|-|PM || =|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______. 答案 2 3解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12, ∴|PF 1|·|PF 2|=8,∴12F PF S △=12|PF 1|·|PF 2|·sin 60°=2 3.延伸探究 在本例(2)中,若将“∠F 1PF 2=60°”改为“PF 1―→·PF 2―→=0”,则△F 1PF 2的面积为_____.答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1―→·PF 2―→=0,∴PF 1―→⊥PF 2―→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴12F PF S △=12|PF 1|·|PF 2|=2.教师备选1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A .x 2-y 28=1B.x 28-y 2=1 C .x 2-y 28=1(x ≤-1) D .x 2-y 28=1(x ≥1) 答案 C解析 设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切, 得|MC 1|=1+r ,|MC 2|=3+r , |MC 2|-|MC 1|=2<6,所以点M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支, 且2a =2,a =1,又c =3, 则b 2=c 2-a 2=8, 所以点M 的轨迹方程为x 2-y 28=1(x ≤-1). 2.(2022·长春模拟)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A .8 B .10 C .4+37 D .3+317答案 B解析 由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时, |PF ′|+|P A |有最小值,为|AF ′|=3, 故△P AF 的周长的最小值为10.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 (1)(2022·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为( ) A .1 B .2 C .3 D .6 答案 B解析 由题意知,|PF 1|-|PF 2|=2a , 所以|PF 2|=a ,|PF 1|=3a , 又离心率e =ca =3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a=-2a 26a 2=-13, sin ∠F 1PF 2=223,所以12PF F S △=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 答案 9解析 设双曲线的右焦点为F 1,则由双曲线的定义,可知|PF |=4+|PF 1|, 所以当|PF 1|+|P A |最小时满足|PF |+|P A |最小. 由双曲线的图象,可知当点A ,P ,F 1共线时, 满足|PF 1|+|P A |最小,|AF 1|+4即|PF |+|P A |的最小值. 又|AF 1|=5,故所求的最小值为9. 题型二 双曲线的标准方程例2 (1)(2021·北京)双曲线C :x 2a 2-y 2b 2=1过点(2,3),且离心率为2,则该双曲线的标准方程为( )A .x 2-y 23=1B.x 23-y 2=1 C .x 2-3y 23=1D.3x 23-y 2=1答案 A解析 ∵e =ca=2,则c =2a ,b =c 2-a 2=3a , 则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a 2=1,解得a =1,故b =3,因此,双曲线的方程为x 2-y 23=1. (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________.答案y 2-x 29=1 解析 设双曲线的方程是y 2-x 29=λ(λ≠0). 因为双曲线过点(3,2), 所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1. 教师备选1.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1. 2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为________.答案 y 225-x 275=1解析 设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1, 解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a ,2b 或2c ,从而求出a 2,b 2. (2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.跟踪训练2 (1)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( ) A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 答案 C解析 因为双曲线的渐近线方程为y =±3x ,所以可设双曲线的方程为x 2-y 23=λ(λ≠0),将点(2,3)代入其中,得λ=1,所以该双曲线的标准方程为x 2-y 23=1. (2)(2022·佛山调研)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上一点,PF 2与x 轴垂直,∠PF 1F 2=30°,且虚轴长为22,则双曲线的标准方程为( ) A.x 24-y 22=1 B.x 23-y 22=1 C.x 24-y 28=1 D .x 2-y 22=1 答案 D解析 由题意可知|PF 1|=43c3, |PF 2|=23c3, 2b =22,由双曲线的定义可得43c 3-23c3=2a ,即c =3a .又b =2,c 2=a 2+b 2,∴a =1,∴双曲线的标准方程为x 2-y 22=1.题型三 双曲线的几何性质 命题点1 渐近线例3 (1)由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线y 2a 2-x 2b 2=1(a >0,b >0)下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A.y 212-x 24=1 B.3y 24-x 24=1 C.x 24-y 24=1 D.y 216-x 24=1 答案 B解析 由题意知,b =2, 又因为e =ca =1+⎝⎛⎭⎫b a 2=2,解得a 2=43,所以双曲线的方程为3y 24-x 24=1.(2)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32 答案 B解析 由题意知双曲线的渐近线方程为y =±bax .因为D ,E 分别为直线x =a 与双曲线C 的两条渐近线的交点, 所以不妨设D (a ,b ),E (a ,-b ),所以S △ODE =12×a ×|DE |=12×a ×2b =ab =8,所以c 2=a 2+b 2≥2ab =16(当且仅当a =b 时等号成立), 所以c ≥4,所以2c ≥8, 所以C 的焦距的最小值为8.思维升华 (1)渐近线的求法:求双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的方法是令x 2a 2-y 2b 2=0,即得两渐近线方程x a ±yb =0⎝⎛⎭⎫y =±b a x . (2)在双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba ,满足关系式e 2=1+k 2.命题点2 离心率例4 (1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( ) A.72 B.132C.7D.13 答案 A解析 设|PF 2|=m ,则|PF 1|=3m , 在△F 1PF 2中,|F 1F 2|=m 2+9m 2-2×3m ×m ×cos 60° =7m ,所以C 的离心率e =c a =2c 2a =|F 1F 2||PF 1|-|PF 2|=7m 2m =72. 高考改编已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在双曲线E 的左支上,且∠F 1AF 2=120°,|AF 2|=2|AF 1|,则双曲线E 的离心率为( ) A. 3 B. 5 C.7 D .7答案 C解析 点A 在双曲线E 的左支上,左、右焦点分别为F 1,F 2, 设|AF 1|=m ,由|AF 2|=2|AF 1|知|AF 2|=2m ,由双曲线定义得|AF 2|-|AF 1|=2m -m =m =2a , 在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°, 由余弦定理知,|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|cos 120° =4a 2+16a 2+8a 2=28a 2, ∴|F 1F 2|=27a , 又|F 1F 2|=2c ,∴27a =2c ,e =ca=7.(2)(2022·滨州模拟)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为( ) A .(1,2) B .(1,3) C .(3,+∞) D .(2,3)答案 A解析 在△PF 1F 2中, sin ∠PF 2F 1=3sin ∠PF 1F 2, 由正弦定理得,|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点, 所以|PF 1|-|PF 2|=2a , 所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|, 得3a +a >2c ,即2a >c , 所以e =ca <2,又e >1,所以1<e <2. 教师备选1.(2022·济南模拟)已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m 等于( )A.12B.3-1C.3+12D .2答案 A解析 由渐近线方程y =±b a x =±33x , 所以b a =33, 则b 2a 2=13, 即m m +1=13,m =12. 2.设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2D. 5答案 A解析 令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c ,0),则c =a 2+b 2. 如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c 2, 由|OM |2+|MP |2=|OP |2,得⎝⎛⎭⎫c 22+⎝⎛⎭⎫c 22=a 2,∴c a=2,即离心率e = 2. 思维升华 求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用c 2=a 2+b 2和e =c a转化为关于e 的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).跟踪训练3 (1)(多选)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,C 上的点到其焦点的最短距离为1,则( )A .双曲线C 的焦点坐标为(0,±2)B .双曲线C 的渐近线方程为y =±3xC .点(2,3)在双曲线C 上D .直线mx -y -m =0(m ∈R )与双曲线C 恒有两个交点答案 BC解析 双曲线C 上的点到其焦点的最短距离为c -a =1,离心率e =c a =2,所以a =1,c =2,所以b 2=3,所以双曲线C 的方程为x 2-y 23=1,所以C 的焦点坐标为(±2,0),A 错误; 双曲线C 的渐近线方程为y =±b ax =±3x ,B 正确; 因为22-323=1,所以点(2,3)在双曲线C 上,C 正确; 直线mx -y -m =0即y =m (x -1),恒过点(1,0),当m =±3时,直线与双曲线C 的一条渐近线平行,此时直线与双曲线只有一个交点,D 错误.(2)(2022·威海模拟)若双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线C 2的离心率的取值范围是( )A.⎝⎛⎭⎫1,132B.⎝⎛⎭⎫1,133 C.⎝⎛⎭⎫132,+∞ D.⎝⎛⎭⎫133,+∞ 答案 D解析 因为双曲线C 1:y 24-x 29=1的渐近线方程为y =±23x , 双曲线C 2:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , 为使双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点, 只需b a >23, 则离心率为e =c a =a 2+b 2a 2=1+⎝⎛⎭⎫b a 2>1+49=133. 课时精练1.双曲线9x 2-16y 2=1的焦点坐标为( )A.⎝⎛⎭⎫±512,0 B.⎝⎛⎭⎫0,±512 C .(±5,0) D .(0,±5)答案 A解析 将双曲线的方程化为标准形式为x 219-y 2116=1, 所以c 2=19+116=25144, 所以c =512, 所以焦点坐标为⎝⎛⎭⎫±512,0. 2.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( ) A.x 22-y 24=1 B.x 24-y 28=1 C .x 2-y 28=1 D.x 22-y 28=1 答案 D解析 由题意,得2m =m +6,解得m =2,所以双曲线的标准方程为x 22-y 28=1. 3.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3答案 B解析 方法一 依题意知,点P 在双曲线的左支上,根据双曲线的定义,得|PF 2|-|PF 1|=2×3=6,所以|PF 2|=6+3=9.方法二 根据双曲线的定义,得||PF 2|-|PF 1||=2×3=6,所以||PF 2|-3|=6,所以|PF 2|=9或|PF 2|=-3(舍去).4.(2022·大连模拟)若双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33,则C 的离心率为( )A .2 B. 3 C.43 D.233答案 A解析 双曲线C :x 29-y 2b 2=1的右焦点坐标为(9+b 2,0),渐近线方程为y =±b 3x ,即bx ±3y =0, ∵双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33, ∴b 9+b 2b 2+9=33, 解得b =33,∴c =9+b 2=9+(33)2=6,∴离心率e =c a =63=2. 5.(多选)已知双曲线C 的方程为x 216-y 29=1,则下列说法正确的是( ) A .双曲线C 的实轴长为8B .双曲线C 的渐近线方程为y =±34x C .双曲线C 的焦点到渐近线的距离为3D .双曲线C 上的点到焦点距离的最小值为94答案 ABC解析 因为a 2=16,所以a =4,2a =8,故A 正确;因为a =4,b =3,所以双曲线C 的渐近线方程为y =±b a x =±34x ,故B 正确; 因为c =a 2+b 2=16+9=5,所以焦点坐标为(-5,0),(5,0),焦点(5,0)到渐近线3x -4y =0的距离为|15|32+(-4)2=3,故C 正确;双曲线C 上的点到焦点距离的最小值为c -a =1,故D 错误. 6.(多选)(2022·潍坊模拟)已知双曲线C :x 2a 2-y 29=1(a >0)的左、右焦点分别为F 1,F 2,一条渐近线方程为y =34x ,P 为C 上一点,则以下说法正确的是( ) A .C 的实轴长为8B .C 的离心率为53 C .|PF 1|-|PF 2|=8D .C 的焦距为10 答案 AD解析 由双曲线方程知,渐近线方程为y =±3a x ,而一条渐近线方程为y =34x , ∴a =4,故C :x 216-y 29=1, ∴双曲线实轴长为2a =8,离心率e =c a =16+94=54, 由于P 可能在C 不同分支上,则有||PF 1|-|PF 2||=8,焦距为2c =2a 2+b 2=10.∴A ,D 正确,B ,C 错误.7.(2021·新高考全国Ⅱ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,则该双曲线C 的渐近线方程为________.答案 y =±3x解析 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2, 所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a2=3, 所以该双曲线的渐近线方程为y =±b ax =±3x . 8.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.答案 3215解析 因为a 2=9,b 2=16,所以c =5.所以A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5), 代入双曲线方程解得B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF |·|y B |=12×2×3215=3215. 9.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2. (1)若点M 在双曲线上,且MF 1-→·MF 2-→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同的焦点,且过点(32,2),求双曲线C 的方程. 解 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,∵MF 1-→·MF 2-→=0,∴MF 1⊥MF 2.设|MF 1|=m ,|MF 2|=n ,由双曲线的定义知m -n =2a =8.①在Rt △F 1MF 2中,由勾股定理得m 2+n 2=(2c )2=80,②由①②得m ·n =8.∵12MF F S △=12mn =4=12×2ch , ∴h =255. 即M 点到x 轴的距离为255. (2)设双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16). ∵双曲线C 过点(32,2),∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去),∴双曲线C 的方程为x 212-y 28=1. 10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线方程是y =±255x ,点A (0,b ),且△AF 1F 2的面积为6.(1)求双曲线C 的标准方程;(2)直线l :y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点P ,Q ,若|AP |=|AQ |,求实数m 的取值范围. 解 (1)由题意得b a =255,① 12AF F S △=12×2c ·b =6,②a 2+b 2=c 2,③由①②③可得a 2=5,b 2=4,∴双曲线C 的标准方程是x 25-y 24=1. (2)由题意知直线l 不过点A .设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为D (x 0,y 0),连接AD (图略).将y =kx +m 与x 25-y 24=1联立,消去y , 整理得(4-5k 2)x 2-10kmx -5m 2-20=0,由4-5k 2≠0且Δ>0,得⎩⎪⎨⎪⎧4-5k 2≠0,80(m 2-5k 2+4)>0,④ ∴x 1+x 2=10km 4-5k 2,x 1x 2=-5m 2+204-5k 2, ∴x 0=x 1+x 22=5km 4-5k 2, y 0=kx 0+m =4m 4-5k 2. 由|AP |=|AQ |知,AD ⊥PQ ,又A (0,2),∴k AD =y 0-2x 0=4m 4-5k 2-25km 4-5k 2=-1k, 化简得10k 2=8-9m ,⑤由④⑤,得m <-92或m >0. 由10k 2=8-9m >0,得m <89. 综上,实数m 的取值范围是m <-92或0<m <89.11.(多选)双曲线C :x 24-y 22=1的右焦点为F ,点P 在双曲线C 的一条渐近线上,O 为坐标原点,则下列说法正确的是( )A .双曲线C 的离心率为62B .双曲线y 24-x 28=1与双曲线C 的渐近线相同 C .若PO ⊥PF ,则△PFO 的面积为 2D .|PF |的最小值为2答案 ABC解析 因为a =2,b =2,所以c =a 2+b 2=6,所以e =c a =62, 故A 正确;双曲线y 24-x 28=1的渐近线方程为y =±22x ,双曲线C 的渐近线方程为y =±22x ,故B 正确; 因为PO ⊥PF ,点F (6,0)到渐近线2x -2y =0的距离d =|2×6|6=2, 所以|PF |=2,所以|PO |=(6)2-(2)2=2,所以△PFO 的面积为12×2×2=2, 故C 正确;|PF |的最小值即为点F 到渐近线的距离,即|PF |=2,故D 不正确.12.(2022·湖南师大附中模拟)已知双曲线C: x 24-y 2b2=1(b >0),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫1,132 C.⎝⎛⎭⎫ 32,132 D .(1,13) 答案 B解析 由题意可知双曲线的其中一条渐近线为y =b 2x ,即bx -2y =0, 又该圆的圆心为(c ,0),故圆心到渐近线的距离为bc b 2+4, 则由题意可得bc b 2+4<3,即b 2c 2<9(b 2+4), 又b 2=c 2-a 2=c 2-4,则(c 2-4)c 2<9c 2,解得c 2<13,即c <13,则e =c a =c 2<132,又e >1, 故离心率的取值范围是⎝⎛⎭⎫1,132. 13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为x -2y =0,双曲线的左焦点在直线x +y +5=0上,A ,B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,直线P A ,PB 的斜率分别为k 1,k 2,则k 1+k 2的取值范围为( )A .(1,+∞)B .(2,+∞)C .(2,+∞)D .[2,+∞)答案 A 解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为x -2y =0,可得a =2b ,由双曲线的左焦点在直线x +y +5=0上,可得c =5,则由a 2+b 2=c 2,得a =2,b =1,双曲线的方程为x 24-y 2=1, 由题意可得A (-2,0),B (2,0),设P (m ,n )(m >2,n >0),则m 24-n 2=1,即n 2m 2-4=14, k 1k 2=n m +2·n m -2=n 2m 2-4=14, 易知k 1,k 2>0,则k 1+k 2≥2k 1k 2=1,由A ,B 分别为双曲线的左、右顶点,可得k 1≠k 2,则k 1+k 2>1.14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为原点,若以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,且|F 1P |=3|OP |,则C 的渐近线方程为________. 答案 y =±3x解析 根据双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,O 为原点,以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,如图所示,则|F 1O |=|OP |=c ,|F 1P |=3|OP |=3c ,所以在△POF 1中,由余弦定理可得cos ∠POF 1=|OP |2+|OF 1|2-|PF 1|22|OP |·|OF 1|=c 2+c 2-()3c 22×c ×c=-12. 所以∠POF 1=2π3,则∠POF 2=π3,所以tan ∠POF 2=tan π3=3, 则渐近线方程为y =±3x .15.(多选)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点在圆O :x 2+y 2=13上,圆O 与双曲线C 的渐近线在第一、二象限分别交于点M ,N ,点E (0,a )满足EO →+EM →+EN →=0(其中O 为坐标原点),则( )A .双曲线C 的一条渐近线方程为3x -2y =0B .双曲线C 的离心率为132C .|OE →|=1D .△OMN 的面积为6答案 ABD解析 如图,设双曲线C 的焦距为2c =213,MN 与y 轴交于点P ,由题意可知|OM |=c =13,则P (0,b ),由EO →+EM →+EN →=0得点E 为△OMN 的重心,可得|OE |=23|OP |, 即a =23b ,b 2a 2=c 2-a 2a 2=94, 所以a =2,b =3,e =132. 双曲线C 的渐近线方程为3x ±2y =0,|OE →|=2,M 的坐标为(2,3),S △OMN =6.16.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |.(1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .(1)解 设双曲线的半焦距为c ,则F (c ,0),B ⎝⎛⎭⎫c ,±b 2a , 因为|AF |=|BF |,所以b 2a=a +c , 所以c 2-a 2a=a +c , 所以c -a =a ,即c =2a ,所以e =2.(2)证明 设B (x 0,y 0),其中x 0>a ,y 0>0. 因为e =2,故c =2a ,b =3a , 故双曲线的渐近线方程为y =±3x ,所以∠BAF ∈⎝⎛⎭⎫0,π3,∠BF A ∈⎝⎛⎭⎫0,2π3. 当∠BF A =π2时, 由题意易得∠BAF =π4, 此时∠BF A =2∠BAF .当∠BF A ≠π2时, 因为tan ∠BF A =-y 0x 0-c =-y 0x 0-2a, tan ∠BAF =y 0x 0+a, 所以tan 2∠BAF =2y 0x 0+a 1-⎝⎛⎭⎫y 0x 0+a 2=2y 0(x 0+a )(x 0+a )2-y 20 =2y 0(x 0+a )(x 0+a )2-b 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3(x 20-a 2) =2y 0(x 0+a )-3(x 0-a ) =-y 0x 0-2a=tan ∠BF A ,因为2∠BAF ∈⎝⎛⎭⎫0,2π3,故∠BF A =2∠BAF . 综上,∠BF A =2∠BAF .。
精品导学案:1. 1.3双曲线及其标准方程课前预习学案一、预习目标①双曲线及其焦点,焦距的定义。
②双曲线的标准方程及其求法。
③双曲线中a,b,c的关系。
④双曲线与椭圆定义及标准方程的异同。
二、预习内容①双曲线的定义。
②利用定义推导双曲线的标准方程并与椭圆的定义、标准方程和推导过程进行李类比。
③掌握a,b,c之间的关系。
三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、教学过程前面我们学习过椭圆,知道“平面内与两定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆”。
下面我们来考虑这样一个问题?平面内与两定点F1,F2的距离差为常数的点的轨迹是什么?我们在平面上固定两个点F1,F2,平面上任意一点为M,假设|F1F2|=100,|MF1|>|MF2|且|MF1|-|MF2|=50不断变化|MF1|和|MF2|的长度,我们可以得出它的轨迹为一条曲线。
若我们交换一下长度,|MF1|<|MF2|且|MF1|-|MF2|=-50时,可知它的轨迹也是一条曲线那么由这个实验我们得出一个结论:“平面内两个定点F1,F2的距离的差的绝对值为常数的点的轨迹是双曲线。
”但大家思考一下这个结论对不对呢?我们知道在椭圆定义里,到两定点的距离和为一个常数,这个常数(必须大于|F1F2|)那么这里差的绝对值为一个常数,这个常数和|F1F2|有什么关系呢?下面我们来看一个试验,当|MF1|-|MF2|=0时,M点的轨迹为F1,F2的中垂线;随着|MF1|-|MF2|的不断变化,呈现出一系列不同形状的双曲线;当|F1F2|即和|F1F2|长度相等时,点的轨迹为以F1,F2为端点的两条射线;若|MF1|-|MF2|>100 时,就不存在点M。
那么由以上的一些试验我们可以得出双曲线的准确定义:定义:平面内与两定点F1,F2的距离差的绝对值为非零常数(小于|F1F2|)的点的轨迹是双曲线。
《双曲线的定义及标准方程》教学案例教学案例:《双曲线的定义及标准方程》一、教学目标:1.理解双曲线的定义及性质。
2.掌握双曲线的标准方程及其图形特点。
3.能够根据给定双曲线的图形特点写出其标准方程。
4.能够通过双曲线的标准方程确定其图形特点。
二、教学内容及流程:1.导入(5分钟)引入双曲线的概念,通过展示一些与双曲线有关的图片,让学生对双曲线有初步的了解。
2.双曲线的定义及性质(15分钟)a.定义:双曲线是平面上一点到两个给定点的距离差为常数的轨迹。
b.性质:-双曲线有两个焦点,两个焦点之间的距离为2a。
-所有点到焦点的距离差的绝对值等于常数e。
-双曲线的两支分别称为左支和右支。
-双曲线关于x轴和y轴对称。
-双曲线不过坐标原点。
3.双曲线的标准方程(20分钟)a.一般方程的推导:1)设焦点为F1(c,0),F2(-c,0),离心率为e,任意点P(x,y)到F1,F2点的距离之差为2a。
2)根据勾股定理得到双曲线的一般方程:(x-c)^2/a^2-(y-0)^2/b^2=13)根据离心率与焦距之间的关系,得到椭圆的离心率e=c/a。
b.双曲线的标准方程:右支的标准方程:(x-h)^2/a^2-(y-k)^2/b^2=1左支的标准方程:(y-k)^2/b^2-(x-h)^2/a^2=14.双曲线的图形特点及画图(40分钟)a.图形特点:-右支:左右开口,焦点在x轴右侧,顶点在x轴上方。
-左支:左右开口,焦点在x轴左侧,顶点在x轴上方。
-右支和左支均无渐近线。
b.画图:1)确定焦点F1和F2的位置。
2)确定顶点的位置。
3)确定轴的位置,轴的长度为2a。
4)确定两支的开口方向。
5.解析练习(20分钟)提供一些练习题,让学生根据给定的双曲线的图形特点写出其标准方程,并画出图形。
三、教学反思:《双曲线的定义及标准方程》的教学过程应当以学生的参与为主导,通过引导学生观察、思考和分析,使他们深入理解双曲线的定义及性质,并能够应用所学知识解决实际问题。
第二章 圆锥曲线与方程2.2.1 双曲线及其标准方程一、学习目标1.掌握双曲线的定义;2.掌握双曲线的标准方程.【重点、难点】1.双曲线的定义及标准方程2.双曲线的标准方程的推导及简单应用二、学习过程【复习引入】复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.【导入新课】问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,12MF MF -是常数,这样就画出一条曲线;由21MF MF -是同一常数,可以画出另一支.新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。
两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴) 其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?【典型例题】【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P (3,154),Q (-163,5); (2)c =6,经过点(-5,2),焦点在x 轴上.【例2】 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点. (1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2【变式拓展】1. 求适合下列条件的双曲线的标准方程:(1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6).2.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.三、总结反思1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.四、随堂检测1.动点P 到点M (1,0),N (-1,0)的距离之差的绝对值为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .(22,0) B .(52,0)C .(62,0) D .(3,0)3.满足条件a =2,一个焦点为(4,0)的双曲线的标准方程为( )A.x 24-y 212=1B.x 212-y 24=1C.x 24-y 216=1 D.x 216-y 24=14.已知双曲线x 216-y 29=1的左支上一点M 到其左焦点F 1的距离为10,求点M 到该曲线左焦点F 2的距离.。
双曲线方程(1)导学案班级: 姓名: 学号: 第 学习小组【学习目标】理解双曲线的定义及标准方程【课前预习】1.回顾椭圆的定义,标准方程2.平面内到两定点的距离的差为常数的点的轨迹是什么?3.拉链演示4.双曲线的定义:平面内与两个定点1F ,2F 的距离的差的绝对值为常数(小于21F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。
即曲线上的点M 满足:a MF MF 221=-(a 为定值,a F F 221>)思考:(1)若a F F 221=,点M 的轨迹是什么?(2)若a F F 221<,点M 的轨迹是什么?【课堂研讨】例1、 双曲线标准方程的推导:以焦点在x 轴的双曲线为例,类比椭圆标准方程的推导过程,探求曲线方程的一般步骤求解。
到双曲线的标准方程为12222=-by a x注:(1)12222=-b y a x 或12222=-bx a y 均称为双曲线的标准方程; (2)c b a ,,三者的关系:222b a c +=,注意与椭圆中c b a ,,三者关系的区别;例2、已知双曲线的两个焦点坐标分别为()0,51-F ,()0,52F ,双曲线上一点P 到1F ,2F 距离差的绝对值等于6,求双曲线的标准方程例3、已知B A ,两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340m/s ,求炮弹爆炸点的轨迹方程。
【课堂检测】1.写出适合下列条件的双曲线的标准方程:(1)3,4==b a ,焦点在x 轴上;(2)焦点在x 轴上,经过点()3,2--,⎪⎪⎭⎫⎝⎛2,315;(3)焦点为()6,0-,()6,0,且经过点()5,2-2.求证:双曲线151522=-y x 与椭圆192522=+y x 焦点相同;3.已知方程11222=+-+m y m x 表示双曲线,求m 的取值范围【课后巩固】1.双曲线064422=+-y x 上一点P 到焦点1F 的距离等于1,那么点P 到另一个焦点2F 的距离是 ;2.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹A .椭圆B .线段C .双曲线D .两条射线3.方程11122=-++ky k x 表示双曲线,则k 的取值范围是 4. 求双曲线14122222=--+m y m x 的焦距5.写出适合下列条件的椭圆的标准方程:(1)焦点在x 轴上,52=a ,并且经过点()2,5-A ;(2)经过点()26,7--A ,()3,72B。
《双曲线的标准方程》导学案教学目标:
.了解双曲线的标准方程的推导过程,能根据已知条求双曲线的标准方程.
2.掌握双曲线两种标准方程的形式.
教学重点:
根据已知条求双曲线的标准方程.椭圆和双曲线标准形式中a,b,间的关系.
教学难点:
双曲线的标准方程的推导.
学习过程:
一、复习回顾
.椭圆的定义是什么?
2.椭圆的标准方程是什么?
3.双曲线的定义是什么?
二、双曲线的标准方程的推导方程
三、例题讲解
例 1 已知双曲线两个焦点分别为,,双曲线上一点到F1,F2距离差的绝对值等于8,求双曲线的标准方程.例2求适合下列条的双曲线的标准方程;
(1)焦点在x轴上;
(2)
(3),一个焦点的坐标是
(4),经过点,焦点在轴上
()经过点焦点在轴上
例3若方程表示双曲线,求实数的取值范围。
四、堂练习
、本p39
、2、4
2.求与椭圆有相同焦点,并且经过点的双曲线的标准方程.
五、归纳小结
.双曲线的标准方程:
焦点的位置
焦点在x轴上
焦点在轴上
图形
标准方程
焦点坐标
F1 ,F2 .
F1 ,F2 .
a,b,之
间的关系
2.椭圆与双曲线的区别与联系是什么?
曲线
椭圆
双曲线
适合条的点的集合
a,b,之间的关系
标准方程
或
或(,a不一定大于b)图形特征
封闭的连续曲线
分两支,不封闭,不连续六、作业。