第10讲 信息率失真函数的计算
- 格式:pdf
- 大小:241.04 KB
- 文档页数:3
信息率失真函数的定
义
所谓信息率失真,是指在数据传输过程中造成的原本可以正常识别的信息被破坏而无法被正确识别的现象。
它通常由某种外部的影响,如噪声、干扰或错误编码等因素造成。
具体来说,信息率失真函数是一种度量从输入到输出信号中信息率“差异”的函数。
它定义为信号输出中比原始信号(输入)中丢失的信息的分数。
可以用以下公式来表示信息率失真:
I_R=1-D_R
其中,I_R是信息率失真,D_R是失真率,它定义为输出信号(受失真影响的信号)比输入信号(未受失真影响信号)失真的部分所占的比例,单位是%。
计算信息率失真函数曲线信息率失真函数是指在给定平均失真度量下最小化信源数据率的函数。
它可以用来表示编码方案的效率。
下面是一个简单的例子,展示如何计算信息率失真函数曲线。
假设我们有一个二元信源,产生两个符号0和1,它们的出现概率分别为0.4和0.6。
我们希望将这个信源编码成另一个二元序列,用尽量小的码长来表示。
例如,我们可以用一个3位码来表示每个符号,例如0表示为000,1表示为001。
在这种情况下,我们得到的平均码长为2.4位,因为0的概率是0.4,需要3位码,1的概率是0.6,也需要3位码,所以平均码长是(0.4*3+0.6*3)=2.4位。
但是我们发现,这种编码方案并不是最优的,因为它使用了相同的码长来表示两个不同的符号,而0的概率更小,可以使用较短的码来表示。
因此,我们需要找到一种更好的编码方案,使得平均码长更小。
为了找到最优的编码方案,我们可以考虑信息率失真函数,它定义了信源数据率和失真之间的关系。
对于离散的信源,信息率失真函数定义为:R(D) = min{H(X): D(X,Y) <= D}其中,H(X)是信源的熵,D(X,Y)是表示信源X和编码后的序列Y之间的平均失真度量,D是允许的最大失真度量。
在我们的例子中,信源的熵为H(X)=-0.4*log2(0.4)-0.6*log2(0.6)=0.97095。
我们可以使用汉明码来表示这个信源,因为它是一种具有最小平均码长的编码方案。
汉明码基于两个符号之间的汉明距离,即它们不同的位数。
对于我们的信源,我们可以使用一个长度为2的汉明码。
具体来说,我们将0表示为00,将1表示为11,这样编码后的序列长度为2,平均码长为2*0.4=0.8位。
为了计算信息率失真函数曲线,我们需要计算不同的允许失真度量对应的最小信源数据率。
例如,当允许的最大失真为0.01位时,最小的信源数据率是0.8位,即汉明码的平均码长。
对于其他失真度量,我们可以使用类似的方法计算相应的信源数据率。
《信息论与编码》课程自学报告题目:信息论与编码自学报告学号:姓名:任课教师:联系方式:二零一四年2 月15 日1 自学内容阐述1.1 信息率失真函数1.1.1 失真函数与平均失真度失真函数:设离散信源概率分布为: 经信道传输后输出序列为: ,对任一 指定一个非负数 称为单个符号的失真度(或称失真函数)。
失真函数用来表征信源发出一个符号i a ,而在接收端再现成符号j b 所引起的误差或失真。
d 越小表示失真越小,等于0表示没有失真。
可以将所有的失真函数排列成矩阵的形式: 平均失真度:由于i a 和j b 都是随机变量,所以失真函数),(j i b a d 也是随机变量,限失真时的失真值,只能用它的数学期望或统计平均值,因此将失真函数的数学期望称为平均失真度,记为1.1.2 信息率失真函数的定义由于互信息取决于信源分布和信道转移概率分布,当信源的分布概率已知时,互信息I 是关于p(bj/ai) 的下凸函数,存在极小值。
该最小的互信息就称为信息率失真函数R(D): 对于离散无记忆信源,R(D)可以写成:);(m in )()()/(N N P p N Y X I D R N D i j ∈=αβ1.1.3 信息率失真函数的性质 率失真函数的定义域: 。
允许失真度D 的下限可以是零,即不允许任何失真的情况。
率失真函数对允许平均失真度的下凸性:设21,D D 为任意两个平均失真,10≤≤a ,则有: )(,),(,),(),( , , , , ,)( 2121⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡n i n i a p a p a p a p a a a a X P X }...{21m b b b Y =),(j i b a 0),(≥ji b a d ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=),(...),(),(............),(...),(),(),(...),(),(][212221212111m n n n m m b a d b a d b a d b a d b a d b a d b a d b a d b a d D ∑∑∑∑====-===n i mj j i i j i n i m j j i j i ji b a d a b p a p b a d b a p b a d E D 1111),()/()(),()()],([);(min )()/(Y X I D R D i j P a b p ∈=min max 0D D D ≤≤≤1212((1))()(1)()R aD a D aR D a R D +-≤+-率失真函数的单调递减和连续性:由信息率失真函数的下凸性可知, R(D)在),(max min D D 上连续。