2015年上海市黄浦区初三二模数学试卷及答案(word版)2015.4
- 格式:doc
- 大小:867.00 KB
- 文档页数:7
2015 年浦东新区中考二模试题数 学 卷 2015.4(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.化简32(3)x 所得的结果是( ).A .99x B .69x C .66x D .96x 2.若b a <,则下列各式中一定成立的是( ) A .33a b ->- B .33a b< C .33a b -<- D .ac bc < 3.在平面直角坐标系中,下列直线中与直线23y x =-平行的是( )A .3y x =-B .23y x =-+C .23y x =+D .32y x =- 4.在平面直角坐标系中,将二次函数22x y =的图象向左平移3个单位,所得图象的解析式为( )A .22(3)y x =+B .22(3)y x =-C .223y x =+D .223y x =- 5.在正多边形中,外角和等于内角和的是( ) A .正六边形 B .正五边形 C .正四边形 D .正三边形 6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( ) A .8d > B . 2d > C .02d ≤< D . 8d >或02d ≤<二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:22x x -= . 8.如果方程()132x a -=的根是3x =,那么a = .9.请你写一个大于2且小于3的无理数 . 10.函数1()1f x x=-的定义域是 . 11. ()322a b a --= .12.在Rt △ABC 中,∠C =90°,13sinA =,BC =6,那么AB = . 13.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =__________. 14.如图1,已知a ∥b ,140∠=,那么2∠的度数等于 .15.两个相似三角形对应边上高的比是1∶4 ,那么它们的面积比是 .16.在Rt △ABC 中,∠C =90°,∠A =30°,BC =6,以点C 为圆心的⊙C 与AB 相切,那么⊙C 的半径等于 .17.在四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 可能是 (只要写一种). 18.如图2,在△ABC 中,AD 是BC 上的中线,BC =4,∠ADC =30°,把△ADC 沿AD 所在直线翻折后 点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解分式方程:212111xx x -=-- 20.(本题满分10分)一块长方形绿地的面积为2400平方米,并且长比宽多20米,那么这块绿地的长和宽分别为多少米?1 2a b图1C / BD CA图221.(本题满分10分,每小题满分各5分) 如图3,在△ABC 中,sin ∠B =45,∠C =30°,AB =10。
2015年上海市浦东新区初三数学⼆模(含答案)浦东新区初三教学质量检测数学试卷(2015.4.21)⼀、选择题:(本⼤题共6题,每题4分,满分24分) 1.下列等式成⽴的是()(A )2222-=-;(B )236222=÷;(C )5232)2(=;(D )120=. 2.下列各整式中,次数为5次的单项式是()(A )xy 4;(B )xy 5;(C )x+y 4;(D )x+y 5.3.如果最简⼆次根式2+x 与x 3是同类⼆次根式,那么x 的值是()(A )-1;(B )0;(C )1;(D )2. 4.如果正多边形的⼀个内⾓等于135度,那么这个正多边形的边数是()(A )5;(B )6;(C )7;(D )8. 5.下列说法中,正确的个数有()①⼀组数据的平均数⼀定是该组数据中的某个数据;②⼀组数据的中位数⼀定是该组数据中的某个数据;③⼀组数据的众数⼀定是该组数据中的某个数据.(A )0个;(B )1个;(C )2个;(D )3个.6.已知四边形ABCD 是平⾏四边形,对⾓线AC 与BD 相交于点O ,那么下列结论中正确的是()(A )当AB =BC 时,四边形ABCD 是矩形;(B )当AC ⊥BD 时,四边形ABCD 是矩形;(C )当OA =OB 时,四边形ABCD 是矩形;(D )当∠ABD =∠CBD 时,四边形ABCD 是矩形.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.计算:23-= . 8.分解因式:x x 43-= . 9.⽅程43+=x x 的解是.10.已知分式⽅程312122=+++x x x x ,如果设x x y 12+=,那么原⽅程可化为关于y 的整式⽅程是.11.如果反⽐例函数的图像经过点(3,-4),那么这个反⽐例函数的⽐例系数是. 12.如果随意把各⾯分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰⼦抛到桌⾯上,那么正⾯朝上的数字是合数的概率是.13.为了解某⼭区⾦丝猴的数量,科研⼈员在该⼭区不同的地⽅捕获了15只⾦丝猴,并在它们的⾝上做上标记后放回该⼭区.过段时间后,在该⼭区不同的地⽅⼜捕获了32只⾦丝猴,其中4只⾝上有上次做的标记,由此可以估计该⼭区⾦丝猴的数量约有只.14.已知点G 是△ABC 的重⼼,m AB =,n BC =,那么向量AG ⽤向量m 、n 表⽰为. 15.如图,已知AD ∥EF ∥BC,AE=3BE ,AD =2,EF =5,那么BC = .16.如图,已知⼩岛B 在基地A 的南偏东30°⽅向上,与基地A 相距10海⾥,货轮C 在基地A 的南偏西60°⽅向、⼩岛B 的北偏西75°⽅向上,那么货轮C 与⼩岛B 的距离是海⾥. A B C DE F (第15题图)CAD B (第18题图)17.对于函数()2b ax y +=,我们称[a ,b ]为这个函数的特征数.如果⼀个函数()2b ax y +=的特征数为[2,-5],那么这个函数图像与x 轴的交点坐标为.18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于.三、解答题:(本⼤题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:->--≥+,1262,6325x x x x 并写出它的⾮负整数解.21.(本题满分10分,其中每⼩题各5分)已知:如图,在△ABC 中,D 是边BC 上⼀点,以点D 为圆⼼、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1.求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.22.(本题满分10分)⼩张利⽤休息⽇进⾏登⼭锻炼,从⼭脚到⼭顶的路程为12千⽶.他上午8时从⼭脚出发,到达⼭顶后停留了半⼩时,再原路返回,下午3时30分回到⼭脚.假设他上⼭与下⼭时都是匀速⾏⾛,且下⼭⽐上⼭时的速度每⼩时快1千⽶,求⼩张上⼭时的速度.C(第21题图)23.(本题满分12分,其中每⼩题各6分)如图,已知在平⾏四边形ABCD 中,AE ⊥BC ,垂⾜为点E ,AF ⊥CD ,垂⾜为点F .(1)如果AB =AD ,求证:EF ∥BD ;(2)如果EF ∥BD ,求证:AB =AD .24.(本题满分12分,其中第(1)⼩题3分,第(2)⼩题4分,第(3)⼩题5分)已知:如图,直线y =kx +2与x 轴的正半轴相交于点A (t ,0)、与y 轴相交于点B ,抛物线c bx x y ++-=2经过点A 和点B ,点C 在第三象限内,且AC ⊥AB ,tan ∠ACB =21.(1)当t =1时,求抛物线的表达式;(2)试⽤含t 的代数式表⽰点C 的坐标;(3)如果点C 在这条抛物线的对称轴上,求t 的值.(第24题图)A B C DE F(第23题图)25.(本题满分14分,其中第(1)⼩题3分,第(2)⼩题6分,第(3)⼩题5分)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上⼀动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°.(1)求证:BP AD AP ?=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.A B C P D (第25题图) M AB C (第25题备⽤图)M浦东新区初三教学质量检测数学试卷参考答案及评分说明⼀、选择题1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .⼆、填空题7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;12.31; 13.120; 14.n m ρρ3132+; 15.6; 16.210; 17.)(0,25; 18.558.三、解答题19.解:原式=12122+-÷-x x x x x …………………………………………………………(2分) =22)1(1x x x x -?-………………………………………………………………(2分) =xx 1-.………………………………………………………………………(2分)把12+=x 代⼊,得原式=)12)(12()12(2122-+-=+………………………………………………(2分)=22-.……………………………………………………………………(2分) 20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)由1262->-xx ,得2∴此不等式组的⾮负整数解是0、1.…………………………………………(2分) 21.解:(1)作DH ⊥CE ,垂⾜为点H .∵D 为半圆的圆⼼,AC =5,AE =1,∴221==EC CH .……………………(2分)∵AC AB =,∴C B ∠=∠.……………………………………………………(1分)∴54cos cos ==B C .在Rt △CDH 中,∵54cos ==CD CH C ,CH =2,∴25=CD . …………………(2分)(2)作AM ⊥BC ,垂⾜为点M ,联结AF .∵25=CD ,∴5=CF .…………………………………………………………(1分)在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分)∴3452222=-=-=CM AC AM .…………………………………………(1分)∵CF =5,CM =4,∴1=FM .……………………………………………………(1分)∴10132222=+=+=FM AM AF .………………………………………(1分)22.解:设⼩张上⼭时的速度为每⼩时x 千⽶.…………………………………………(1分)根据题意,得711212=++x x .…………………………………………………(4分)化简,得 0121772=--x x .…………………………………………………(2分)解得 31=x ,742-=x .…………………………………………………………(1分)经检验:3=x ,742-=x 都是原⽅程的解,但742-=x 不符合题意,舍去.(1分)答:⼩张上⼭时的速度为每⼩时3千⽶.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平⾏四边形,∴∠ABE=∠ADF .…………………(1分)∵AE ⊥BC ,AF ⊥CD,∴∠AEB=∠AFD=90o. ……………………(1分)∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分)∴BE =DF .…………………………………………………………………(1分)∵BC =AD =AB =CD ,∴CDDFBC BE =.……………………………………(1分)∴EF ∥BD .………………………………………………………………(1分)(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)∴ADABDF BE =.……………………………………………………………(1分)∵EF ∥BD ,∴CDDFBC BE =.……………………………………………(1分)∵四边形ABCD 是平⾏四边形,∴AB=CD ,AD=BC .∴AB DFAD BE =.……………………………………………………………(1分)∴AB ADDF BE =.∴ABADAD AB =,即22AD AB =.…………………………………………(1分)∴AB =AD .…………………………………………………………………(1分) 24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分)把点A (1,0)、B (0,2)分别代⼊抛物线的表达式,得=++-=.2,10c c b …………………………………………………………(1分)解得?=-=.2,1c b∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)(2)作CH ⊥x 轴,垂⾜为点H ,得∠AHC =∠AOB =90°.∵AC ⊥AB ,∴∠OAB +∠CAH =90°.⼜∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .∴△AOB ∽△CHA .…………………………………………(1分)∴ACABAH OB CH OA ==.∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分)∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分)∴点C 的坐标为(t -4,-2t ).…………………………(1分)(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,∴24bt =-,即82-=t b .………………………………………(1分)把点A (t ,0)、B (0,2)代⼊抛物线的表达式,得-t 2+bt +2=0. …………(1分)∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分)解得t =144±.………………………………………………(1分)∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.∴t =144-.……………………………………………………(1分)25.解:(1)∵AM ∥BC ,∴∠PAD =∠APB .∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分)∴BPAPAP AD =.………………………………………………………(1分)∴BP AD AP ?=2.………………………………………………(1分)(2)过点A 作AH ⊥BC ,垂⾜为点H .∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分)设BP =x ,那么2-=x PH .∴164)32()2(2222+-=+-=x x x AP .………………………(1分)∴xx x BP AP AD 16422+-==.…………………………(1分)⽽AB =4,BP =x ,因此(i )如果两圆外切,那么41642=++-x xx x .整理,得0842=+-x x .∵08442(ii )如果两圆内切,那么41642=-+-x xx x .解得x =2.…………………………………………………………(1分)或41642=+--xx x x .此⽅程⽆解.………………………………………………(1分)综上所述,如果两圆相切,那么BP =2.(3)过点A 作AH ⊥BC ,垂⾜为点H .由题意,可知AD =AB =4,即41642=+-xx x .…………………(1分)∴x =4.………………………………………………………(1分)⼜∵BC =6,BH =2,∴CH =4.∴AD =CH .∵AD ∥CH ,∴四边形AHCD 是平⾏四边形.∵∠AHC =90°,∴平⾏四边形AHCD 是矩形.∴∠ABE =∠ADC =90°,…………………………………(1分)EB =CD =32.……………………………(1分)过点P 作PK ⊥BE ,垂⾜为点K .∵∠ABC =60°,∴∠PBK =30°.⼜∵BP =4,∴PK =2,BK =32.∴EK =34.∴cot ∠BEP =32.………………………………(1分)。
2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
黄浦区2015年九年级学业考试模拟考数学试卷(时间100分钟,满分150分) 2015.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1. 下列分数中,可以化为有限小数的是 (A )115; (B )118; (C )315; (D )318. 2. 下列二次根式中最简根式是(A ; (B )8; (C (D 3.这七天最低气温的众数和中位数分别是(A )4,4; (B )4,5; (C )6,5; (D )6,6.4. 将抛物线2y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是 (A )2(1)2y x =-+; (B )2(2)1y x =-+; (C )2(1)2y x =+-; (D )2(2)1y x =+-.5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是 (A )内含; (B )内切; (C )外切; (D )相交.6. 下列命题中真命题是(A )对角线互相垂直的四边形是矩形; (B )对角线相等的四边形是矩形; (C )四条边都相等的四边形是矩形; (D )四个内角都相等的四边形是矩形.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7. 计算:22()a = ▲ .8. 因式分解:2288x x -+= ▲ . 9. 计算:111x x x +=+- ▲ . 10.1x =-的根是 ▲ .11. 如果抛物线2(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ▲ .12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图1所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为 ▲ . 13. 将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是 ▲ . 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ▲ .15. 已知AB 是⊙O 的弦,如果⊙O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距离是 ▲ .16. 如图2,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且12CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ▲ .AB图2 图3 图4-1 图4-217. 如图3,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30︒至点'A ,联结'A B ,则'ABA ∠度数是 ▲ .18. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么'A 'B 的长是 ▲ .图1一班 二班 三班 四班三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 计算:)1134811-+-+.20. (本题满分10分)解方程组:2222, 1. x y x y ⎧-=-⎨-=⎩①②21. (本题满分10分,第(1)满分7分,(2)小题满分3分)温度通常有两种表示方法:华氏度(单位:F )与摄氏度(单位:C ).已知华氏度数y .(F )(1)选用表格中给出的数据,求y 关于x 的函数解析式(不需要写出该函数的定义域); (2)已知某天的最低气温是5-C ,求与之对应的华氏度数.22. (本题满分10分,第(1)、(2)小题满分各5分)如图5,在梯形ABCD 中,AD //BC ,AB ⊥BC ,已知AD =2, 4cot 3ACB ∠=,梯形ABCD 的面积是9.(1)求AB 的长;(2)求tan ACD ∠的值.23. (本题满分12分,第(1),(2)小题满分各6分)如图6,在正方形ABCD 中,点E 在对角线AC 上,点F 在边B C 上,联结BE 、DF ,DF 交对角线AC 于点G ,且DE =DG . (1)求证:AE =CG ;(2)求证:BE //DF . 图5图6F24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图7,在平面直角坐标系xOy 中,已知点A 的坐标为(a ,3)(其中a >4),射线OA 与反比例函数12y x =的图像交于点P ,点B 、C 分别在函数12y x=的图像上,且AB //x 轴,AC //y 轴.25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.(备用图)图8黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1. C ; 2. C ; 3.B ; 4. D ; 5. B ; 6. D . 二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <;12. 40%; 13.14 ; 14. 3; 15.16. 1123a b -; 17. 15︒;18. .三、解答题:(本大题共7题,满分78分) 19. (本题满分10分) 原式=))1211+-+………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分) 将③代入①得22(1)22y y +-=-.………………………………………………………(1分) 整理,得 2230y y --=.……………………………………………………………(2分) 解得 11y =-,23y =. …………………………………………………………(2分) 代入③得 10x =,24x =.………………………………………………………………(2分) 所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分) 21. (本题满分10分,第(1)满分7分,(2)小题满分3分) 解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分) 由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分) 解得 32b = . ………………………………………………(1分) 由100x =时,212y =,得 21210032k =+. ……………………………………(1分) 解得 95k =. ……………………………………………………(1分)∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分) (2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分) 22. (本题满分10分,第(1)、(2)小题满分各5分) 解:(1)设AB x =. ∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分) 由题意得431(2)92x x +⋅=. …………………………………………………………(2分) 解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分) (2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分) 在Rt △ABC 中,AB =3,BC =4,∴5AC ==. ……………………………………………………………(1分)∴ 3sin 5ABACB AC ∠==,4cos 5BC ACB AC∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠. 在Rt △AED 中,AD =2,sin 56DE AD DAC =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1分)在Rt △CED 中,665tan 81755DE ACD CE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分) 证明:(1)∵四边形ABCD 是正方形,∴AD =CD . ……………………………………………………………………………(1分) ∴DAE DCG ∠=∠.……………………………………………………………………(1分) ∵DE =DG ,∴DEG DGE ∠=∠.………………………………………………………(1分) ∴AED CGD ∠=∠.……………………………………………………………………(1分) 在△AED 与△CGD 中,DAE DCG ∠=∠,AED CGD ∠=∠,AD =CD , ∴△AED ≌△CGD .……………………………………………………………………(1分) ∴AE =CG . ……………………………………………………………………………(1分) (2) ∵四边形ABCD 是正方形,∴AD //BC . ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分) ∵AE =CG . ∴AC AE AC CG -=-,即CE =AG . ……………………………………………………………………………(1分) ∵四边形ABCD 是正方形,∴AD =BC . ……………………………………………………………………………(1分) ∴CG CFCE BC=. …………………………………………………………………………(1分) ∴BE //DF . ……………………………………………………………………………(1分) 24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 解:(1)∵反比例函数12y x=的图像经过横坐标为6的点P , ∴点P 的坐标为(6,2). ………………………………………………………(1分) 设直线AO 的表达式为y kx =(0k ≠). …………………………………………(1分) 将点P (6,2)代入y kx =,解得13k =.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………………………(2分) ∴点A 坐标为(9,3).…………………………………………………………………(1分) (3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E ,∴32ADO AEO S S a ∆∆==.……………………………………………………………………(1分)∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.……………………………………(1分) ∵△ABP 与△ABO 同高,∴ABP ABO S APS AO∆∆=.……………………………………………(1分) 同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPSS ∆∆=.即当a 变化时,ABPACPS S ∆∆的值不变,且恒为1.……………………………………………(1分) 25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠. ∴30BCD A ∠=∠=.…………………………………………………………………………(1分) 在Rt △BDC 中,cos 2cos303CD BC BCD =⋅∠=⋅=…………………………………(1分) 在Rt △ADC 中,cot 3AD CD A =⋅∠=. ………………………………………………(1分) (2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………………………(1分) 同理 ACD B ∠=∠.△CDE ∽△BFC .……………………………………………………………………………(1分) ∴CE CDBC BF =,即CE CD BC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=,∴2x =1分) ∴yx ≤<.……………………………………………………………(2分) (3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD .∴FD AD CE AC =,即x x=1分)解得3x =(负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠=,CF ⊥DE ,∴DCG EDF ∠=∠. 又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠. ∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD 1分)综上所述CE.……………………………………………………(1分)。
1.黄浦OP r外一点,如图,点为半径的圆是以18.2??r??OPOP OPP在线段,则点上,若满足?OPP是点的反演点,如图,在称点关于圆??O?BO?4ABO?B?90BAB?2A分,圆、,Rt△的半径为中,2,如果点,??OBBAA;别是点、关于圆的反演点,那么的长是2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC ''',处,A处,点落在点联结绕着点O顺时针旋转,点C落在BC边上的点ABA CC '、在同一直线上,如果点A、C A;那么∠的度数为''CBABAO(第18题图)3.普陀4杨3?BAC tan?,,18. 如图,△中,ABC?90?ABC?4,将三角形绕着点旋转,点落在直线C A4?BC??处,若、、上的点处,点落在点CC BBBAB?恰好在一直线上,则的长为;BAB5.松江A,BC=6cmAB=AC=5cm,△18.如图,在ABC中,如果将D.交AC于点BD 平分∠BDABC,D处,A沿BD翻折,点落在点A′ABD△2.的面积为△那么D A′C_______________cm CBC6.崇明F中,18.如图,在,,点是DCBABC??CA??C?90BCD与点重合,的中点,将沿着直线EF折叠,使点ABC?DABAE ,那么的值于点折痕交于点,交BED sin?ABACFE 18题图)(第.为7.浦东徐汇8闵行9.ABC点D在边BC上,将△C=90o18. 如图,已知在Rt△ABC中,∠,AC=BC=1,CB AC 1与边处,联结AC 1,直线落在点沿直线AD翻折,使点CC 1 BF= ▲的延长线相交于点F.如果∠DAB=∠BAF,那么10.静安、青浦外切、O⊙.18如图,⊙O的半径为1,O的半径为2,O=5,⊙O分别与⊙O12121.半径内切,那么⊙O的取值范围是O与⊙r2OO 虹口11.1A2,. 18在中,,(如图)若将绕点顺时针方向旋转到的位置,.联结,则的长为D BC长宁12.ADEF如图,18.△ABC≌△(点A、、B分别与点D △,BC=6,ABC固定不动,AB=AC=5对应)E,F边从在△DEF运动,并满足点EBCB移动向C M EF DE重合)、不与(点EBC,始终经过点,A BEC是等腰三角形时,△,当MAC与边交于点AEM.BE=13金山A DM ,把矩形中,,.在矩形188AB?6ABCD?AD上的点沿直线翻折,点落在边MNABCDADEB BCN处,若,那么的长等于ENAMAE?2嘉定、宝山14.GDA上,中,,点在边18.在矩形DC15ABCD?ADE,翻折后点落到点联结,△沿直线FADEAEDAE E,如果作,垂足为点,如图5过点GAD?FGF.,那么GD3AD??DE F CB5图解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东徐汇89.闵行10.静安、青浦虹口11.12.长宁13.金山嘉定、宝山14.。
2015年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 下列实数中,是有理数的为( )A .B ;C .π;D .0.2. 当0a >时,下列关于幂的运算正确的是( )A .01a =;B .1a a -=-;C .()22a a -=-; D .. 3. 下列y 关于x 的函数中,是正比例函数的为( )A .2y x =;B .2y x =;C .2x y =;D ..4. 如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A .4;B .5;C .6;D .7.5. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数;B .众数;C .方差;D .频率.6. 如图,已知在⊙O 中,AB 是弦,半径OC AB ⊥,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A .AD BD =;B .OD CD =;C .CAD CBD ∠=∠; D .OCA OCB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 计算:22-+= .8. 方程322x -=的解是 .9. 如果分式23x x +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程240x x m +-=没有实数根,那么m 的取值范围是 .11.同一温度的华氏度数()y F 及摄氏度数()x C 之间的函数关系是.如果某一温度的摄氏度数是25C,那么它的华氏度数是F.12.如果将抛物线221=+-向上平移,使它经过点A(0,3),那么所得新抛物y x x线的表达式是.13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加此次活动的概率是.14.已知某校学生“科技创新社团”成员的年龄及人数情况如下表所示:1112131415年龄(岁)人数55161512那么“科技创新社团”成员年龄的中位数是岁.15.如图,已知在△ABC中,D、E分别是边AB、边AC的中点,AB m=,=,AC n 那么向量DE用向量m、n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE AD=,过点E作AC的垂线,交边CD于点F,那么FAD∠=度.17.在矩形ABCD 中,5AB =,12BC =,点A 在⊙B 上.如果⊙D 及⊙B 相交,且点B在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符号要求的数)18.已知在△ABC 中,8AB AC ==,30BAC ∠=.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于.三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =.20.(本题满分10分)解不等式组:,并把解集在数轴上表示出来.图 321.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知,如图,在平面直角坐标系xOy 中,正比例函数的图像经过点A ,点A 的纵坐标为4,反比例函数的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC AB .求:(1)这个反比例函数的解析式;(2)直线AB 的表达式.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线及MN相交于点D,且30∠=,BDN假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车及点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它及这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到13 1.7)图4图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE OB =,联结DE .(1)求证:DE BE ⊥;(2)如果OE CD ⊥,求证:BD CE CD DE ⋅=⋅.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-及x 轴的负半轴相交于点A ,及y 轴相交于点B ,25AB =P 在抛物线上,线段AP 及y 轴的正半轴相交于点C ,线段BP 及x 轴相交于点D .设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长度;(3)当时,求PAD的正弦值.图7 备用图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线及射线OQ 相交于点E ,及弦CD 相交于点F (点F 及点C 、D 不重合),20AB =,.设OP x =,△CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP 的长.2015年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、D ;2、A ;3、C ;4、B ;5、C ;6、B二、 填空题7、4; 8、2; 9、3x ≠- ; 10、4m <- ; 11、77; 12、223y x x =++ ; 13、750; 14、14; 15、 ; 16、22.5; 17、14等(大于13且小于18 的数);18、4.三、 解答题19.解:原式2221=(2)2x x x x x x +-⋅-++当1x =时,原式1=20.解:由426x x >-,得3x >-由 ,得2x ≤∴ 原不等式组的解集是32x -<≤.x21.解:(1)∵正比例函数的图像经过点A ,点A 的纵坐标为4,∴ ∴3x = ∴点A 的坐标是(3,4)∵反比例函数的图像经过点A ,∴ ,12m =∴反比例函数的解析式为(2)∵AC AB =,∴点A 在线段BC 的中垂线上.∵BC x ∥轴,点C 在y 轴上,点A 的坐标是(3,4),∴点B 的横坐标为6.∵点B 在反比例函数的图像上,∴点B 的坐标是(6,2).设直线AB 的表达式为y kx b =+ ,将点A 、B 代入表达式得:解得∴直线AB 的表达式为.22.解:(1)联结AP .由题意得 ,15(),39()AH MN AH m AP m ⊥==.在Rt APH ∆中,得36()PH m =.答:此时汽车及点H 的距离为36米. (2)由题意可知,PQ 段高架道路旁需要安装隔音板,QC AB ⊥,30,39()QDC QC m ∠=︒=.在Rt DCQ ∆中,278()DQ QC m ==.在Rt ADH ∆中,cot 30)DH AH m =⋅︒=,∴11415 1.788.589()PQ PH DH DQ m =-+≈-⨯=≈.答:高架道路旁安装的隔音板至少需要89米长.23.证明:(1)∵,OE OB OBE OEB =∠=∠.∵平行四边形ABCD 的对角线相交于点O ,∴OB OD =.∴OE OD =. ∴ODE OED ∠=∠.在BDE ∆中,∵180,OBE OEB OED ODE ∠+∠+∠+∠=︒∴090,OEB ED BED ∠+∠=∠=︒ 即DE BE ⊥.(2)∵OE CD ⊥,∵90CDE DEO ∠+∠=︒.又∵90,.CEO DEO CDE CEO ∠+∠=︒∴∠=∠,.OBE OEB OBE CDE ∠=∠∴∠=∠在DBE ∆和CDE ∆中:∴.DBE CDE ∆∆∽ ∴ ∴ BD CE CD DE ⋅=⋅24.(1)由抛物线24=-及y轴相交于点B,得点B的坐标为(0,-4)y ax∵点A在x轴的负半轴上,AB=∴点A的坐标为(-2,0)∵抛物线24=-及x轴相交于点A,∴1y axa=∴这条抛物线的表达式为24=-y x(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为2(,4)m m-由题意,得点P在第一象限内,因此2>->0,40m m过点P作PH⊥x轴,垂足为H∵CO∥PH,∴∴,解得24CO m=-(3)过点P作PG⊥y轴,垂足为点G∵OD∥PG,∴∴,即在Rt△ODC中,∵∴,解得3m=-(舍去)。
2015年上海市黄浦区中考数学二模试卷、选择题(每题4分,共24 分)1. (4分)(2015?黄浦区二模)下列分数中,可以化为有限小数的是()A. —B. —C. 一D.—15 18 15 182. (4分)(2015?黄浦区二模)下列二次根式中最简根式是(3这七天最低气温的众数和中位数分别是()A . 4, 4B . 4, 5 C. 6, 5 D . 6, 624. (4分)(2015?黄浦区二模)将抛物线y=x2向下平移1个单位,再向左平移2个单位后, 所得新抛物线的表达式是()2 2 2 2A . y= (x- 1)+2B . y= (x - 2)+1 C. y= (x+1 )- 2 D . y= (x+2 )- 15. (4分)(2015?黄浦区二模)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()A .内含B.内切C.外切D.相交6. (4分)(2015?黄浦区二模)下列命题中真命题是()A •对角线互相垂直的四边形是矩形B. 对角线相等的四边形是矩形C. 四条边都相等的四边形是矩形D .四个内角都相等的四边形是矩形二、填空题(每题4分,共48分)2 27. (4分)(2015?黄浦区二模)计算:(a )= ____2& (4分)(2015?房山区二模)分解因式:2x - 8x+8=9. (4分)(2015?黄浦区二模)计算::,+ =—x+l X - 110. (4分)(2004?上海)方程寸—,=x - 1的根是 __________________ .211 . (4分)(2015?黄浦区二模)如果抛物线y= (2- a)x +3x - a的开口向上,那么a的取值范围是_______________ .12 . (4分)(2015?黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为______________ .20. (6分)(2015?黄浦区二模)解方程组:x 2-Sy^-2® K -y=l@人数(人)2012S10E -0 E 三四班’班级13.(4分)(2015?黄浦区二模)将一枚质地均匀的硬币抛掷 2次,硬币正面均朝上的概率是 ______________ .14.(4分)(2015?黄浦区二模)如果梯形的下底长为7,中位线长为5,那么其上底长为 ______________ .15. (4分)(2015?黄浦区二模)已知 AB 是O O 的弦,如果O O 的半径长为5, AB 长为4,那么圆心O 到弦AB 的距离是 ___________________ .16. (4分)(2015?黄浦区二模)如图,在平行四边形 ABCD 中,点M 是边CD 中点,点N是边BC 上的点,且 ='•设小=于=】,那么川可用I 、【表示为.BN 2D________ C17. (4分)(2015?黄浦区二模)如图, △ ABC 是等边三角形,若点 A 绕点C 顺时针旋转 30°至点A ;联结 A B ,则/ ABA 度数是 ___________________ .18. (4分)(2015?黄浦区二模)如图1,点P 是以r 为半径的圆O 外一点,点P 在线段OP 上,若满足OP?OP=r 2,则称点P 是点P 关于圆O 的反演点.如图2,在Rt △ ABO 中,/ B=90 °,AB=2 , BO=4 ,圆O 的半径为2,如果点A '、B 分别是点A 、B 关于圆O 的反演点,那么A B ' 的长是 .三、解答题(48分)119. (6分)(2015?黄浦区二模)计算:4°+ -( ■- 1) -1 +|1 - _:|.21. (6分)(2015?盘锦二模)温度通常有两种表示方法:华氏度(单位:T)与摄氏度(单位:C),已知华氏度数y与摄氏度数x之间是一次函数关系,如表列出了部分华氏度与摄氏度之间的对应关系:华氏度数x (C)035100摄氏度数y (T)3295212(1 )选用表格中给出的数据,求y关于x的函数解析式(不需要写出该函数的定义域) (2)已知某天的最低气温是- 5 C,求与之对应的华氏度数.22. (6分)(2015?黄浦区二模)如图,在梯形ABCD中,AD // BC, AB丄BC ,已知AD=2 , cot/ ACB= •,梯形ABCD的面积是9;3(1 )求AB的长;(2)求tan/ ACD 的值.23. (6分)(2015?黄浦区二模)如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,联结BE、DF, DF交对角线AC于点G,且DE=DG ;(1)求证:AE=CG ;(2)求证:BE // DF .xOy中,已知点A的坐标为(a,12 123)(其中a> 4),射线OA与反比例函数y=——的图象交于点P,点B、C分别在函数y=——的图象上,且AB // x轴,AC // y轴;(1)当点P横坐标为6,求直线AO的表达式;(2)联结BO,当AB=BO时,求点A坐标;(3)联结BP、CP,试猜想:"「的值是否随a的变化而变化?如果不变,S AACP求出■ 的S AACP 值;如果变化,请说明理由.25. (9 分)(2015?黄浦区二模)如图,Rt△ ABC 中,/ C=90 ° / A=30 ° BC=2 , CD 是斜边AB 上的高,点E为边AC上一点(点E不与点A、C重合),联结DE,作CF丄DE, CF 与边AB、线段DE分别交于点F、G ;(1)求线段CD、AD的长;(2 )设CE=x, DF=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EF,当△ EFG与厶CDG相似时,求线段CE的长.B2015年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(每题4分,共24分)1. (4分)(2015?黄浦区二模)下列分数中,可以化为有限小数的是()A . B. C.三D .上15 1S 15 13【分析】根据分数与小数间的转化,可得答案.【解答】解:A、亠是无限循环小数,故A错误;15B、.是无限循环小数,故B错误;1SC、亠是有限小数,故C正确;15D、士是无限循环小数,故D错误;故选:C.2. (4分)(2015?黄浦区二模)下列二次根式中最简根式是B . ■: C. S D .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.3日期除夕初一初二初三初四初五初六最低气温(C)44561064这七天最低气温的众数和中位数分别是()A . 4, 4B . 4, 5 C. 6, 5 D . 6, 6【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.【解答】解:将一周气温按从小到大的顺序排列为4, 4, 4, 5, 6, 6, 10,中位数为第四个数5;4出现了3次,故众数为4.故选B .24. (4分)(2015?黄浦区二模)将抛物线y=x向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是()2 2 2 2A . y= (x- 1)+2B . y= (x - 2)+1 C. y= (x+1 ) - 2 D . y= (x+2 ) - 1【分析】把抛物线的平移问题转化为点平移的问题:先确定抛物线y=x2 3的顶点坐标为(0, 0),再根据点平移的规律得到把向下平移1个单位,再向左平移2个单位后得到对应点的坐标为(-2,- 1),然后根据顶点式写出平移后的抛物线解析式.2【解答】解:抛物线y=x的顶点坐标为(0, 0),把点(0, 0)向下平移1个单位,再向左平移2个单位后得到对应点的坐标为(- 2, - 1),所以所得抛物线的表达式是y= (x+2)2- 1.故选:D.5. (4分)(2015?黄浦区二模)如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是()A .内含B.内切C.外切D.相交【分析】根据数量关系来判断两圆的位置关系•设两圆的半径分别为R和r,且R才,圆心距为d:外离,贝U d> R+r;外切,则d=R+r;相交,则R- r v d v R+r;内切,贝U d=R - r; 内含,贝U d v R - r.【解答】解:•••两圆半径之差=6 - 2=4=圆心距,•••两个圆的位置关系是内切.故选B .6. (4分)(2015?黄浦区二模)下列命题中真命题是()A •对角线互相垂直的四边形是矩形B. 对角线相等的四边形是矩形C. 四条边都相等的四边形是矩形D .四个内角都相等的四边形是矩形【分析】根据矩形的判定方法对四个命题进行判断.【解答】解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、四个角都相等的四边形是矩形,所以C选项错误;D、四个角都相等的四边形是矩形,所以D选项正确.故选D .二、填空题(每题4分,共48分)2 2 47. (4分)(2015?黄浦区二模)计算:(a )= a .【分析】根据幕的乘方和积的乘方的运算法则求解.【解答】解:(a2)2=a4.2 2& ( 4分)(2015?房山区二模)分解因式:2x - 8x+8= 2 (x - 2)【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2 (x2- 4x+4)=2 ( x- 2)故答案为2 (x - 2)故答案为:a4.9. (4分)(2015?黄浦区二模)计算:”+—•_,—x+1 X - 1 —- 1 —【分析】原式通分并利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式故答案为:10. (4分)(2004?上海)方程寸■—・:=x - 1的根是x=3 .【分析】把方程两边平方去根号后求解,注意检验.【解答】解:两边平方得7 - x= (x - 1)2,即(x+2)(x - 3)=0,解得:x= - 2或x=3 ,代入原方程,当x= - 2时,左边=.「二=3,右边=-3,原方成不成立. 当x=3时,左边=:,右边=2,原方程成立.故方程亍_、.=x - 1的根是x=3 ,故本题答案为:x=3 .211. (4分)(2015?黄浦区二模)如果抛物线y= (2- a)x +3x - a的开口向上,那么a的取值范围是a v 2 .【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数 2 - a>0,解不等式即可求得a的取值.【解答】解:因为抛物线y= (2 - a)x2+3x - a的开口向上,所以2- a>0,即a v 2.故答案为:a v 2.12. (4分)(2015?黄浦区二模)某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为40%4</鐵(人)【分析】根据条形统计图给出的数据求出外出旅游学生的总人数,再用三班外出旅游学生人数除以总人数即可得出答案.【解答】解:三班外出旅游学生人数占全年级外出旅游学生人数的百分比为20------ ----------- X100%=40% ;12+8+20+10故答案为:40%.13. (4分)(2015?黄浦区二模)将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是:.一4—【分析】列举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【解答】解:如图所示:正反A A正反正反共4种情况,正面都朝上的情况数有1种,所以概率是 .4故答案是■.414. (4分)(2015?黄浦区二模)如果梯形的下底长为7中位线长为5,那么其上底长为3 . 【分析】设出梯形的上底长,直接运用梯形的中位线定理列出关于上底入的方程,求出入即可解决问题.【解答】解:设梯形的上底长为入由题意得:-,,2解得:*3,故答案为3.15. (4分)(2015?黄浦区二模)已匸AB是O O的弦,如果O O的半径长为5, AB长为4, 那么圆心O到弦AB的距离是_ f二1【分析】根据题意画出图形,过点O作OD丄AB于点D,由垂径定理可得出AD的长,在Rt A OAD中,利用勾股定理及可求出OD的长.【解答】解:如图所示:过点O作OD丄AB于点D,•/ AB=4 ,••• AD= AB= >4=2,2 2在Rt△ OBD 中,•/ OA=5 , AD=2 ,•OD=二-,匸.=•「:::'=:-.故答案为:二7.16. (4分)(2015?黄浦区二模)如图,在平行四边形ABCD中,点M是边CD中点,点N 是边BC上的点,且卜.设小―,那么讪用表示为—匚―【分析】首先由四边形ABCD是平行四边形,求得「'=.•「=;,又由点M是边CD中点,点N是边BC上的点,且侯1,求得宀J再利用三角形法则求解即可求得答案.【解答】解::•四边形ABCD是平行四边形,•••点M是边CD中点,点N是边BC上的点,且■;;=':,17. (4分)(2015?黄浦区二模)如图,△ ABC是等边三角形,若点A绕点C顺时针旋转30°至点A 联结A B,则/ ABA度数是15°.【分析】如图,首先运用旋转变换的性质得到AC=A C, / ACA =30 °运用等腰三角形的性质得到,/ A BC=45。
2015年上海市黄浦区中考数学二模试卷参考答案与试题解析一、选择题(每题4分,共24分)1.(4分)(2015•黄浦区二模)下列分数中,可以化为有限小数的是()A.B.C.D.【考点】:实数的概念M121【难易度】:容易题【分析】:根据分数与小数间的转化,可得.A、是无限循环小数,故A错误;B、是无限循环小数,故B错误;C、=0.2是有限小数,故C正确;D、是无限循环小数,故D错误;【解答】:答案C.【点评】:本题考查了有限小数与无限小数的定义,难度不大,解题时,只要将分数化为小数可直接得出答案。
2.(4分)(2015•黄浦区二模)下列二次根式中最简根式是()A.B.C.D.【考点】:最简二次根式M223【难易度】:容易题【分析】:判定一个二次根式是否为最简二次根式,就是逐个检查最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.则:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;【解答】:答案C.【点评】:本题考查了最简二次根式的判断,难度不大,需要熟记最简二次根式必须满足的两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.(4分)(2015•黄浦区二模)如表是某地今年春节放假七天最低气温(℃)的统计结果日期除夕初一初二初三初四初五初六最低气温(℃) 4 4 5 6 10 6 4这七天最低气温的众数和中位数分别是()A.4,4 B.4,5 C.6,5 D.6,6【考点】:中位数、众数M524【难易度】:容易题【分析】:由众数就是出现次数最多的数,而中位数就是大小处于中间位置的数或中间两数的平均数。
将一周气温按从小到大的顺序排列为4,4,4,5,6,6,10,则4出现次数的最多,故众数为4;中位数为第四个数5.【解答】:答案B.【点评】:本题考查了众数和中位数的计算方式,属于基础题,需要熟记:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做这组数据的众数,注意一组数据的众数可以不唯一。
黄浦区2015年九年级学业考试模拟考数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. C ;2. C ;3.B ;4. D ;5. B ;6. D .二、填空题:(本大题共12题,每题4分,满分48分)7. 4a ; 8. 22(2)x -; 9. 21(1)(1)x x x ++-; 10. 3x =; 11. 2a <; 12. 40%; 13.14 ; 14. 3; 15.16. 1123a b -; 17. 15︒;18. . 三、解答题:(本大题共7题,满分78分)19. (本题满分10分)原式=))1211+-+ ………………………………………………………(8分)=1. ………………………………………………………………………………(2分)20. (本题满分10分)解:由②得 1x y =+.③ ……………………………………………………(2分)将③代入①得22(1)22y y +-=-.………………………………………………………(1分)整理,得 2230y y --=.……………………………………………………………(2分)解得 11y =-,23y =. …………………………………………………………(2分)代入③得 10x =,24x =.………………………………………………………………(2分)所以,原方程的解是110,1;x y =⎧⎨=-⎩214,3.x y =⎧⎨=⎩…………………………………………………(1分)21. (本题满分10分,第(1)满分7分,(2)小题满分3分)解:(1)设函数解析式为y kx b =+(0k ≠). ……………………………………………(2分)由0x =时,32y =, 得 320k b =⋅+.…………………………………………(1分)解得 32b = . ………………………………………………(1分)由100x =时,212y =,得 2121003k =+. ……………………………………(1分)解得 95k =. ……………………………………………………(1分) ∴y 关于x 的函数解析式是9325y x =+. ………………………………………………(1分)(2)将5x =-,代入9325y x =+,得9(5)325y =⋅-+. …………………………………(1分)解得 23y =. …………………………………………………………………(1分)∴这天的最低气温是23F . ……………………………………………………………(1分)22. (本题满分10分,第(1)、(2)小题满分各5分)解:(1)设AB x =.∴ 4cot 3BC AB ACB x =⋅∠=. …………………………………………………………(1分)由题意得431(2)92x x +⋅=. …………………………………………………………(2分) 解得1293, 2x x ==-(舍). …………………………………………………………(1分)所以AB 的长为3. ………………………………………………………………………(1分)(2)过点D 作DE ⊥AC ,垂足为E .…………………………………………………………(1分)在Rt △ABC 中,AB =3,BC =4,∴5AC =. ……………………………………………………………(1分) ∴ 3sin 5ABACB AC ∠==,4cos 5BCACB AC ∠==. ……………………………………(1分)∵AD //BC ,∴DAC ACB ∠=∠.在Rt △AED 中,AD =2,s i n 56D E A D D A C =⋅∠=,cos 58AE AD DAC =⋅∠=.………………………………(1分)在Rt△CED中,665tan81755DEACDCE∠===-.………………………………………(1分)23. (本题满分12分,第(1)、(2)小题满分各6分)证明:(1)∵四边形ABCD是正方形,∴AD=CD. ……………………………………………………………………………(1分)∴DAE DCG∠=∠.……………………………………………………………………(1分)∵DE=DG,∴DEG DGE∠=∠.………………………………………………………(1分)∴AED CGD∠=∠.……………………………………………………………………(1分)在△AED与△CGD中,DAE DCG∠=∠,AED CGD∠=∠,AD=CD,∴△AED≌△CGD.……………………………………………………………………(1分)∴AE=CG. ……………………………………………………………………………(1分)(2) ∵四边形ABCD是正方形,∴AD//BC. ………………………………………………………………………………(1分)∴CG CFAG AD=. …………………………………………………………………………(1分)∵AE=CG.∴AC AE AC CG-=-,即CE=AG. ……………………………………………………………………………(1分)∵四边形ABCD是正方形,∴AD=BC. ……………………………………………………………………………(1分)∴CG CFCE BC=. …………………………………………………………………………(1分)∴BE//DF. ……………………………………………………………………………(1分)24. (本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)解:(1)∵反比例函数12yx=的图像经过横坐标为6的点P,∴点P的坐标为(6,2).………………………………………………………(1分)设直线AO的表达式为y kx=(0k≠).…………………………………………(1分)将点P(6,2)代入y kx=,解得13k=.∴所求反比例函数的解析式为13y x =.………………………………………………(1分)(2)∵AB //x 轴,∴点B 纵坐标为3,将3y =代入12y x=,解得 4x =. ∴点B 坐标为(4,3).…………………………………………………………………(1分)∵AB =BO ,∴4a -解得9a =. ……………………………………………………………(2分) ∴点A 坐标为(9,3).………………………………………………(1分)(3)不变.延长AB 交y 轴于点D ,延长AC 交x 轴于点E , ∴32ADO AEO S S a ∆∆==.………………………………………………(1分) ∵点C 坐标为(a ,12a).∴6CEO S ∆=,同理6BDO S ∆=,…………………(1分) ∴ADO BDO AEO CEO S S S S ∆∆∆∆-=-,即ABO ACO S S ∆∆=.………………………(1分) ∵△ABP 与△ABO 同高,∴ABP ABO S AP S AO ∆∆=.……………………………(1分) 同理ACP ACO S AP S AO ∆∆=.∴1ABP ACPS S ∆∆=. 即当a 变化时,ABP ACP S S ∆∆的值不变,且恒为1.………………………(1分) 25. (本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分) 解:(1)∵Rt △ABC 中,90C ︒∠= ,∵CD 是斜边AB 上的高, 即90ADC ︒∠=,又∵90C ︒∠= ,∴BCD ACD A ACD ∠+∠=∠+∠.∴30BCD A ∠=∠=.………………………………………………(1分)在Rt △BDC 中,cos 2cos303CD BC BCD =⋅∠=⋅=1分) 在Rt △ADC 中,cot 3AD CD A =⋅∠=. …………………………(1分)(2)∵CF ⊥DE ,CD ⊥AB ,∴CDG EDF CFD EDF ∠+∠=∠+∠.即=CDG CFD ∠∠. ……………(1分) 同理 ACD B ∠=∠. △CDE ∽△BFC .…………………………………………………(1分) ∴CE CD BC BF =,即CE CD BC DF BD=+. 又∵在Rt △BDC 中,sin 1BD BC BCD =⋅∠=, ∴2x =.………………………………………………………(1分)∴y =x ≤<.……………………………………(2分) (3)∵EGF CGD ∠=∠,1°当FEG CDG ∠=∠时,EF //CD . ∴FD AD CE AC =,即x x .……………………………(1分)解得x =负值已舍).…………………………………………………………(1分) 2°当FEG DCG ∠=∠时,∵90CDF ∠=,CF ⊥DE ,∴DCG EDF ∠=∠.又∵FEG DCG ∠=∠,∴EDF FEG ∠=∠.∴EF =FD .又∵CF ⊥DE ,∴GE =GD ,即CF 是DE 的垂直平分线.…………………………………(1分)∴CE =CD.………………………………………………………………………………(1分)综上所述CE1分)。
2015年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1. 下列实数中,是有理数的为( )A .B ;C .π;D .0.2. 当0a >时,下列关于幂的运算正确的是( )A .01a =;B .1a a -=-;C .()22a a -=-; D .. 3. 下列y 关于x 的函数中,是正比例函数的为( )A .2y x =;B .2y x =;C .2x y =;D ..4. 如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A .4;B .5;C .6;D .7.5. 下列各统计量中,表示一组数据波动程度的量是( )A .平均数;B .众数;C .方差;D .频率.6. 如图,已知在⊙O 中,AB 是弦,半径OC AB ⊥,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A .AD BD =;B .OD CD =;C .CAD CBD ∠=∠; D .OCA OCB ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7. 计算:22-+= .8. 方程322x -=的解是 .9. 如果分式23x x +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程240x x m +-=没有实数根,那么m 的取值范围是 .11.同一温度的华氏度数()y F 及摄氏度数()x C 之间的函数关系是.如果某一温度的摄氏度数是25C,那么它的华氏度数是F.12.如果将抛物线221=+-向上平移,使它经过点A(0,3),那么所得新抛物y x x线的表达式是.13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加此次活动的概率是.14.已知某校学生“科技创新社团”成员的年龄及人数情况如下表所示:1112131415年龄(岁)人数55161512那么“科技创新社团”成员年龄的中位数是岁.15.如图,已知在△ABC中,D、E分别是边AB、边AC的中点,AB m=,=,AC n 那么向量DE用向量m、n表示为.16.已知E是正方形ABCD的对角线AC上一点,AE AD=,过点E作AC的垂线,交边CD于点F,那么FAD∠=度.17.在矩形ABCD 中,5AB =,12BC =,点A 在⊙B 上.如果⊙D 及⊙B 相交,且点B在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符号要求的数)18.已知在△ABC 中,8AB AC ==,30BAC ∠=.将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处.延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于.三、解答题:(本大题共7题,满分78分)19.(本题满分10分) 先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =.20.(本题满分10分)解不等式组:,并把解集在数轴上表示出来.图 321.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 已知,如图,在平面直角坐标系xOy 中,正比例函数的图像经过点A ,点A 的纵坐标为4,反比例函数的图像也经过点A ,第一象限内的点B 在这个反比例函数的图像上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC AB .求:(1)这个反比例函数的解析式;(2)直线AB 的表达式.22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15米,BA的延长线及MN相交于点D,且30∠=,BDN假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车及点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它及这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到13 1.7)图4图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE OB =,联结DE .(1)求证:DE BE ⊥;(2)如果OE CD ⊥,求证:BD CE CD DE ⋅=⋅.24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)已知在平面直角坐标系xOy 中(如图),抛物线24y ax =-及x 轴的负半轴相交于点A ,及y 轴相交于点B ,25AB =P 在抛物线上,线段AP 及y 轴的正半轴相交于点C ,线段BP 及x 轴相交于点D .设点P 的横坐标为m .(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长度;(3)当时,求PAD的正弦值.图7 备用图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦CD ∥AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线及射线OQ 相交于点E ,及弦CD 相交于点F (点F 及点C 、D 不重合),20AB =,.设OP x =,△CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当△OPE 是直角三角形时,求线段OP 的长.2015年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、D ;2、A ;3、C ;4、B ;5、C ;6、B二、 填空题7、4; 8、2; 9、3x ≠- ; 10、4m <- ; 11、77; 12、223y x x =++ ; 13、750; 14、14; 15、 ; 16、22.5; 17、14等(大于13且小于18 的数);18、4.三、 解答题19.解:原式2221=(2)2x x x x x x +-⋅-++当1x =时,原式1=20.解:由426x x >-,得3x >-由 ,得2x ≤∴ 原不等式组的解集是32x -<≤.x21.解:(1)∵正比例函数的图像经过点A ,点A 的纵坐标为4,∴ ∴3x = ∴点A 的坐标是(3,4)∵反比例函数的图像经过点A ,∴ ,12m =∴反比例函数的解析式为(2)∵AC AB =,∴点A 在线段BC 的中垂线上.∵BC x ∥轴,点C 在y 轴上,点A 的坐标是(3,4),∴点B 的横坐标为6.∵点B 在反比例函数的图像上,∴点B 的坐标是(6,2).设直线AB 的表达式为y kx b =+ ,将点A 、B 代入表达式得:解得∴直线AB 的表达式为.22.解:(1)联结AP .由题意得 ,15(),39()AH MN AH m AP m ⊥==.在Rt APH ∆中,得36()PH m =.答:此时汽车及点H 的距离为36米. (2)由题意可知,PQ 段高架道路旁需要安装隔音板,QC AB ⊥,30,39()QDC QC m ∠=︒=.在Rt DCQ ∆中,278()DQ QC m ==.在Rt ADH ∆中,cot 30)DH AH m =⋅︒=,∴11415 1.788.589()PQ PH DH DQ m =-+≈-⨯=≈.答:高架道路旁安装的隔音板至少需要89米长.23.证明:(1)∵,OE OB OBE OEB =∠=∠.∵平行四边形ABCD 的对角线相交于点O ,∴OB OD =.∴OE OD =. ∴ODE OED ∠=∠.在BDE ∆中,∵180,OBE OEB OED ODE ∠+∠+∠+∠=︒∴090,OEB ED BED ∠+∠=∠=︒ 即DE BE ⊥.(2)∵OE CD ⊥,∵90CDE DEO ∠+∠=︒.又∵90,.CEO DEO CDE CEO ∠+∠=︒∴∠=∠,.OBE OEB OBE CDE ∠=∠∴∠=∠在DBE ∆和CDE ∆中:∴.DBE CDE ∆∆∽ ∴ ∴ BD CE CD DE ⋅=⋅24.(1)由抛物线24=-及y轴相交于点B,得点B的坐标为(0,-4)y ax∵点A在x轴的负半轴上,AB=∴点A的坐标为(-2,0)∵抛物线24=-及x轴相交于点A,∴1y axa=∴这条抛物线的表达式为24=-y x(2)∵点P在抛物线上,它的横坐标为m,∴点P的坐标为2(,4)m m-由题意,得点P在第一象限内,因此2>->0,40m m过点P作PH⊥x轴,垂足为H∵CO∥PH,∴∴,解得24CO m=-(3)过点P作PG⊥y轴,垂足为点G∵OD∥PG,∴∴,即在Rt△ODC中,∵∴,解得3m=-(舍去)。
黄浦区2015年九年级学业考试模拟卷
数学试卷
一. 选择题
1. 下列分数中,可以化为有限小数的是( ) A.
115; B. 118; C. 315; D. 318
; 2. 下列二次根式中最简根式是( )
A.
; B. ; C. D.
3. 下表是某地今年春节放假七天最低气温(C ︒)的统计结果
A. 4,4;
B. 4,5;
C. 6,5;
D. 6,6;
4. 将抛物线2
y x =向下平移1个单位,再向左平移2个单位后,所得新抛物线的表达式是( )
A. 2
(1)2y x =-+; B. 2
(2)1y x =-+; C. 2
(1)2y x =+-; D. 2
(2)1y x =+-;
5. 如果两圆的半径长分别为6与2,圆心距为4,那么这两个圆的位置关系是( ) A. 内含; B. 内切; C. 外切; D. 相交;
6. 下列命题中真命题是( )
A. 对角线互相垂直的四边形是矩形;
B. 对角线相等的四边形是矩形;
C. 四条边都相等的四边形是矩形;
D. 四个内角都相等的四边形是矩形;
二. 填空题
7. 计算:22
()a = ;
8. 因式分解:2
288x x -+= ; 9. 计算:
1
11
x x x +=+- ;
10. 1x =-的根是 ;
11. 如果抛物线2
(2)3y a x x a =-+-的开口向上,那么a 的取值范围是 ;
12. 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生
人数占全年级外出旅游学生人数的百分比为 ;
13. 将一枚质地均匀的硬币抛掷2次,硬币证明均朝上的概率是 ; 14. 如果梯形的下底长为7,中位线长为5,那么其上底长为 ; 15. 已知AB 是
O 的弦,如果O 的半径长为5,AB 长为4,那么圆心O 到弦AB 的距
离是 ;
16. 如图,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 上的点,且
1
2
CN BN =,设AB a =,BC b =,那么MN 可用a 、b 表示为 ;
17. 如图,△ABC 是等边三角形,若点A 绕点C 顺时针旋转30°至点A ',联结A B ',则
ABA '∠度数是 ;
18. 如图,点P 是以r 为半径的圆O 外一点,点P '在线段OP 上,若满足2
OP OP r '⋅=,
则称点P '是点P 关于圆O 的反演点,如图,在Rt △ABO 中,90B ∠=︒,2AB =,
4BO =,圆O 的半径为2,如果点A '、B '分别是点A 、B 关于圆O 的反演点,那么
A B ''的长是 ;
三. 解答题
19. 计算:1
1
2
481)|1-+-+-;
20. 解方程组:22221x y x y ⎧-=-⎨-=⎩
①
②;
21. 温度通常有两种表示方法:华氏度(单位:F ︒)与摄氏度(单位:C ︒),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:
(2)已知某天的最低气温是-5C ︒,求与之对应的华氏度数;
22. 如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,已知2AD =,4
cot 3
ACB ∠=,梯形ABCD 的面积是9; (1)求AB 的长; (2)求tan ACD ∠的值;
23. 如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,联结BE 、DF ,
DF 交对角线AC 于点G ,且DE DG =;
(1)求证:AE CG =; (2)求证:BE ∥DF ;
24. 如图,在平面直角坐标系xOy 中,已知点A 的坐标为(,3)a (其中4a >),射线OA 与反比例函数12y x =
的图像交于点P ,点B 、C 分别在函数12y x
=的图像上,且AB ∥x 轴,AC ∥y 轴;
(1)当点P 横坐标为6,求直线AO 的表达式; (2)联结BO ,当AB BO =时,求点A 坐标; (3)联结BP 、CP ,试猜想:
ABP ACP S S ∆∆的值是否随a 的变化而变化?如果不变,求出ABP
ACP
S
S ∆∆的值;如果变化,请说明理由;
25. 如图,Rt △ABC 中,90C ∠=︒,30A ∠=︒,2BC =,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G ; (1)求线段CD 、AD 的长;
(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长;
2015年黄浦区初三二模数学参考答案
一. 选择题
1. C ;
2. C ;
3. B ;
4. D ;
5. B ;
6. D ; 二. 填空题
7. 4
a ; 8. 2
2(2)x -; 9. 221
1
x x +-; 10. 3x =; 11. 2a <; 12. 40%;
13.
1
4
; 14. 3; 15. ; 16.
11
23
a b -; 17. 15︒; 18. 5; 三. 解答题
19. 解:原式12131)11
=+-
=-=; 20. 解:由②得:1x y =+,代入①得:2
2
(1)22y y +-=-,即2
230y y --=, ∴(1)(3)0y y +-=,∴11y =-,23y =,∴10x =,24x =, ∴方程组的解为01x y =⎧⎨
=-⎩或4
3
x y =⎧⎨=⎩;
21. 解:设y kx b =+,代入(0,32)和(35,95),即032
3595
b k b +=⎧⎨
+=⎩,
∴32b =,95k =
,∴9
325
y x =+, 当5x =-时,93223y =-+=;
22. 解:(1)Rt ABC 中,4
cot 3
BC ACB AB ∠==,设4BC k =,3AB k =, ∴11()(24)3922ABCD S AD BC AB k k =
⋅+⋅=+⋅=,∴1k =或3
2
k =-(舍)
, ∴3AB =,4BC =,5AC =;
(2)作DH AC ⊥,∵AD ∥BC ,∴DAH ACB ∠=∠,
∴Rt ADH ∽Rt CAB ,∴
2
5
DH AD AH AB AC BC ===, ∴65DH =,85AH =,∴17
5
CH AC AH =-=,
∴6
tan 17
DH ACD CH ∠=
=; 23. 解:(1)∵DE DG =,∴DEG DGE ∠=∠,∴AED CGD ∠=∠, 又∵AD CD =,45DAC DCA ∠=∠=︒,∴△ADE ≌△CDG , ∴AE CG =
(2)∵BC CD =,CE CE =,45BCE DCE ∠=∠=︒, ∴△BCE ≌△DCE ,∴BEC DEC DGE ∠=∠=∠, ∴BE ∥DF ;
24. 解:(1)当6x =时,2y =,∴(6,2)P ,设:OA l y kx =,
代入(6,2)P 得13k =
,∴1
:3
OA l y x =; (2)当3y =时,4x =,∴(4,3)B ,∵AB BO =, ∴54a =-,即9a =,∴(9,3)A (3)3:OA l y x a =
,联立12
y x
=
,得P a , 作PM AB ⊥,PN AC ⊥,
当x a =时,12y a =
,即12
(,)C a a ,当3y =时,4x =,即(4,3)B ,
∴1(4)(32ABP S a a =--
,112
()2ACP S a a
=--,
∴3121ABP ACP a S S -
-==; 25. 解:(1)CD =,3AD =;
(2)∵90CDE BFC DCF ∠=∠=︒-∠,60ECD B ∠=∠=︒,
∴△CDE ∽△BFC ,∴CE CD BC BF =
,即2
1
x y =+,
∴1y =
,x ≤< (3)90EGF CGD ∠=∠=︒
① △EGF ∽△DGC 时,GEF GDC ∠=∠,∴EF ∥DC ,
∴CE DF AC AD =
1
33y x -==,解得3x =;
② △EGF ∽△CGD 时,∴GEF GCD GDF ∠=∠
=∠,
∴EF DF =,又∵CF DE ⊥,∴
EG DG =,∴CD CE ==
综上,CE =。