人教版九年级数学二次根式总复习教学设计
- 格式:doc
- 大小:280.50 KB
- 文档页数:4
人教版九年级二次根式教课方案信息化教课方案模板教师姓名电话学科初中数学年级九年级教材版本人教版章节/学时21章1学时工作坊(班级)初中数学学校(单位)教课方案教课主题二次根式一、教材剖析这节课是九年级上册第21章二次根式第一节二次根式第一课时的所有内容,这部分知识牢牢的承接着学生们刚学完的数的开方,这部分知识在整个初中阶段的数学课程中起侧重要的作用,学生们学好这部分内容,为此后的数学学习打下了一个坚固的基础。
二、学生剖析依据九年级学生的学习数学知识的认知特点,已经初步具备了必定的的察看、归纳、归纳和语言表达能力,从学生刚学过的数的开方引入本课,再指引学生由详细到抽象,提升学生的综合素质。
三、教课目的知识与技术:1、理解并掌握二次根式的观点;2、掌握二次根式的基天性质。
过程与方法:1、先提出问题,让学生疏组议论、剖析问题,并在老师的指引下归纳,进而得出二次根式的观点;2、再在老师的规划下对观点的内涵进行剖析,得出二次根式建立的条件,并运用这一条件进行二次根式存心义的判断。
3、最后由老师经过实例,抽象、归纳得出二次根式的基天性质。
感情态度与价值观:学生经历察看、比较、总结二次根式的基天性质,发展学生的归纳归纳能力,培育学生的自信心。
四、教课环境√简略多媒体教课环境□交互式多媒体教课环境√网络多媒体环境教课环境□挪动学习□其余五、信息技术应用思路(突出三个方面:使用哪些技术?在哪些教课环节如何使用这些技术?使用这些技术的预期成效是?)200字本课的教课方案是以学生的学习基础,九年级学生的心理特点,理解能力和本节课的教材特点而精心设计。
由新旧知识点的迁徙和联系,在教师的指引下,调换学生学习二次根式的踊跃性,在教课过程中间,运用信息化手段,提升学生学习的踊跃性,培育学生优秀的团队协作精神,培育学生独立思虑问题的能力,培育学生严实的逻辑思想能力,培育学生自己着手归纳总结的能力,培育学生清楚的表达能力。
总之,教师在学生学习二次根式知识的同时要全力提升学生的综合素质。
数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
人教版九年级数学上册教案:二次根式一、教学目标1.理解二次根式的概念,能够将二次根式化为最简式。
2.掌握二次根式的运算法则,能够进行二次根式的加、减、乘、除运算。
3.能够应用二次根式进行代数式的化简、方程的解法等数学问题的求解。
二、教学重点1.二次根式的概念和最简式的求解方法。
2.二次根式的加、减、乘、除法则及其运用。
3.能够将代数式化简为二次根式的形式,并能应用二次根式解决相关数学问题。
三、教学难点1.能够熟练运用二次根式的运算法则进行相关数学运算。
2.能够将代数式化简为二次根式的形式,并应用二次根式解决相关数学问题。
四、教学内容与方法A. 教学内容第一节:二次根式1.二次根式的概念2.二次根式的化简方法3.二次根式的性质第二节:二次根式的加减法和乘法1.二次根式的加减法2.二次根式的乘法及其运用第三节:二次根式的除法和应用1.二次根式的除法及其运用2.将代数式化简为二次根式的形式3.应用二次根式解决相关数学问题B. 教学方法1.教师讲授法:通过讲解概念、性质、公式及样例等内容,引导学生逐步理解二次根式,并掌握相关的运算法则和解题技巧。
2.组合练习法:通过经典案例,让学生运用二次根式进行加、减、乘、除的运算,以及代数式的化简和相关问题的求解等,从而提高他们的理论水平和实际运用能力。
3.实践体验法:通过互动教学、团队合作、模拟测验等方式,让学生在实践中感受二次根式的实际应用,从而加深他们对二次根式概念、性质及其运算方法等的认知和理解,同时培养他们的数学思维和创新能力。
五、教学过程A. 概念教学1.向学生介绍二次根式的概念,并且提供一些简单的实验让学生加深对概念的理解。
2.猜想二次根式的化简方法,并通过案例进行验证。
3.介绍二次根式的性质,帮助学生加深对二次根式的理解和认知。
B. 运算法则1.通过样例演示二次根式的加减法和乘法,并提供练习题让学生巩固运算法则。
2.介绍二次根式的除法及其应用,并且应用解决一些相关数学问题。
二次根式复习课教案教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例6分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2 B.a≥2C.a≠2 D.a<2A.x+2 B.-x-2C.-x+2 D.x-2A.2x B.2aC.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
二次根式复习学习目标:理清本章的知识结构2、通过讲与练的结合对本章所学的知识进行回想、运用重点 、难点突破1、二次根式的性质(2条)2、二次根式的最简形式与同类二次根式的有关概念3、二次根式的运算步骤与方法一、课前准备:知识点1、二次根式的概念:形如 的式子叫做二次根式。
知识点2、二次根式的性质: 1.=2)(a (a ≥0),≥0)3. ⎪⎩⎪⎨⎧<=>==)0___()0___()0___(____2a a a a知识点3:二次根式的乘除: 1.计算公式:{⎪⎩⎪⎨⎧>≥=≥≥=⋅)0,0___()0,0___(b a b a b a b a 除法运算:乘法运算: 2.化简公式:⎪⎩⎪⎨⎧>≥=≥≥=⋅)0,0___()0,0___(b a b a b a b a 知识点4:二次根式的加减:1.法则:2.概念:⎩⎨⎧同类二次根式:最简二次根式:.2.1知识点5:二次根式化简求值步骤:1.“一分”:分解因数(因式)、平方数(式);2.“二移”:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;3.“三化”:化去被开方数中的分母。
知识点6:二次根式的加减步骤:1.化简;2.判断;3分类;4.合并。
二、例题选讲:1有意义的x 的取值范围是_____________有意义的x 的取值范围是_________________ 2、当5a等于变式题:已知x,<y,化简的结果是__________________3、计算题:(1)⎛- ⎝(2)(33变式题:(1)(33142---⎝(2)(四、练习12的整数部分为m ,小数部分为n,求3m+2n 的值变式题:若a的整数部分,b 是它的小数部分,则2b a -1=___________2、如图,数轴上表示的数2的点分别为A 、B 点,C 与A 关于B 点对称,则点C 表示的数是3、观察下列运算,完成下列各题的解答: 43(1) 判断下列各式是否正确=( )=( )=( )=( ) (2) 根据上述判定结果你能发现什么规律?请你用含有自然数n 的式子将你发现的规律写出来,并注明n 的取值范围。
第21章 二次根式总复习教学目标:1、了解二次根式的定义,掌握二次根式有意义的条件和性质。
2、熟练进行二次根式的乘除法运算。
3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。
4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。
教学重点:二次根式的计算和化简。
教学难点:二次根式的混合运算,正确依据相关性质化简二次根式。
一、 课前热身1、下列各式是否是二次根式⑴; ⑵; ⑶; ⑷; ⑸; ⑹;2、化简下列各式:(1______=______=(3)4×9=______ 94⨯=______ (43、观察下列各组式子,哪组式子可以合并:(1)2322与 (2)32与 (3)205与 (4)1218与 4、计算:(1)_______20125_______;2712=-=+ (2)(38+)×6 (3)326324⨯-÷ 5、当x=﹣4时,的值是 。
二、课堂教学设计【知识点1】二次根式的概念:一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。
二次根式的实质是一个非负数数a 的算数平方根。
【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数取值范围的限制:被开方数a 必须是非负数。
1、使1x-2有意义的x 的取值范围是( ) A .x ≥0 B .x ≠2 C .x>2 D .x ≠2. 2、若y=5-x +x -5+2008,则x+y= 【知识点2】二次根式的性质:(1)二次根式的非负性,)0(0≥≥a a 的最小值是0)是一个非负数,即)0(0≥≥a a 。
注:因为二次根式)0(0≥≥a a 表示a 的算术平方根,这个性质在解答题目时应用较多,如0=,则a=0,b=0;0b =,则a=0,b=0;20b =,则a=0,b=0。
(2)2a =() 文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式2a =()是逆用平方根的定义得出的结论。
教学三维目标知识与技能1、理解二次根式的概念。
最简二次根式的定义2、使学生会通过合并同类二次根式,进行二次根式的加减法。
3、合并同类二次根式,进行二次根式的加减法。
4、使学生复习和巩固二次根式的除法运算法则以及将分母有理化的方法,会用它熟练地进行简单的二次根式的乘除法运算。
5、使学生复习和巩固利用乘法公式化简某些二次根式的混合运算6、使学生会进行有关二次根式的简单的加减、乘除法混合运算。
过程与方法使学生通过二次根式的加减,乘除进一步了解归类的思想方法。
培养学生的运算能力。
情感态度价值观使学生通过同类二次根式的各类计算,培养从特殊中找出一般,从个性中找出共性的对立统一观点的数学思想方法。
教学重点最简二次根式的化简。
会求出二次根号下的一次式中字母的取值范围。
二次根式2a 性质以及运用。
理解并掌握积的算术平方根的性质二次根式的除法运算法则的运算以及将分母有理化的方法。
教学难点最简二次根式的识别使学生复习和巩固有关二次根式的简单的加、减、乘混合运算。
培养学生的运算能力。
分母有理化。
教具学具小黑板、实物投影、PPT等本节课预习作业题1、x 是怎样的实数时,式子在实数范围内有意义?(1)3-x; (2)2)1(+x; (3)11-x2、设 x 为任意实数,下面的化简对吗?如果不对,应怎样改正?(1) xx=2; (2)24xx=; (3)36xx=3、化简:(1)2)37(-; (2)-2)615(; (3)2)14.3(π-;(4)648t (t <0) 4、计算:(1)2710⨯(2) 15 45÷2125、计算:(1) 545161322-+;(2) )7581()3125.0(--- 教学设计: 教学 环节教学活动过程 思考与调整活动内容师生行为“15分钟温故、自学、群学”环节学生可举手回答、老师做点评 回忆、熟悉掌握几条公式()()02≥=a a a aa =2(任何实数()0,0≥≥⋅=b a b a ab 推论:()0,02≥≥=y x y x y x()0,0≥≥=b a ba ba化简:(1)12; (2)211;(3)b a 245; (4)x 3x y;(5)2)1514(- ; (6)n m 281;(m <0) (7)2)732.13(-(8))()(2n m n m <- (9))5(25102-<++m m m ; (10))1523(63-;1、教师课前检查了解学生完成复习作业情况。
二次根式复习教案教案标题:二次根式复习教案一、教学目标:1. 知识目标:复习二次根式的定义、性质和运算规律。
2. 能力目标:培养学生对二次根式的理解和运用能力,提高解决实际问题的能力。
3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维和创新意识。
二、教学重点和难点:1. 重点:二次根式的定义和性质,二次根式的加减乘除运算。
2. 难点:二次根式的运算规律和实际问题的应用。
三、教学内容和安排:1. 复习二次根式的定义和性质:引导学生回顾二次根式的定义,以及二次根式的性质,如同底数、同指数的二次根式可以合并为一个二次根式等。
2. 二次根式的加减运算:通过例题讲解,引导学生掌握二次根式的加减运算规律,特别是要注意化简和合并同类项。
3. 二次根式的乘除运算:通过例题讲解,引导学生掌握二次根式的乘除运算规律,特别是要注意分子分母的有理化和化简。
4. 实际问题的应用:通过实际问题的讨论和解答,引导学生将二次根式的知识应用到实际生活中,培养学生的问题解决能力。
四、教学方法和手段:1. 讲授法:通过讲解和示范,引导学生理解和掌握二次根式的定义、性质和运算规律。
2. 练习法:设计一定数量和难度的练习题,让学生巩固和应用所学知识。
3. 实践法:引导学生通过实际问题的讨论和解答,将二次根式的知识应用到实际生活中。
五、教学评价和反馈:1. 课堂练习:布置一定数量和难度的练习题,让学生在课后进行练习,及时发现和纠正错误。
2. 课堂表现:通过课堂讨论和练习的表现,及时评价和反馈学生的学习情况,鼓励优秀,帮助落后。
六、教学资源准备:1. 教学课件:准备相关的教学课件,包括二次根式的定义、性质和运算规律的示意图和例题。
2. 教学工具:准备黑板、彩色粉笔、教学实物等教学工具。
七、教学反思和改进:1. 教师要及时总结课堂教学的得失,反思教学方法和手段的有效性,不断改进教学内容和安排,提高教学质量。
2. 学生的学习情况要及时反馈给家长,与家长密切合作,共同关注学生的学习进步。
人教版九年级上册21.1二次根式教学设计一、教学目标1.了解二次根式的基本概念和性质。
2.掌握二次根式乘法法则。
3.掌握二次根式的化简和简单应用。
二、教学准备1.计算器。
2.小黑板、彩色粉笔。
3.练习册、评价表。
4.课件、视频等多媒体设备。
三、教学流程3.1 导入(5分钟)教师出示几个简单的二次根式,并引导学生思考以下问题:•什么是二次根式?•二次根式有哪些基本性质?3.2 讲授(25分钟)3.2.1 二次根式的定义和概念(10分钟)搭建二次根式的定义和概念,包括:•二次根式的定义:形如$\\sqrt{a}$ ($a\geq 0 $)的式子。
•二次根式的基本形式:$\\sqrt{a}$。
•二次根式的倒数:$\\dfrac{1}{\\sqrt{a}} =\\dfrac{\\sqrt{a}}{a}$。
•二次根式的加减法:同底数$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。
•二次根式化简:比如$\\sqrt{4a^2b} = 2ab$。
3.2.2 二次根式乘法法则(10分钟)搭建二次根式乘法的基本法则,引导学生掌握二次根式的乘法,包括:•二次根式之积仍为二次根式,比如$\\sqrt{a}\\times \\sqrt{b} = \\sqrt{ab}$。
•化简二次根式的过程。
3.2.3 二次根式的简单应用(5分钟)引导学生了解二次根式的简单应用,如:•计算周长、面积、体积等问题。
3.3 练习(20分钟)让学生做一些简单的练习题,如:•$\\sqrt{5}\\times \\sqrt{20}$。
•$\\sqrt{a^2}\\times \\sqrt{b}$。
•$(\\sqrt{3} + \\sqrt{2})^2$。
3.4 总结(5分钟)让学生自行总结本课的重点和难点。
四、课后作业布置适当的作业,巩固学生对二次根式概念和乘法法则的掌握。
五、教学评价教师可以通过教学课件、小板书、作业评分等对学生的学习情况进行评价。
21.1 二次根式(1)第一课时一、教学目标: a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 三、 教学过程:例1. 下列式子,哪些是二次根式,1xx>0)、、、1x y+(x ≥0,y•≥0).例2. 当x四、应用拓展:例3.当x 11x +在实数范围内有意义?例4(1)已知,求xy的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、课后作业: (一)选择题:1.下列式子中,是二次根式的是( )A .BC .x 2.下列式子中,不是二次根式的是( )A B .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5B .15D .以上皆不对 (二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根.(三)综合提高题:1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.21.1 二次根式(2)第二课时一、教学目标:a≥02=a(a≥0),并利用它们进行计算和化简.二、教学重难点:1a≥0)是一个非负数;2=a(a≥0)及其运用.2.难点:a≥0)是一个非负数;用探究的方法导出2=a(a≥0).三、教学过程:例1 计算)21.)2 2.(2 3.2 4.(2四、应用拓展:例2 计算1.2(x≥0) 2.23.2 4.2例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数; 2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2) P9 7.七、课后作业:(一)选择题:1二次根式的个数是( ). A .4 B .3 C .2 D .1 2.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 (二)填空题1.(2=______. 2_______数.(三)综合提高题 1.计算(1)2(2)-)2(3)(12)2(4)()2 (5)2.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式(3)第三课时一、教学目标: (a ≥0)并利用它进行计算和化简.二、教学重难点:1a (a ≥0). 2.难点:探究结论. 三、教学过程: 例1 化简(1(2(3(4四、应用拓展:例2、填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1),则a 可以是什么数?(2),则a 可以是什么数?(3),则a 可以是什么数?(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业: 1.教材P 8习题21.1 3、4、6、8. 七、课后作业:(一)选择题:1). A.0 B.23C.423D.以上都不对2.a≥0).AC.(二)填空题:1.=________.2.是一个正整数,则正整数m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│21.2 二次根式的乘除(1)第四课时a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1=(2六、归纳小结:本节课应掌握:(1(a≥0,b≥0)a≥0,b≥0)及其运用.七、布置作业:1.课本P15 1,4,5,6.(1)(2).八、课后作业:(一)选择题1,•那么此直角三角形斜边长是().A.cm B..9cm D.27cm2.化简) A..3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A..C.³.(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm³30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)第五课时一、教学目标:a ≥0,b>0(a ≥0,b>0)及利用它们进行运算.二、教学重难点:1(a ≥0,b>0)(a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定. 三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3 (4 四、巩固练习: 教材P14 练习1.五、应用拓展:例3=x 为偶数,求(1+x 的值.六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9. 八、课后作业:(一)选择题: 1.的结果是( )A .27.27C .72.阅读下列运算过程:====数学上将这种把分母的根号去掉的过程称作“分母有理化”的结果是( )A .2B .6C .13D(二)填空题:1.分母有理化2.已知x=3,y=4,z=5_______.(三)综合提高题:1:1,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1²(m>0,n>0)(2)(a>0)21.2 二次根式的乘除(3)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.三、教学过程:例1.(1)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.四、巩固练习:教材P14练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-从计算结果中找出规律,并利用这一规律计算BAC+)+1)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用. 七、布置作业:1.教材P 15 习题21.2 3、7、10.八、课后作业: (一)选择题:1(y>0)是二次根式,那么,化为最简二次根式是( ). A (y>0) B y>0) C (y>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A ..3.在下列各式中,化简正确的是( )A =±12C 2D .4的结果是( ) A . B . C ..(二)填空题:1.化简=_________.(x ≥0) 2.a 化简二次根式号后的结果是_________.(三)综合提高题:1.已知a 正确,•请写出正确的解答过程:2.若x 、y 为实数,且21.3 二次根式的加减(1)第七课时一、教学目标:理解和掌握二次根式加减的方法.二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式. 三、教学过程:例1.计算:(1(2例2.计算:(1)(2)+ 四、巩固练习:教材P 19 练习1、2. 五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23-(x )的值.六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5. 八、课后作业:(一)选择题:1.以下二次根式:;( ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17=1,其中错误的有( ). A .3个 B .2个 C .1个 D .0个 (二)填空题:1.在、是同类二次根式的有________.2.计算二次根式的最后结果是________.(三)综合提高题:1 2.236-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27.21.3 二次根式的加减(2)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.三、教学过程:例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3aa、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式) A...以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A...(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)ACQPBA C2m1m4m D(三)综合提高题:1.n 是同类二次根式,求m 、n21.3 二次根式的加减(3)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算. 三、教学过程:例1.计算:(1)(2)(例2.计算:(1))( (2)))四、巩固练习:课本P 20练习1、2. 五、应用拓展: 例3.已知x b a-=2-x a b -,其中a 、b 是实数,且a+b ≠0,六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算. 七、布置作业: 1.教材P 21 习题21.3 1、8、9. 八、课后作业:(一)选择题1. ).A .203.23.23.2032 ). A .2 B .3 C .4 D .1 (二)填空题:1.(-12+2)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.(三)综合提高题: 12.当时,的值.(结果用最简二次根式表示)第二十二章一元二次方程第十课时一、教学目标:了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念。
人教版九年级上册数学教案第二^一章二次根式一、教材分析本章是在第13章的基础上,进一步研究二次根式的概念和运算。
在本章中, 学生将学习二次根式的概念、性质、运算法则和化简的方法,通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。
学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据,重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
本章内容分为三节,第一节主要学习二次根式的概念和性质,本节既是第10章相关内容的发展,同时又是后面两节内容的基础,因此本节起承上启下的作用;第二节是二次根式的乘除运算,主要研究二次根式的乘除运算法则和二次根式的化简;第三节是二次根式的加减,主要研究二次根式的加减运算法则和进一步完善二次根式的化简。
在第21.1节“二次根式”中,教科书首先给出四个实际问题,要求学生利用已学的平方根和算术平方根的知写出这四个问题的答案,并分析所得答案的表达式的共同特点引出二次根式的概念。
在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。
接下去,教科书依次探讨了关于二次根式的结论:T"是一个非负数、-二二-匚、■「」•:;© M::。
对于“- -1是非负数”,教科书是利用算术平方根的概念得到的;对于• 1 ='''',教科书则采用由特殊到一般的方法归纳得出的。
在研究这个结论时,教科书首先设置“探究”栏目,要求学生利用算术平方根的概念进行几个具体的计算,并对运算过程和运算结果进行进一步的分析,最后归纳给出这条结论;对于结论’:匕亠二“—,教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。
第一节的内容是学习后两节内容的直接基础。
x-=1 B.x≥-1 C .下列各等式成立的是(5=8 5BACQP教学重点 利用二次根式化简的数学思想解应用题. 教学难点 讲清如何解答应用题既是本节课的难点. 教具准备教 学 过 程主要教学过程个人修改【课堂引入】上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.【探索新知】【例题讲解】例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值. 解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x依题意,得:12x ·2x=35x 2=35 x=35所以35秒后△PBQ 的面积为35平方厘米. PQ=2222245535PB BQ x x x +=+==⨯=57答:35秒后△PBQ 的面积为35平方厘米,PQ 的距离为57厘米. 例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.解:由勾股定理,得AB=22224220AD BD +=+==25BC=222221BD CD +=+=5 所需钢材长度为 AB+BC+AC+BD =25+5+5+2 =35+7≈3×2.24+7≈13.7(m )答:要焊接一个如图所示的钢架,大约需要13.7m 的钢材. 【随堂练习】教材P19 练习3 【应用拓展】例3.若最简根式343a b a b -+与根式23226ab b b -+是同类二次根式,求a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式23226ab b b -+不是最简二次根式,因此把23226ab b b -+化简成|b|·26a b -+,才由同类二次根式的定义得3a-•b=•2,2a-b+6=4a+3b .解:首先把根式23226ab b b -+化为最简二次根式:23226ab b b -+=2(216)b a -+=|b|·26a b -+由题意得432632a b a b a b +=-+⎧⎨-=⎩∴24632a b a b +=⎧⎨-=⎩∴a=1,b=1 【归纳小结】本节课应掌握运用最简二次根式的合并原理解决实际问题. 【课后练习】一、选择题X|k |b| 1 . c|o |m。
《二次根式复习课》教学设计《二次根式复习课》教学设计小明要沿着如图所示的路线前进,请问从 A B 所走的路程为m ;若 BE a ,则从 B C 所走的路程为m (结果保留根号)。
---- 黄州中学马利民教学背景《二次根式》是人教版《数学》初中九年级上册第一章的内容,属于“数与代数”领域。
它是在学生学习了平方根、立方根等内容的基础上进行的,是对“实数” “代数式”等内容的延伸和补充。
本章的主要内容有二次根式的概念、性质、运算和应用。
二次根式的性质的依据是算术平方根的概念。
二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。
这些都说明了前后知识之间的内在联系。
本章的学习将为今后进一步学习根式奠定基础,本章的内容在日常生活和生产实际中有着广泛的应用。
复习目标1、知识与技能目标(1)了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则。
(2)用二次根式的意义和性质进行求取值范围化简和运算。
(3)会初步运用二次根式的性质及运算解决简单的实际数学问题。
2、过程与方法目标(1)经历应用性质解决问题的过程,发展运算能力,体验数学的严谨性。
(2)经历梳理本章所学内容,形成知识体系,培养学生归纳和概括能力。
(3)经历本章的学习过程,渗透转化、分类讨论和类比等数学思想方法。
3、情感与态度目标(1)通过常见的情境资料,吸引学生注意力,激发学生学习兴趣,拉近师生之间情感距离,为完成本复习课打下良好的基础。
(2)通过老师的及时表扬,鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,让学生体验成功的喜悦,增加学生学习数学的兴趣的信心。
(3)通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又反过来应用于实际的辩证唯物主义思想。
《二次根式总复习》教学设计
学校:天祝四中 教者:田新琳
教学目标:
1、理清本章的知识结构。
2、通过讲与练的结合对本章所学的知识进行回想、运用。
重点 、难点突破:
1、二次根式的性质(3条)。
2、二次根式的最简形式与同类二次根式的有关概念。
3、二次根式的运算步骤与方法。
课前准备: 幻灯片、题卡
一、 课前热身
1、下列各式是否是二次根式 ⑴; ⑵; ⑶; ⑷; ⑸; ⑹;
2、化简下列各式:
(1______= ______= (3)4×9=______
94⨯=______ (4
=________3、观察下列各组式子,哪组式子可以合并: (1)2322与 (2)32与 (3)205与 (4)1218与
4、计算:(1)_______20125_______;2712=-=+
(2)(38+)×6 (3)326324⨯-÷ 5、当x=﹣4时,的值是 。
二、课堂教学设计
【知识点1】二次根式的概念:一般地,我们把形如)0
(0≥
≥a
a的式子叫做二次根式。
二次根式的实质是一个非负数数a的算数平方根。
【注】二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数取值范围的限制:被开方数a必须是非负数。
1、使
1
x-2
有意义的x的取值范围是()
A.x≥0 B.x≠2 C.x>2 D.x≠2.
2、若y=5
-
x+x
-
5+2008,则x+y=
【知识点2】二次根式的性质:
(1)二次根式的非负性,
)0
(0≥
≥a
a的最小值是0
()是一个非负数,即)0
(0≥
≥a
a。
注:因为二次根式)0
(0≥
≥a
a表示a的算术平方根,这个性质在解答题目时应用较多,如
=,则a=0,b=0;0
b=,则a=0,b=0;20
b=,则a=0,b=0。
(2)2a
=()文字语言叙述为:一个非负数的算术平方根
的平方等于这个非负数。
注:二次根式的性质公式2a
=()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若
,则2
a=,如:2
2=
(3)
1、若20
a-=,则2a b
-= 。
2n的最小值是()
A、4;
B、5;
C、6;
D、7.
3、a、b、c为三角形的三条边,则=
-
-
+
-
+c
a
b
c
b
a2)
(____________。
4、实数a、b在数轴上的位置如图所示,那么2a
b
a-
-的结果是什
么?
【知识点3】二次根式的乘除:(1)乘法法则:)0,0(≥≥=⋅b a ab b a 。
将上面的公式逆向运用可得:)0,0(≥≥∙=b a b a ab ( 积的算术平方根,等于积中各因式的算术平方根的积。
)
(2)除法法则:一般地,对于二次根式的除法规定
b a b a =).0,0(>≥b a 化简:321
--2sin60°
【知识点4】最简二次根式:(1)被开放数不含分母;(2)被开放数
中不含开得尽方的因数或因式。
选择:下列二次根式中,最简二次根式是( )
(B )xy (C
(D
【知识点5】二次根式的加减:二次根式加减时,先将二次根式化为
最简的二次根式,再将被开放数相同的根式进行合并。
1、 27)4
648(3
4-+- 2
n m 、n 的值.
【知识点6】二次根式的混合运算:二次根式的混合运算顺序与整式的混合运算顺序一样:先乘方,再乘除,最后加减,有括号的先算括号里面的。
计算:
024cos45((1)π+- +
三、课后延伸
1、(1)当x 时,
11x +在实数范围内有意义。
2
.(x ≥0)
3、已知a 、b 为实数,且满足233+-+-=b b a ,求b
a a
b ab +-⋅
1的值。
4
2440y y -+=,求xy 的值。
0
5、若a
b是它的小数部分,则2b a-1=___________
四:课堂总结。