离散数学作业题2018
- 格式:doc
- 大小:101.00 KB
- 文档页数:4
离散数学试题2018模拟2+答案work Information Technology Company.2020YEAR华南理工大学网络教育学院2015–2016学年度第一学期期末考试《离散数学》试卷(模拟卷2)教学中心:专业层次:学号:姓名:座号:注意事项:1. 本试卷共三大题,满分100分,考试时间90分钟,闭卷;2. 考前请将以上各项信息填写清楚;3. 所有答案必须做在答题纸上,做在试卷、草稿纸上无效;4.考试结束,试卷、答题纸、草稿纸一并交回。
一、单项选择题(本大题30分,每小题6分) A CABC1 A.如果天气好,那么我去散步。
B.天气多好呀!C.x=3。
D.明天下午有会吗?在上面句子中( )是命题2.设个体域为整数集,下列真值为真的公式是( )A.∃y∀x (x – y =2) B.∀x∀y(x – y =2)C.∀x∃y(x – y =2) D.∃x∀y(x – y =2)3. 设A={0,1},B={1,2},则A×{1}×B=( )A.{<0,1,1 >,<1,1,1 >,<0,1,2>,<1,1,2>}B.{<0,1 >,<1,1 >,<0,2>,<1,2>}C.{<1,0, 1 >,<1,1,1 >,<1,0, 2>,<1,1,2>}D.{<0,1,1 >,<1,1,1 >,<0,2, 1>,<1,2,1>}4.设A={1,2,3,4,5, 6},B={a,b,c,d,e},以下哪个函数是从A到B的满射函数( )A.F ={<1,b>,<2,a>,<3,c>,<1,d>,<5,e>, <6,e>}B.F={<1,c>,<2,a>,<3,b>,<4,e>,<5,d>, <6,e>}C.F ={<1,b>,<2,a>,<3,d>,<4,a>, <6,e>}D.F={<1,e>,<2,a>,<3,b>,<4,c>,<5,e>, <6,e>}5.对于群来说,下列判断错的是()A.群中除了幺元外,不可能再有等幂元B.群与其子群共一幺元C.循环群的生成元是唯一的D.任何一个循环群必定是阿贝尔群二、判断题(本大题20分,每小题4分)×××√×1、命题公式(P∧Q)∨(⌝R→T)是析取范式。
2018年10月高等教育自学考试全国统一命题考试离散数学试卷(课程代码02324)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题一、单项选择题:本大题共l5小题,每小题l分,共l5分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.下列命题公式为矛盾式的是A.P→ (P ∨ Q ∨ R) B.(P→¬P) →¬QC.¬(Q叶R)∧R D.(P→Q) →(¬Q→¬P)2.命题公式A中含n个命题变项,A为重言式的条件是A的主析取范式含A.2“个极大项 B.1个极大项 C.2n个极小项 D.1个极小项3.设R为集合A上的关系,则下列叙述不正确的是4.设F(x):x是兔子,G(y):y是乌龟,H(x,y):x比y跑得快。
命题“并不是所有兔子都比乌龟跑得快”可符号化为5.设集合X={a,{a}},则下列陈述不正确的是7.设A={1,{l},{1,{ l}}},则其幂集P(A)的元素总个数为A 1 8.4 C.8 D.168.描述偏序集的是A.哈密顿图 B.哈斯图 C.欧拉图 D.树9.在整数集z上,下列定义的运算能构成一个群的是A.a*b=max{a,b} B.a*b=|a-b|C.a*b=a+b+1 D.a*b= ab10.设f:X→Y,,g:Y→Z是函数,则下列陈述不正确的是A.若f和g都是单射的,则f。
g也是单射的B.若f和g都是双射的,则f。
g也是双射的C.若g和f。
g是满射的,则厂也是满射的D.若,和9都是满射的,则f。
g也是满射的11.由4阶3条边构成的无向简单图的结点最大度数为A.1 8.2 C.3 D.412.下列为一颗6阶无向树的度数列,对应不止一颗同构树的是A.1,1,1,l,2,4 B.1,l,1,2,2,3C.1,1,2,2,2,2 D.1,1,1,l,3,314.下列关于整数集合上的小于关系性质描述不正确的是A.反自反的 B.对称的 C.反对称的 D.传递的15.分别记Z、N、Q、R为整数、自然数、有理数、实数集合,下列关于普通加法的代数系统不是群的是A.<Z,+> B.<N,+> C.<Q,+> D.<R,+>第二部分非选择题二、填空题:本大题共l0小题,每小题2分,共20分。
2018年春季学期离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 ) 解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A 2到A 的关系. ( 对 ) 解 A 2}},1{},0{,{A φ=,=⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA =ο ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 ) (14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合A 上的等价关系, 则 ( 错 )二、单项选择题 (1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈(4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A I ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A Y 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A.{}><><><><=a b b a a c c a ,,,,,,,1ρ B .{}><><=a c c a ,,,2ρ C.{}><><><><=c b a b c c b a ,,,,,,,3ρ D. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 (B ) A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A ⊆↔∈2C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A 2____________. 填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A Y 中元素的个数为 .405.设 },{b a A =, ρ 是 A 2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合A 上的二元关系, 则=21ρρο .~1~2ρρο 7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆ο8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρο则B ___________________. 填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设集合{}{}{},2,1,,2,1,==B A φφ 求(1)A ∪B 2 ;(2)B A 22I 解 (1)A ∪{}{}φφ,2,1,2=B ∪{}{}{}B ,2,1,φ {}{}{}{}.,2,1,,2,1,B φφ= (2)}{2φ=B A I ,所以 }}{,{22}{2φφφ==BA I2. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。
一、 填空 10% (每小题 2分)1、 设>-∧∨<,,,A 是由有限布尔格≤><,A 诱导的代数系统,S 是布尔格≤><,A ,中所有原子的集合,则>-∧∨<,,,A ~ 。
2、 集合S={α,β,γ,δ}上的二元运算*为* α β γ δ α δ α β γ β α β γ δ γ β γ γ γ δαδγδ那么,代数系统<S, *>中的幺元是 , α的逆元是 。
3、 设I 是整数集合,Z 3是由模3的同余类组成的同余类集,在Z 3上定义+3如下:]3m od )[(][][3j i j i +=+,则+3的运算表为 ;<Z +,+3>是否构成群 。
4、 设G 是n 阶完全图,则G 的边数m= 。
5、 如果有一台计算机,它有一条加法指令,可计算四数的和。
现有28个数需要计算和,它至少要执行 次这个加法指令。
二、 选择 20% (每小题 2分)1、 在有理数集Q 上定义的二元运算*,Q y x ∈∀,有xy y x y x -+=*,则Q 中满足( )。
A 所有元素都有逆元; B 、只有唯一逆元;C 、1,≠∈∀x Q x 时有逆元1-x ; D 、所有元素都无逆元。
2、设S={0,1},*为普通乘法,则< S , * >是( )。
A 半群,但不是独异点;B 、只是独异点,但不是群;C 、群;D 、环,但不是群。
3、图 给出一个格L ,则L 是( )。
A 、分配格;B 、有补格;C 、布尔格;D 、 A,B,C 都不对。
2、 有向图D=<V , E>,则41v v 到长度为2的通路有( )条。
A 、0;B 、1;C 、2;D 、3 。
3、 在Peterson 图中,至少填加( )条边才能构成Euler 图。
A 、1;B 、2;C 、4;D 、5 。
三、 判断 10% (每小题 2分)1、 在代数系统<A,*>中如果元素A a ∈的左逆元1-e a 存在,则它一定唯一且11--=e a a。
扬州大学《离散数学》2018-2019第一学期期末试卷注意事项:1. 答卷前请将密封线内的项目填写清楚。
重修学生需明确标注重修。
2. 所有试题不得在试卷上作答,均填写到答题纸上,考试结束后将答题纸和试卷一并交回。
一、选择题(每小题3 分,本题共24分)[ ] 1. 下列语句中不是命题的是( )A 、《西游记》的作者是曹雪芹B 、这里风景太美了!C 、1+1≠2D 、生命起源于海洋 [ ] 2. 取个体域为自然数集,则下列公式中为真命题的是( ) A 、(+0)∃∀=x y x y B 、(0)∀∃+=x y x y C 、(0)∃∃+=x y x y D 、(0)∀∀+=x y x y [ ] 3.下列关系中能构成函数的是( )A 、{,|,N,}=<>∈=F x y x y x yB 、{,|,Z,}=<>∈=F x y x y x yC 、{,|,Q,}=<>∈=F x y x y y xD 、{,|,N,}=<>∈=F x y x y y x [ ] 4. 设集合{1,2,3}=A 中有下列关系,则其中具有传递性的是( )A 、{1,2,2,1}<><>B 、{1,2,2,2}<><>C 、{1,2,2,3}<><>D 、{1,2,3,1}<><>[ ] 5. 设S 为实数集,×与+分别为普通乘法与加法运算,则S ( )A 、对×运算封闭,对+运算封闭B 、对×运算封闭,对+运算不封闭C 、对×从运算不封闭,对+运算封闭D 、对×运算与+运算均不封闭 [ ]6. 在正实数集上定义的下列运算中,不满足交换律的只有( )A 、=+a b a bB 、=a b abC 、+=a ba b eD 、=a b a[ ]7. 关于偏序集A 的上确界,最大元,下列说法正确的是( )A 、上确界一定存在B 、有上界则上确界一定存在C 、最大元一定是上确界D 、上确界一定是最大元 [ ]8. S 为集合,()P S 为S 的幂集,对于代数系统(),<⊕>P S ,下列说法正确的是( )A 、有幺元,无零元B 、无幺元,有零元C 、无幺元,无零元D 、有幺元,有零元二、填空题(每小题2分,本题共 16分)[ ]1. ⌝∧∧⌝p q r 的成真赋值为 。
20 - 20学年度第 学期试卷 A (闭卷)课程名称 离散数学 二级学院 专业 计算机科学与技术 年级、班级 学号 姓名一、填空题:(每空2分,共20分)1.若4阶无向图G (V,E )为完全图,则|V|= ,|E|= 2. 无向连通图G 有欧拉回路,当且仅当 。
3. 设A={a,b},R={<b,b>,<b,a>},求r(R) , s(R) , t(R) 。
4. 设有限集合A, |A| = 3, 则 |P(A)| = ____ ,P (A)∩A= 。
5.设有向图G=<V,E>,则图G 顶点的出度和= , 度和为 。
二、选择题:(每题2分,共10分)1.若4阶无向图G (V,E )为完全简单图,则包含多少条环( )。
(A )5 (B )3 (C )6(D )02. R 是A 上关系,则R 是具有自反关系的,充要分条件是( )。
(A )r(R)=R.(B )t(R)=R (C )s(R)=R(D )R=I A3. 对公式((,)(,))x y P x y Q x z ∀∀→的说法正确的是( )。
(A )x 是约束出现,y 是自由出现,z 是约束出现(B )x 是约束出现,y 既是约束出现又是自由出现,z 是自由出现 (C )x 是约束出现,y 是约束出现,z 是自由出现(D )x 是约束出现,y 既是约束出现又是自由出现,z 是约束出现4. 设G 、H 是一阶逻辑公式,P 是一个谓词,G =∃xP(x), H =∀xQ(x),则一阶逻辑公式G →H 是( )。
(A) 永真式(B) 矛盾式 (C) 可满足的(D) 前束范式. 5. 设A, B 为集合,当( )时A -B =∅。
(A) A ∩B =∅(B) A ∩B=A(C) B ⊆A (D) A ∩B=B.三、计算题:(5小题,共50分)1. (本题10分)构造(P ∧⌝Q)∨R 的真值表,并说明其类别。
全国2018年7月高等教育自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.令P:今天下雪了,Q:路滑,则命题“虽然今天下雪了,但是路不.滑”可符号化为()A.P →Q B.P ∨QC.P∧Q D.P ∧Q2.下列命题公式为重言式的是()A.Q→(P∧Q)B.P→(P∧Q)C.(P∧Q)→P D.(P∨Q)→Q3.下列4个推理定律中,不.正确的是()A.A⇒(A∧B)B.(A∨B )∧A⇒BC.(A→B)∧A⇒B D.(A→B )∧B ⇒ A4.谓词公式∀x(P(x)∨∃yR(y))→Q(x)中量词x∀的辖域是()A.))Px∃x∨∀B.P(x)(yR)((yC.(P(x)∨∃yR(y)) D.P(x), Q(x)5.设个体域A={a,b},公式∀xP(x)∧∃xS(x)在A中消去量词后应为()A.P(x)∧S(x) B.P(a)∧P(b)∧(S(a)∨S(b))C.P(a)∧S(b) D.P(a)∧P(b)∧S(a)∨S(b)6.下列选项中错误..的是()A.Ø⊆Ø B.Ø∈ØC.Ø⊆{Ø} D.Ø∈{Ø}7.设A={a,b,c,d},A上的等价关系R={<a, b>, <b, a>, <c, d>, <d, c>}∪I A,则对应于R的A 的划分是()A.{{a},{b, c},{d}} B.{{a, b},{c}, {d}}C.{{a},{b},{c},{d}} D.{{a, b}, {c,d}}18.设R为实数集,函数f:R→R,f(x)=2x,则f是()A.满射函数B.入射函数C.双射函数D.非入射非满射9.设R为实数集,R+={x|x∈R∧x>0},*是数的乘法运算,<R+,*>是一个群,则下列集合关于数的乘法运算构成该群的子群的是()A.{R+中的有理数} B.{R+中的无理数}C.{R+中的自然数} D.{1,2,3}10.下列运算中关于整数集不.能构成半群的是()A.aοb=max{a, b} B.aοb=bC.aοb=2ab D.aοb=|a-b|11.设Z是整数集,+,ο分别是普通加法和乘法,则(Z,+,ο)是()A.域B.整环和域C.整环D.含零因子环12.设A={a, b, c},R是A上的二元关系,R={<a, a>, <a, b>, <a, c>, <c, a>},那么R是()A.反自反的B.反对称的C.可传递的D.不可传递的13.设D=<V, E>为有向图,V={a, b, c, d, e, f}, E={<a, b>, <b, c>, <a, d>, <d, e>, <f, e>}是()A.强连通图B.单向连通图C.弱连通图D.不连通图14.在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条15.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.每条边都是割边C.无割边集D.每条边都不是割边二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2018秋离散数学形考3(随机试题1)正确获得10.00分中的10.00分标记题目题干无向图G存在欧拉回路,当且仅当().选择一项:A. G连通且所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且至多有两个奇数度结点D. G中所有结点的度数全为偶数反馈你的回答正确正确答案是:G连通且所有结点的度数全为偶数题目2正确获得10.00分中的10.00分标记题目题干如图二所示,以下说法正确的是 ( ).图二选择一项:A. e是割点B. {a,e}是点割集C. {d}是点割集D. {b, e}是点割集反馈你的回答正确正确答案是:e是割点题目3正确获得10.00分中的10.00分标记题目题干无向树T有8个结点,则T的边数为( ).选择一项:A. 9B. 8C. 7D. 6反馈你的回答正确正确答案是:7题目4正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (a)是强连通的B. (b)是强连通的C. (c)是强连通的D. (d)是强连通的反馈你的回答正确正确答案是:(a)是强连通的题目5正确获得10.00分中的10.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是 ( ) .选择一项:A.B. deg(v)=2| E |C.D. deg(v)=| E |反馈你的回答正确正确答案是:题目6正确获得10.00分中的10.00分标记题目题干已知无向图G的邻接矩阵为,则G有().选择一项:A. 5点,8边B. 5点,7边C. 6点,8边D. 6点,7边反馈你的回答正确正确答案是:5点,7边题目7正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 7B. 14C. 1D. 6反馈你的回答正确正确答案是:7题目8正确获得10.00分中的10.00分标记题目题干以下结论正确的是( ).选择一项:A. 有n个结点n-1条边的无向图都是树B. 无向完全图都是欧拉图C. 树的每条边都是割边D. 无向完全图都是平面图反馈你的回答正确正确答案是:树的每条边都是割边题目9正确获得10.00分中的10.00分标记题目题干图G如图三所示,以下说法正确的是 ( ).选择一项:A. {c}是点割集B. {b, d}是点割集C. {b,c}是点割集D. a是割点反馈你的回答正确正确答案是:{b,c}是点割集题目10正确获得10.00分中的10.00分标记题目题干无向简单图G是棵树,当且仅当( ).选择一项:A. G连通且边数比结点数少1B. G中没有回路.C. G的边数比结点数少1D. G连通且结点数比边数少1反馈你的回答正确正确答案是:G连通且边数比结点数少1 2018秋离散数学形考3(随机试题2)题目1正确获得10.00分中的10.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 欧拉图C. 汉密尔顿图D. 非平面图反馈你的回答正确正确答案是:汉密尔顿图题目2正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六选择一项:A. (c)只是弱连通的B. (b)只是弱连通的C. (d)只是弱连通的D. (a)只是弱连通的反馈你的回答正确正确答案是:(d)只是弱连通的题目3正确获得10.00分中的10.00分标记题目题干若G是一个欧拉图,则G一定是( ).选择一项:A. 汉密尔顿图B. 连通图C. 对偶图D. 平面图反馈你的回答正确正确答案是:连通图题目4正确获得10.00分中的10.00分标记题目题干如图一所示,以下说法正确的是 ( ) .选择一项:A. {(d, e)}是边割集B. {(a, e)}是割边C. {(a, e) ,(b, c)}是边割集D. {(a, e)}是边割集反馈你的回答正确正确答案是:{(d, e)}是边割集题目5正确获得10.00分中的10.00分标记题目题干图G如图四所示,以下说法正确的是 ( ) .选择一项:A. {(a, d)}是割边B. {(a, d)}是边割集C. {(b, d)}是边割集D. {(a, d) ,(b, d)}是边割集反馈你的回答正确正确答案是:{(a, d) ,(b, d)}是边割集题目6正确获得10.00分中的10.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 对偶图B. 连通图C. 欧拉图D. 平面图反馈你的回答正确正确答案是:连通图题目7正确获得10.00分中的10.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目8正确获得10.00分中的10.00分标记题目题干设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).选择一项:A. v+e-2B. e+v+2C. e-v+2D. e-v-2反馈你的回答正确正确答案是:e-v+2题目9正确获得10.00分中的10.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 5C. 3D. 4反馈你的回答正确正确答案是:5题目10正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 3B. 6C. 5D. 4反馈你的回答正确正确答案是:52018秋离散数学形考3(随机试题3) 题目1正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (b)是强连通的B. (d)是强连通的C. (a)是强连通的D. (c)是强连通的反馈你的回答正确正确答案是:(a)是强连通的题目2正确获得10.00分中的10.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目3正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 5B. 4C. 6D. 3反馈你的回答正确正确答案是:5题目4正确获得10.00分中的10.00分标记题目题干如图二所示,以下说法正确的是 ( ).图二选择一项:A. {b, e}是点割集B. {a,e}是点割集C. e是割点D. {d}是点割集反馈你的回答正确正确答案是:e是割点题目5正确获得10.00分中的10.00分标记题目题干无向树T有8个结点,则T的边数为( ).选择一项:A. 6B. 7C. 8D. 9反馈你的回答正确正确答案是:7题目6正确获得10.00分中的10.00分标记题目题干无向图G存在欧拉回路,当且仅当().选择一项:A. G中所有结点的度数全为偶数B. G连通且至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G中至多有两个奇数度结点反馈你的回答正确正确答案是:G连通且所有结点的度数全为偶数题目7正确获得10.00分中的10.00分标记题目题干设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).选择一项:A. e+v+2B. e-v-2C. e-v+2D. v+e-2反馈你的回答正确正确答案是:e-v+2题目8正确获得10.00分中的10.00分标记题目题干如图一所示,以下说法正确的是 ( ) .选择一项:A. {(a, e)}是割边B. {(d, e)}是边割集C. {(a, e)}是边割集D. {(a, e) ,(b, c)}是边割集反馈你的回答正确正确答案是:{(d, e)}是边割集题目9正确获得10.00分中的10.00分标记题目题干若G是一个欧拉图,则G一定是( ).选择一项:A. 连通图B. 对偶图C. 汉密尔顿图D. 平面图反馈你的回答正确正确答案是:连通图题目10正确获得10.00分中的10.00分标记题目题干无向简单图G是棵树,当且仅当( ).选择一项:A. G的边数比结点数少1B. G中没有回路.C. G连通且结点数比边数少1D. G连通且边数比结点数少1反馈你的回答正确正确答案是:G连通且边数比结点数少1 2018秋离散数学形考3(随机试题4)题目1正确获得10.00分中的10.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 汉密尔顿图C. 非平面图D. 欧拉图反馈你的回答正确正确答案是:汉密尔顿图题目2正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六选择一项:A. (d)只是弱连通的B. (a)只是弱连通的C. (b)只是弱连通的D. (c)只是弱连通的反馈你的回答正确正确答案是:(d)只是弱连通的题目3正确获得10.00分中的10.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是 ( ) .选择一项:A.B.C. deg(v)=2| E |D. deg(v)=| E |反馈你的回答正确正确答案是:题目4正确获得10.00分中的10.00分标记题目题干图G如图三所示,以下说法正确的是 ( ).选择一项:A. a是割点B. {b,c}是点割集C. {c}是点割集D. {b, d}是点割集反馈你的回答正确正确答案是:{b,c}是点割集题目5正确获得10.00分中的10.00分标记题目题干已知无向图G的邻接矩阵为,则G有().选择一项:A. 5点,8边B. 6点,8边C. 5点,7边D. 6点,7边反馈你的回答正确正确答案是:5点,7边题目6正确获得10.00分中的10.00分标记题目题干以下结论正确的是( ).选择一项:A. 树的每条边都是割边B. 无向完全图都是欧拉图C. 无向完全图都是平面图D. 有n个结点n-1条边的无向图都是树反馈你的回答正确正确答案是:树的每条边都是割边题目7正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 7B. 1C. 14D. 6反馈你的回答正确正确答案是:7题目8正确获得10.00分中的10.00分标记题目题干图G如图四所示,以下说法正确的是 ( ) .选择一项:A. {(a, d) ,(b, d)}是边割集B. {(b, d)}是边割集C. {(a, d)}是割边D. {(a, d)}是边割集反馈你的回答正确正确答案是:{(a, d) ,(b, d)}是边割集题目9正确获得10.00分中的10.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 对偶图B. 欧拉图C. 连通图D. 平面图反馈你的回答正确正确答案是:连通图题目10正确获得10.00分中的10.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 3C. 4D. 5反馈你的回答正确正确答案是:5。
华南理工大学网络教育学院
2018–2019学年度第一学期
《离散数学》作业
1、用推理规则证明⌝(P∧⌝Q),⌝Q∨R,⌝ R⇒⌝P
证(1)⌝Q∨R P
(2)⌝ R P
(3)⌝Q(1)(2)析取三段论
(4)⌝(P∧⌝Q)P
(5)⌝P ∨ Q (4)等价转换
(6)⌝P (3)(5)析取三段论
2、用推理规则证明Q,⌝P → R,P → S,⌝ S⇒Q∧R
证(1)P → S P
(2)⌝ S P
(3)⌝P(1)(2)拒取式
(4)⌝P → R P
(5)R (3)(4)假言推理
(6)Q P
(7)Q∧R(5)(6)合取
3.设命题公式为⌝Q∧(P→Q)→⌝P。
(1)求此命题公式的真值表;
(2)求此命题公式的析取范式;
(3)判断该命题公式的类型。
解(1)真值表如下
P Q ⌝Q P→Q ⌝Q∧(P→Q)⌝P⌝Q∧(P→Q)→⌝P
0 0 1 1 1 1 1
0 1 0 1 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 1
(2)⌝Q∧(P→Q)→⌝P⇔⌝(⌝Q∧(⌝P∨Q))∨⌝P
⇔(Q∨⌝(⌝P∨Q))∨⌝P⇔⌝(⌝P∨Q)∨(Q∨⌝P)⇔1(析取范式)⇔(⌝P∧⌝Q)∨(⌝P∧Q)∨(P∧⌝Q)∨(P∧Q)(主析取范式)
(3)该公式为重言式
4.在一阶逻辑中构造下面推理的证明
每个喜欢步行的人都不喜欢坐汽车。
每个人或者喜欢坐汽车或者喜欢骑自行车。
有的人不喜欢骑自行车。
因而有的人不喜欢步行。
令F(x):x喜欢步行。
G(x):x喜欢坐汽车。
H(x):x喜欢骑自行车。
解前提:∀x(F(x)→⌝ G(x)),∀x(G(x)∨H(x)),
∃ x⌝ H(x)。
结论:∃ x ⌝F(x)。
证(1)∃ x ⌝H(x)P
(2)⌝H(c)ES(1)
(3)∀x(G(x)∨H(x))P
(4) G(c)∨H(c)US(3)
(5) G(c)T(2,4)I
(6)∀x(F(x)→⌝ G(x))P
(7)F(c)→⌝ G(c)US(6)
(8)⌝ F(c)T(5,7)I
(9)(∃x)⌝ F(x)EG(8)
5.用直接证法证明:
前提:(∀x)(C(x)→W(x)∧R(x)),(∃x)(C(x)∧Q(x))
结论:(∃x)(Q(x)∧R(x))。
证(1)(∃x)(C(x)∧Q(x))P
(2)C(c)∧Q(c)ES(1)
(3)(∀x)(C(x)→W(x)∧R(x))P
(4) C(c)→W(c)∧R(c)US(3)
(5) C(c)T(2)I
(6)W(c)∧R(c)T(4,5)I
(7)R(c)T(6)I
(8)Q(c)T(2)I
(9)Q(c)∧R(c)T(7,8)I
(10) (∃x)(Q(x)∧R(x))EG(9)
6.设R是集合A = {1, 2, 3, 4, 5, 6, 7, 8, 9}上的整除关系。
(1)给出关系R;(2)画出关系R的哈斯图;
(3)指出关系R的最大、最小元,极大、极小元。
解R={<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<1,7>,<1,8>,<1,9>,<2,4>,<2,6>,<2,8>,<3,6>,<3,9>,<4,8>}∪I A
COV A={<1,2>,<1,3>,<1,5>,<1,7>,<2,4>,<2,6>,<3,6>,<3,9>,<4,8>}
作哈斯图如右:
极小元和最小元为1;
极大元为5,6,7,8,9, 无最大元
7.设R是集合A = {1, 2, 3, 4, 6, 12}上的整除关系。
8
(1) 给出关系R ; (2) 给出COV A
(3) 画出关系R 的哈斯图;
(4) 给出关系R 的极大、极小元、最大、最小元。
解 R ={<1,2>,<1,3>,<1,4>,<1,6>,<1,12>,<2,4>,<2,6>,<2,12>,<3,6>,<3,12>
,<4,12>,<6,12>}∪I A
COV A ={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,12>,<6,12>}
作哈斯图如右:
极小元和最小元为1;
极大元和最大元为12 8.求带权图G 的最小生成树,并计算它的权值。
解
()12317C T =+++=
9.给定权为1,9,4,7,3;构造一颗最优二叉树。
解 1 3 4 7 9 4 4 7 9 8 7 9 15 9 24
()414334271951W T =⨯+⨯+⨯+⨯+⨯=
10.给定权为2,6,3,9,4;构造一颗最优二叉树。
解 2 3 4 6 9 5 4 6 9 9 6 9 15 9
24
()4(23)3426953W T =⨯++⨯+⨯+= 或 2 3 4 6 9
5 4
6 9 9 15 24
()3(23)242(69)53W T =⨯++⨯+⨯+=
11、设字母,,,,,a b c d e f 在通讯中出现的频率为::30%,:25%,:20%a b c ,:10%,:10%,:5%d e f 。
试给出传输这6个字母的最佳前缀码?问传输1000个字符需要多少位二进制位?
解 先求传输100个字符所需要的位数。
:30,:25,:20,:10,:10,:5a b c d e f 是依照出现频率得出的个数。
构造最优二叉树如下:
5 10 10 20 25 30 15 10 20 25 30 25 20 25 30 25 45 30 45 55 100
需要二进制位数为()()(){}1010451031022025302400W T =⨯⨯++⨯+⨯++=
0001
0000。